当前位置:文档之家› 植物的氮素营养与氮肥笔记

植物的氮素营养与氮肥笔记

植物的氮素营养与氮肥笔记
植物的氮素营养与氮肥笔记

第三章植物的氮素营养与氮肥

第一节植物的氮素营养

一、植物体内氮的含量与分布

1. 含量:占植物干重的0.3~5%

影响因素:

植物种类:豆科植物>非豆科植物

品种:高产品种>低产品种

器官:种子>叶>根>茎秆

组织:幼嫩组织>成熟组织>衰老组织,生长点>非生长点

生长时期:苗期>旺长期>成熟期>衰老期,营养生长期>生殖生长期

2. 分布:幼嫩组织>成熟组织>衰老组织,生长点>非生长点

原因:氮在植物体内的移动性强

在作物一生中,氮素的分布是在变化的:

营养生长期:大部分在营养器官中(叶、茎、根)

生殖生长期:转移到贮藏器官(块茎、块根、果实、籽粒),约占植株体内全氮的70%

注意:作物体内氮素的含量和分布,明显受施氮水平和施氮时期的影响。通常是营养器官的含量变化大,生殖器官则变动小,但生长后期施用氮肥,则表现为生殖器官中的含氮量明显上升。

二、植物体内含氮化合物的种类(氮的生理功能)

1. 氮是蛋白质的重要成分(蛋白质含氮16~18%)——生命物质

2. 氮是核酸和核蛋白的成分(核酸中的氮约占植株全氮的10%)——合成蛋白质和决定生物遗传性的物质基础

3. 氮是酶的成分——生物催化剂

4.氮是叶绿素的成分(叶绿体含蛋白质45~60%)——光合作用的场所

5. 氮是多种维生素的成分(如维生素B1、B2、B6等)--辅酶的成分

6. 氮是一些植物激素的成分(如IAA、CK)--生理活性物质

7. 氮也是生物碱的组分(如烟碱、茶碱、可可碱、咖啡碱、胆碱--卵磷脂--生物膜)氮素通常被称为生命元素

三、植物对氮的吸收与同化

吸收的形态无机态:NO3--N、NH4+-N (主要)

有机态:NH2 -N、氨基酸、核酸等(少量)

(一)植物对硝态氮的吸收与同化

1. 吸收:旱地作物吸收NO3--N为主,属主动吸收

吸收后:10%~30%在根还原;70%~90%运输到茎叶还原;小部分贮存在液胞内(硝酸根在液泡中积累对离子平衡和渗透调节作用具有重要意义。)

2. 同化

(1) NO3--N的还原作用

过程:NO3- NO2- NH3 NR:硝酸还原酶NiR:亚硝酸还原酶

总反应式:

NO3-+8H++8e- NH3+2H2O+OH-

结果:产生OH-,一部分用于代谢;一部分排出体外,介质pH值? (资料:植物吸收的NO3-与排出的OH-的比值约为10:1)

(2)影响硝酸盐还原的因素

①植物种类:与根系还原能力有关,如木本植物> 一年生草本植物;油菜> 大麦> 向日葵> 玉米

②光照:光照不足,硝酸还原酶活性低,使硝酸还要作用变弱,造成植物体内NO3--N 浓度过高

③温度:温度过低,酶活性低,根部还原减少

④施氮量:施氮过多,吸收积累也多(奢侈吸收)

⑤微量元素供应:钼、铁、铜、锰、镁等微量元素缺乏,NO3--N难以还原

⑥陪伴离子:如K+,促进NO3-向地上部转移,使根还原比例减少;若供钾不足,影响NO3--N的还原作用

当植物吸收的NO3--N来不及还原,就会在植物体内积累

影响蔬菜硝酸盐含量的因素

植物因素: 种类、品种、部位

肥料因素: 种类、用量、时间

气候因素: 温度、光照

收获因素: 施肥后安全期、一天内时间

降低植物体内硝酸盐含量的有效措施:选用优良品种、控施氮肥、增施钾肥、增加采前光照、改善微量元素供应等。

(二)植物对铵态氮的吸收与同化

1. 吸收

(1)机理:①被动渗透②接触脱质子

2. 同化

(1) 部位:在根部很快被同化为氨基酸

(2) 反应式:

NH3+谷氨酸+ATP 谷氨酰胺+ADP+Pi

谷氨酰胺+α-酮戊二酸+2e-+2H+2谷氨酸

谷氨酸+17酮酸17种氨基酸蛋白质

3. 酰胺的形成及意义

形成:

意义:①贮存氨基;②解除氨毒;③参与代谢。

(三)植物对有机氮的吸收与同化

1. 尿素(酰胺态氮)

(1) 吸收:根、叶均能直接吸收

(2) 同化:

①脲酶途径:尿素NH3 氨基酸

②非脲酶途径:直接同化

尿素氨甲酰磷酸瓜氨酸精氨酸

尿素的毒害:当介质中尿素浓度过高时,植物会出现受害症状

2. 氨基态氮

可直接吸收,效果因种类而异

第一类,效果> 硫酸铵:如甘氨酸、天门冬酰胺等

第二类,尿素< 效果< 硫酸铵:如天门冬氨酸等

第三类,效果< 尿素:如脯氨酸、缬氨酸等

第四类,有抑制作用:如蛋氨酸

四、铵态氮和硝态氮营养特点的比较

NO3--N是阴离子,为氧化态的氮源,NH4+-N是阳离子,为还原态的氮源。

不能简单的判定哪种形态好或是不好,因为肥效高低与各种影响吸收和利用的因素有关。影响两者肥效高低的因素:

(一)作物种类

不同植物对两种氮源有着不同的喜好程度,可人为地分为“喜铵植物”和“喜硝植物”。植物的喜铵性和喜硝性

喜铵植物:水稻、甘薯、马铃薯;兼性喜硝植物:小麦、玉米、棉花等

喜硝植物:大部分蔬菜,如黄瓜、番茄、莴苣等;专性喜硝植物:甜菜

(二)环境条件

1. 介质反应

酸性:利于NO3-的吸收;中性至微碱性:利于NH4+的吸收

而植物吸收NO3-时,pH缓慢上升,较安全

植物吸收NH4+时,pH迅速下降,可能危害植物(水培尤甚)

2. 伴随离子

Ca2 + 、Mg2 +等利于NH4+的吸收(而NH4+、H+对K+、Ca2 + 、Mg2 +的吸收有拮抗作用);钼酸盐利于NO3-的吸收与还原

3. 介质通气状况

通气良好,两种氮源的吸收均较快

4. 水分水分过多,NO3- 易随水流失

普氏结论:只要在环境中为铵态氮和硝态氮创造出各自所需要的最适条件,那么,它们在生理上是具有同等价值的。

第一节植物的氮素营养小结:

1. 氮素是植物体中、、、等的组成成分。

2. 植物吸收的氮素以形态的和为主,也可以吸收少量形态的氮。

3. 旱地植物吸收NO3- 以吸收为主,被吸收的NO3-在同化之前,必需先还原为。

4. 植物在吸收NH4+时,会释放等量的,因此,介质的pH值将会。

5. 酰胺具有、、等作用。

6. 植物的喜铵性和喜硝性是由和共同决定的。

7. 植物在营养生长期缺氮通常表现为。

五、植物氮素营养失调症状

1. 氮缺乏

(1) 外观表现

整株:植株矮小,瘦弱

叶片:细小直立,叶色转为淡绿色、浅黄色、乃至黄色,从下部老叶开始出现症状叶脉、叶柄:有些作物呈紫红色

茎:细小,分蘖或分枝少,基部呈黄色或红黄色

花:稀少,提前开放

种子、果实:少且小,早熟,不充实

根:色白而细长,量少,后期呈褐色

(2) 对品质的影响

影响蛋白质含量和质量(必需氨基酸的含量);影响糖分、淀粉等的合成

2. 氮过量

(1) 外观表现

营养体徒长,贪青迟熟;叶面积增大,叶色浓绿,叶片下披互相遮荫;茎秆软弱,抗病虫、抗倒伏能力差;根系短而少,早衰

(2) 作物例子

禾谷类:无效分蘖增加;迟孰,秕粒多

叶菜类:水分多,不耐贮存和运输;体内硝酸盐含量增加

麻类:纤维量减少,纤维拉力下降

苹果树:枝条徒长,花芽分化不充足;易发生病虫害;果实不甜,着色不良,晚熟

第二节土壤中的氮素及其转化

一、土壤中氮素的来源及其含量

(一)来源

1. 施入土壤中的化学氮肥和有机肥料

2. 动植物残体的归还

3. 生物固氮

4. 雷电降雨带来的NH4+-N和NO3--N

(二)含量

我国耕地土壤全氮含量为0.04%~0.35%之间,与土壤有机质含量呈正相关

我国土壤含氮量的地域性规律:

二、土壤中氮的形态

水溶性速效氮源<全氮的5%

1. 有机氮水解性缓效氮源占50%~70%

(>98%) 非水解性难利用占30%~50%

离子态土壤溶液中

2. 无机氮吸附态土壤胶体吸附

(1%~2%) 固定态2:1型粘土矿物固定

有机氮无机氮

(一)有机态氮的矿化作用(氨化作用)

1. 定义:在微生物作用下,土壤中的含氮

有机质分解形成氨的过程。

2. 过程:有机氮

氨基酸

NH4+-N+有机酸

3. 发生条件:各种条件下均可发生

最适条件:温度为20~30oC,

土壤湿度为田间持水量的60%,

土壤pH=7,C/N≤25:1

4. 结果:生成NH4+-N (有效化)

三、土壤中氮的转化

铵态氮

硝态氮

吸附态铵或固定态铵水体中的硝态氮

矿化作用硝化作用生物固定

硝酸还原作用

NH 3

N 2、NO 、N 2O

挥发损失

反硝化作用

吸附固定淋洗损失

有机质

有机氮

生物固定

(二)土壤粘土矿物对NH4+的固定 1. 定义

吸附固定:由于土壤粘土矿物表面所带负电荷而引起的对NH4+的吸附作用 晶格固定:NH4+进入2:1型膨胀性粘土矿物的晶层间而被固定的作用

2. 过程 液相NH4+ 交换性NH4+ 固定态NH4+

3. 结果:减缓NH4+的供应程度 (三)氨的挥发损失

1. 定义:在中性或碱性条件下,土壤中的NH4+转化为NH3而挥发的过程

2. 过程: NH4+ NH3 + H +

3. 影响因素:① pH 值 NH3挥发 6 0.1% 7 1.0% 8 10.0% 9 50.0%

② 土壤CaCO3含量:呈正相关③ 温度:呈正相关④ 施肥深度:挥发量 表施>深施 ⑤ 土壤水分含量⑥ 土壤中NH4+的含量 4. 结果:造成氮素损失 (四)硝化作用

1. 定义:通气良好条件下,土壤中的NH4+ 在微生物的作用下氧化成硝酸盐的现象。

2. 过程: NH4++O2 NO2-+ 4H+ 2NO2-+O2 2NO3-

3. 影响条件:土壤通气状况、土壤反应、土壤温度等 最适条件:铵充足、通气良好、 pH6.5~7.5、25~30oC

4. 结果:形成NO3- -N ;利:为喜硝植物提供氮素;弊:易随水流失和发生反硝化作用 (五)无机氮的生物固定

1. 定义:土壤中的铵态氮和硝态氮被微生物同化为其躯体的组成成分而被暂时固定的现象。

2. 过程:铵态氮硝态氮

生物固定生物固定

有机氮

3. 影响条件:土体的C/N比、温度、湿度、pH值

4. 结果:减缓氮的供应;可减少氮素的损失

六)硝酸还原作用

NO3-NH4+作用机理仍不十分清楚七)反硝化作用

NO3-N2 、NO、NO2

1. 生物反硝化作用(嫌气条件下)

(1)定义:嫌气条件下,土壤中的硝态氮在反硝化细菌作用下还原为气态氮从土壤中逸失的现象

(2)过程:NO3- NO2- N2 、N2O、NO

(3)最适条件:土壤通气不良,新鲜有机质丰富,pH5~8,温度30~35oC

2. 化学反硝化作用(可在好气条件下进行)NO2-N2 、N2O、NO 发生条件:NO2-存在

3. 结果:造成氮素的气态挥发损失,并污染大气

(八)硝酸盐的淋洗损失

NO3--N 随水渗漏或流失,可达施入氮量的5%~10%

结果:氮素损失,并污染水体

四、土壤的供氮能力及氮的有效性

有效氮:能被当季作物利用的氮素,包括无机氮(<2%)和易分解的有机氮

旱地:全氮、碱解氮、

供氮能力土壤矿化氮、硝态氮

稻田:全氮、碱解氮、铵态氮

全氮——土壤供氮潜力;无机氮——土壤供氮强度

小结:土壤有效氮增加和减少的途径

增加途径减少途径

施肥(有机肥、化肥) 植物吸收带走

氨化作用氨的挥发损失

硝化作用(喜硝作物) 硝化作用(喜铵作物)

生物固氮反硝化作用

雷电降雨硝酸盐淋失

生物和吸附固定(暂时)

化学氮肥的当季利用率:20%~50%

第三节氮肥的种类、性质和施用

一、氮肥重要作用

氮肥的生产在化肥工业中占据至关主要的地位。

由于世界土壤氮的平均肥力不高,氮素不易在土壤中积累,而现代集约化农业又容易引起土壤有机质和氮素的过多消耗,因此在多数条件下氮肥的增产效果或肥效,相对于磷钾等化肥而言,是最为稳定和显著的。据全国化肥试验网1981~1983年的资料,N、P、K化肥在水稻、小麦和玉米等粮食作物上的增产效果分别是100%、73%、31%。

二、铵态氮肥包括:液氨、氨水、碳酸氢铵、氯化铵、硫酸铵

(一)共同特性(均含有NH4+)

1. 易溶于水,易被作物吸收

2. 易被土壤胶体吸附和固定

3. 可发生硝化作用

4. 碱性环境中氨易挥发

5. 高浓度对作物,尤其是幼苗易产生毒害

6. 对钙、镁、钾等的吸收有拮抗作用

生理酸性(碱性)肥料

化学肥料进入土壤后,如植物吸收肥料中的阳离子比阴离子快时,土壤溶液中就有阴离子过剩,生成相应酸性物质,久而久之就会引起土壤酸化。这类肥料称为生理酸性肥料。反之,即为生理碱性肥料。

三、硝-铵态和硝态氮肥包括:硝酸铵、硝酸钠、硝酸钙、硝酸钾

(一)共同特性(均含有NO3- )

1. 易溶于水,易被作物吸收(主动吸收)

2. 不被土壤胶体吸附,易随水流失

3. 易发生反硝化作用

4. 促进钙镁钾等的吸收

5. 吸湿性大,具助燃性(易燃易爆)

6. 硝态氮含氮量均较低

四、酰胺态氮肥——尿素(urea)

(一)理化性质分子式:CO(NH2)2含氮量:46%

基本性质:有机物;纯品为白色针状结晶;肥料为颗粒状;易溶于水,呈中性(二)在土壤中的转化

少部分以分子态被土壤胶体吸附和被植物吸收;大部分在脲酶作用下水解

1. 水解作用

CO(NH2)2 (NH4) 2CO3 NH3+CO2+H2O

影响因素:脲酶活性与pH值、水分、温度、有机质含量、质地等有关

如:10 oC 7~12天

20 oC 4~5 天完全转化

30 oC 2~3 天

结果:局部土壤暂时变碱(注意氨挥发);措施:深施、加脲酶抑制剂(如:氢醌制剂)

2. 硝化作用:NH4+ NO3- 因pH值适宜,能旺盛进行,且比氯化铵和硫铵的快

结果:可能造成氮素的损失;措施:使用硝化抑制剂(如:西吡:2-氯-6三氯甲基吡啶)

1 和

2 均是影响尿素肥效的主要原因

(三)施用

可作基肥、追肥,深施覆土;宜作根外追肥

原因:①尿素分子体积小,易透过细胞膜;②尿素溶液呈中性,电离度小,不易引起质壁分离;③尿素具有一定的吸湿性,能使叶面保持湿润状态,以利叶片吸收;④尿素进入细胞后很快参与同化作用,肥效快

做法:浓度0.2~2.0%;次数2~3次,7~10天喷一次;规定尿素中缩二脲< 0.5%

铵态氮肥、硝态氮肥、尿素均为速效氮肥,它们有什么优点和缺点?

优点:水溶性、肥效快、价格较易接受

缺点:易挥发、易硝化、易流失、易反硝化(利用率低);

一次过多施用会造成减产且污染环境

(二)长效氮肥的种类

1. 缓释肥料

含义:施用后在环境因素(如微生物、水)作用下缓慢分解,释放养分供植物吸收的肥料。品种:脲甲醛丁烯叉二脲异丁叉二脲草酰铵

2. 控释肥料

含义:通过包被材料控制速效氮肥的溶解度和氮素释放速率,从而使其按照植物的需要供应氮素的一类肥料。

特点:①可根据作物不同生长阶段对养分的需求,人为地控制养分的供应和释放速度,从而一次施用能满足作物各个生育阶段的需要;②基本上能消除养分在土壤中的淋失、退化、挥发等损失;③能在很大程度上避免养分在土壤中的生物、化学固定;④能基本满足现代农业规模化的需求,省工、省时、省力,一次大量施用不会对作物根系产生伤害;⑤价廉、养分含量高、利用率高等

种类:长效碳铵(钙镁磷肥包裹,石蜡-沥青封面)涂层尿素(钙镁磷肥包裹,无机酸-缓溶剂封)硫衣尿素(包膜:硫磺粉、胶结剂、杀微生物剂)添加硝化抑制剂的肥料新型包膜尿素(包膜:热塑性材料)

热塑性材料包膜尿素:

特点:包膜材料随温度的变化而控制养分的释放(养分释放情况与作为生长快慢及养分需要量相一致)

效果:一次施用较尿素4次施用的平均增产幅度高;氮素利用率达60%~70%;可在100~360天内控制尿素的释放速度

缺点:价格昂贵;污染环境

小结:在农业生产应用方面受到极大的限制

(三)长效氮肥的存在问题及改进措施

1. 存在问题

①难以满足作物早期及吸肥高峰期的需要

②大多数品种价格过高难以在大田推广应用,多用于园艺及多年生观赏植物

③其中的优良品种也难以满足环境特别是可持续发展的要求

2. 改进措施

①以框架结构的大分子有机物质作包裹材料

②以分解快慢不同的包膜材料分层包裹

③把分解快慢不同的颗粒按一定比例混合

第四节氮肥施用对环境的影响

一、氨的毒害

浓度:开始毒害浓度:0.15mM 致死浓度: 6.0mM

症状:根:根尖分泌粘性物质,根呈褐黄色,无根毛,不长新根,根量减少,毒害严重时,老根发黑、坏死

叶:叶片最初表现为凋萎软弱,色泽暗绿,随后发黄焦枯

机理:在根部:抑制根部呼吸,破坏氧化磷酸化;影响其它离子吸收

在叶部:抑制植物光合磷酸化作用

预防措施:改进施肥方法,控制肥料用量,选好施肥时机

二、硝酸盐的污染

1. 硝酸盐在植物体内的积累

(1) 不会毒害植物(奢侈吸收)(2) 通过食物链危及动物和人

研究发现:硝酸盐是一种对人和动物有害的物质,对成人的致命剂量为15~70mg/kg(体重)。硝酸盐在硝化系统和泌尿系统里通过大肠杆菌还原为亚硝酸盐。食用蔬菜后,在口腔即可形成亚硝酸盐。亚硝酸盐破坏血液吸收氧的能力,致使哺乳动物患正血红蛋白症,严重者致死,亚硝酸盐对成人的致命剂量约为20mg/kg(体重)。

(3) 植株硝酸盐和亚硝酸盐限量指标

世界卫生组织和联合国粮农组织(WHO/FAO)于1973年规定了人体摄入硝酸盐的限量指标,硝酸盐(NO3-)的日允许量为3.6mg/kg(体重)。根据这一限量指标,假设成人体重60kg,日食蔬菜0.5kg,则蔬菜硝酸盐含量的允许上限为432mg/kg(鲜重)。

蔬菜亚硝酸盐含量的允许上限为4mg/kg(鲜重)。

2. 硝酸盐流失对水体的污染

(1) 造成水体富营养化

如:我国长江河口河水的NO3-含量为0.49~0.95mg/L ;世界平均值为0.1mg/L

(2) 使水生生物死亡(因藻类大量繁殖,造成水体缺氧)

(3) 引起潜在性致癌突变体

3. 硝酸盐反硝化作用对大气的影响

(1) 破坏臭氧层:反硝化作用产生的NO2,在平流层参与重要的大气反应而消耗臭氧。据估计,大气中的NO2浓度增加一倍,臭氧含量就会减少10%。

(2) 加剧温室效应:一分子N2O的增温效应约为一分子CO2的200多倍。据估计,大气中的N2O浓度每增加0.2~0.3%,温室效应将增加5%。

第五节氮肥的合理分配和施用

讨论题:

1. 怎样测定氮肥利用率?我国的氮肥利用率约为多少?

2. 如何根据气候条件和土壤肥力条件合理分配和施用氮肥?

3. 如何根据作物需肥特性合理分配和施用氮肥?

4. 如何根据氮肥特性合理分配和施用氮肥?

5. 为什么提倡氮肥深施?具体如何实施?

6. 氮肥与有机肥料及磷钾肥配合施用有什么好处?

7. 怎样估算氮肥的用量?目前氮肥适宜用量的范围是多少?

一、氮肥利用率

(一)定义:指当季作物从所施肥料中吸收氮素的数量占施氮量的百分数

(二)测定方法

1. 差值法

2. 15N示踪法

1. 差值法:一般是通过测定施N区和无N区作物吸N量的差值,再计算其占小区施N量的百分数,即氮肥利用率。

2. 15N示踪法:是一种直接测用N肥利用率的方法。它是由富集15N(高15N原子百分超)生产一定形态的标记氮肥,将其施用后测定吸入植物体中氮素的15N原子百分超,进而根据15N丰度的稀释原理计算氮肥利用率。

应用15N示踪法测定作物对氮肥利用率的主要优点在于,能直接测出氮肥中15N丰度在植株体内的稀释程度,从而计算出肥料N的利用率。所以,15N标记肥料的应用被公认为研究氮肥利用率的一项有效手段。另外,15N法还可以测定作物不同生育阶段土壤供应的有效氮素(即A值),肥料氮的平衡或去向等。

差值法计算的结果往往与N肥增产效果更为一致。15N法测定的氮肥利用率一般略低于差值法的测定值。

(三)影响因素:作物种类、土壤条件、施肥技术等

施肥技术:是肥料品种、施肥量、养分配比、施肥时期、施肥方法和施肥位置等项技术的总称。

二、提高氮肥利用率的途径

目的:减少损失、提高利用率、延长肥效

(一)气候条件

在干旱条件下,作物对肥料用量的反应小,增产不明显

在水分供应充分时,作物对肥料用量的反应大,增产明显

根据我国气候条件:北方干旱缺雨,可分配硝态氮肥;南方湿润雨多,宜分配铵态氮肥(二)土壤条件

肥力状况:着重中、低产田

土壤质地:砂质土壤“前轻后重,少量多次”;粘质土壤“前重后轻”

土壤反应:酸性土区、中性土区;碱性土区、盐碱地(不宜用氯化铵)

水分状况:水田区不宜用硝态氮肥;旱地各种均可

(三)作物种类

需氮量:双子叶植物>单子叶植物;叶菜类作物> 瓜果类和根菜类;高产品种> 低产品种杂交水稻> 常规水稻;营养最大效率期> 其它时期

(四)肥料品种

NH4+-N:水田、旱地,深施(覆土)

NO3--N:旱地追肥,少量多次

NH2-N:水田、旱地,深施(覆土)

(2) 追肥——“以水带氮” 深施尿素

“以水带氮”深施技术——在施肥前,稻田停止灌水,晾田数日,尽可能控制土壤处于水不饱和状态,氮肥表施后立即复浅水,使肥随水下渗,深施入土。

2. 采用合理的水、肥综合管理——稻田

(1) 基肥——无水层混施和犁沟条施碳铵效果:显著减少氮素的损失

优点:60%的表施氮肥被带入土层,肥效缓、稳、长;

施肥量比习惯施肥法减少约1/3;

田间耗水量比常规施肥每季度减少750~1 200m3·hm-2 ;

农药用量减少,有利于环境保护和农田生态平衡

(1)和(2)相结合(改进法)与基、追肥都采用有水层混施(习惯法)相比较,前者氮肥利用率提高22%~30%,氮素损失减少29.35%。

3. 施用量——根据目标产量法确定

目标产量法:以实现作物目标产量所需养分量与土壤供应养分量的差额作为确定施肥量的依据,以达到养分收支平衡,所以又称为养分平衡法。

计算公式:

优缺点:概念清楚,计算方便,易于推广;但是问题的关键是要结合作物生产的特点、土壤肥力特征、作物需肥规律以及作物商品价格特点,确定必要的参数和土壤养分利用系数,才能取得满意的结果。

(六)氮肥与有机肥、磷肥、钾肥配合

1. 与有机肥配合施用

好处:无机氮可以提高有机氮的矿化率;有机氮可以加强无机氮的生物固定

目的:作物高产、稳产、优质;改良土壤,提高氮肥利用率

2. 氮、磷、钾配合施用通过平衡施肥使作物营养平衡

本章复习题:

1. 氮素是植物体中、、、等的组成成分。

2. 植物吸收的氮素以形态的和为主,

也可以吸收少量形态的氮。

3. 旱地植物吸收NO3- 以吸收为主,被吸收的NO3-

在同化之前,必需先还原为。

4. 植物在吸收NH4+时,会释放等量的,因此,介质

的pH值将会。

5. 酰胺具有等作用。

6. 植物的喜铵性和喜硝性是由和共

同决定的。

7. 植物在营养生长期缺氮通常表现为。

8. 铵态氮肥和硝态氮肥在特性方面有何区别?

9. 请用连线为如下植物选择一种适宜的氮肥:

水稻烟草马铃薯甜菜

硫酸铵氯化铵硝酸钠硝酸铵

10. 尿素属形态的氮肥,施入土壤后,大部分的尿素

会在的作用下为铵态氮和二氧化碳。而铵

态氮又会进一步氧化为,从而影响尿素的肥效。

11. 尿素作根外追肥施用时,浓度宜在范围,

肥料中缩二脲的含量不能大于。

12. 长效氮肥可分为和两大类。

13. 怎样测定氮肥利用率?我国的氮肥利用率约为多少?

14. 如何根据气候条件合理分配氮肥?

15.如何根据土壤肥力条件合理分配氮肥?

16. 如何根据作物需肥特性合理分配氮肥?

17. 如何根据氮肥特性合理分配氮肥?

18. 怎样估算氮肥的用量?目前氮肥适宜用量的范围是多少?

19. 为什么提倡氮肥深施?具体如何实施?

20. 氮肥与有机肥料配合施用有什么好处?

21. 为什么氮肥要与磷肥或钾肥配合施用?

植物矿质和氮素营养

第三章植物的矿质与氮素营养 矿质营养:植物对矿物质的吸收、转运和同化,通称为植物的矿质营养。 灰分元素:干物质充分燃烧后,剩余下一些不能挥发的灰白色残渣,称为灰分。灰分元素直接或简接来自土壤矿质,所以称为矿质元素。 必需元素:指在植物生长发育中必不可少的元素,具有不可缺少性,不可替代性和直接功能性。 大量元素:指植物生命活动所必需的、且需要量较多的一些元素。有碳、氢、氧、氮、磷、钾、钙、镁、硫等9种元素。 微量元素:植物生命活动所必须的、而需要量很少的一类元素称为微量元素。 水培法:在含有全部或部分营养元素的溶液中培养植物的方法。 砂培法:在洗净的石英砂或玻璃球等基质中,加入营养液培养植物的方法。 主动吸收:指细胞利用呼吸释放的能量逆化学梯度吸收矿质元素的过程。 被动吸收:指细胞不需要由代谢直接提供能量的顺电化学势梯度吸收矿质元素的过程。 扩散作用:指分子或离子沿着化学势或电化学势梯度转移的现象。 协助扩散:指小分子物质经膜转运蛋白顺浓度梯度或电化学梯度跨膜转运的过程,通常不需要细胞提供能量。 离子通道:指细胞膜中一类由内在蛋白构成的横跨膜两侧的孔道。孔的大小及孔内表面电荷等性质决定了通道转运离子的选择性。 膜片钳技术:指使用微电极从一小片细胞膜上获取电子信息,可用来研究细胞器间的离子运输、气孔运动、光受体、激素受体以及信号分子等的作用 原初主动转运:质膜H+-ATP酶利用ATP水解产生的能量,把细胞质内的H+向膜外泵出,产生质子驱动力的过程称为原初主动运输。 次级主动转运:指以质子动力作为驱动力的离子或分子的转运。 单盐毒害:指植物培养在某一单盐溶液中不久即呈现不正常状态,最后死亡的现象。单盐毒害无论是营养元素还是非营养元素都可发生,而且在溶液很稀时植物就会受害。 离子拮抗:指离子间相互消除毒害的现象。 平衡溶液:植物必需的矿质元素按一定浓度与比例配制成使植物生长良好的混合溶液称为平衡溶液。 生理酸性盐:植物根系对其阳离子的吸收多于阴离子而使介质变成酸性的盐类称为生理酸性盐。 生理碱性盐:植物根系对阴离子的吸收多于阳离子而使介质变成碱性的盐类称为生理碱性盐。诱导酶:指植物体内原来没有、但在特定物质的诱导下才能合成的酶。 硝酸盐还原:指硝酸根离子在硝酸还原酶和亚硝酸还原酶的相继作用下还原成氨的过程。 生物固氮:指某些微生物通过体内固氮酶的作用,将大气中的游离氮固定转化为含氮化合物的过程。 氨的同化:植物从土壤中吸收NH4+或由硝酸盐还原形成NH4+后被同化为氨基酸的过程称为氨的同化。 叶面营养:指把速效性肥料直接喷施在叶面上以供植物吸收的施肥方法。 植物营养最大效率期:指植物在生命周期中,对施肥的增产效果最好的时期。一般作物的营养最大效率期是生殖生长期。 营养临界期:指植物在生命周期中,对养分缺乏最敏感最易受害的时期。

土壤中氮素转化过程及植物吸收方式(土壤部分初稿)说课材料

土壤中氮素转化过程及植物吸收方式(土壤 部分初稿)

土壤中氮素转化过程及植物吸收方式 我国耕地土壤全氮含量为0.04~0.35%之间,且土壤有机质含量呈正相关。其氮素来源包括:生物固氮、降水、农业灌溉和施肥等,而目前肥料是农田土壤氮肥的主要来源。下面就从土壤中氮素的主要表现形态和转化过程等进行详细的介绍: (一)土壤中氮素的主要形态 水溶性速效氮源 < 全氮的5% 包括游离氨基酸、胺盐及酰胺类化合物等有机氮水解性缓效氮源占50~70% 包括蛋白质及肽类、核蛋白类、氨基糖类(>98%) 非水解性难利用占30~50% 包括杂环态氮、缩胺类 离子态土壤溶液中 无机氮吸附态土壤胶体吸附 (1~2%) 固定态 2:1型粘土矿物固定 注明:其中无机氮包括:铵态氮(NH4+ — N)、硝态氮(NO3-— N)、亚硝态氮(NO2- — N)三种主要形态。 一般情况下,土壤中存在的主要是有机态氮,占土壤总氮的90~98%。

(二)土壤中氮素的转化过程 1.有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程是包括许多过程在内的复杂过程。 ①水解过程蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步分解为各种氨基酸。 ②氨化过程氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。如: RCH2OH+NH3+CO2+能量—水解—→ RCHNH2COOH+H2O RCHOHCOOH+NH3+能量—氧化—→ RCHNH2COOH+O2 RCOOH+NH3+CO2+能量——还原—→RCHNH2COOH+H2 由此可见,氨化作用可在多种多样条件下进行。无论水田、旱田,只要微生物活动旺盛,氨化作用都可以进行。

植物对铵态氮和硝态氮的吸收能力

植物对铵、硝态氮的相对吸收能力 氮素对植物生长发育、产量形成与品质好坏有极为重要的作用。从营养意义来讲,作物在生长发育过程中主要吸收两种矿质氮源,即铵态氮和硝态氮。一般认为NO3-的吸收是逆电化学势梯度进行的主动过程,而NH4+是与H+进行交换吸收的。NH4+与NO3-吸收到作物体后,除硝态氮需先还原成NH4+ (NH3)以外,其余同化过程完全相同。据研究,作物对NH4+、NO3-的吸收量因作物特性、种类和环境条件而变化。 铵、硝态氮的营养生理性质 铵、硝态氮都是植物和微生物的良好氮源,可以被它们直接吸收和利用。这两种形态的氮素约占植物吸收阴阳离子的80%。 植物在吸收和代谢两种形态的氮素上存在不同。首先,铵态氮进入植物细胞后必须尽快与有机酸结合,形成氨基酸或酰胺,铵态氮以NH3的形态通过快速扩散穿过细胞膜,氨系统内的NH4+的去质子化形成的NH3对植物毒害作用较大。硝态氮在进入植物体后一部分还原成铵态氮,并在细胞质中进行代谢,其余部分可“贮备”在细胞的液泡中,有时达到较高的浓度也不会对植物产生不良影响,硝态氮在植物体内的积累都发生在植物的营养生长阶段,随着植物的不断生长,体内的硝态氮含量会消耗净尽,至少会大幅下降。这是一切植物的共性。因此单纯施用硝态氮肥一般不会产生不良效果,而单纯施用铵态氮则会发生铵盐毒害,在水培条件下更易发生。 植物吸收铵、硝态氮的能力 植物对铵、硝态氮吸收情况除与植物种类有关外,外界环境条件有着重要的影响。其中溶液中的浓度直接影响吸收的多少,温度影响着代谢过程的强弱,而土壤pH影响着两者进入的比例:在其他条件一致时,pH低,有利于硝态氮的吸收;pH高,有利于铵态氮的吸收。 一般情况下,同时施用铵态氮和硝态氮肥,往往能获得作物较高的生长速率和产量。同时施用两种形态氮,植物更易调节细胞内pH值和通过消耗少量能量来贮存一部分氮。两者合适的比例取决于施用的总浓度:浓度低时,不同比例对植物生长影响不大,浓度高时,硝态氮作为主要氮源显示出优越性。 影响两种氮素形态效果的主要因子是作物种类,同一作物的不同品种、气候条件、土壤和氮肥用量。现以小麦对这两种形态氮肥的反应为例:施氮量为120kg/hm2,均作播前种肥一次施入。在大田试验条件下,单独供给硝态氮和供给硝态氮加铵态氮(硝态氮∶铵态氮=2∶1)时,小麦生长发育良好;而单独供给铵态氮时,小麦生物产量与籽粒产量均有所下降;供给铵态氮加硝态氮(铵态氮∶硝态氮=2∶1)时,小麦生物产量与籽粒产量介于单独供给铵态氮与单独供给硝态氮之间。 植物吸收铵、硝态氮的偏好 虽然铵、硝态氮都是植物根系吸收的主要无机氮,但不同作物对其有不同偏好性。适应酸性土壤生长的嫌钙植物和适应低氧化还原势土壤条件下生长的植物(如水稻)嗜好铵态氮,有些植物如马铃薯,适于低pH,供应铵态氮,可使介质pH降低,对植株,特别对根系生长有明显优点。某些植物施用铵态氮肥能否获得较高的生长速率和产量,主要取决于根部温度以及影响根部碳水化合物供应的因素,如光照强度等。pH低时,施用铵态氮肥不利,但pH 大于7时,施用铵态氮会使介质中游离氨浓度增加,也有不利影响。在高等植物中,营养生长尤其是生殖生长速率较高,与铵态氮对体内激素平衡的关系密切。相反,喜钙植物和适于高pH石灰性土壤生长的植物,优先利用硝态氮,大多数旱地作物,如玉米,对硝态氮偏好;在等氮量供应情况下,硝态氮的增产效果更突出。蔬菜是一类很容易累积硝酸盐的作物,又是对硝酸盐非常偏爱的作物。在田间,由于尿素态氮或铵态氮会很快转化为硝态氮,施用这两类形态的氮素,对蔬菜并没有什么不良后果,但水培试验中,只要营养液中加入硝态氮,

第三章植物的矿质与氮素营养

第三章植物的矿质与氮素营养 (单元自测题) 一、填空 1.矿质元素中植物必需的大量元素包括。(N,P,K,Ca,Mg,S) 2.植物必需的微量元素有。(Fe,Cl,Cu,Zn,Mn,B,Mo,Ni) 3.除了碳、氢、氧三种元素以外,植物体内含量最高的元素是。(氮) 4.必需元素在植物体内的生理作用可以概括为三方面:(1)物质的组成成分,(2)活动的调节者,(3)起作用。(细胞结构,植物生命,电化学) 5.N、P、K的缺素症从叶开始,因为这些元素在体内可以。(老叶,移动)。 6.氮肥施用过多时,抗逆能力,成熟期。(减弱,延迟) 7.植物叶片缺铁黄化和缺氮黄化的区别是,前者症状首先表现在叶而后者则出现在叶。(新,老) 8.白菜的“干心病”、西红柿“脐腐病”是由于缺引起。(钙) 9.缺时,花药和花丝萎缩,绒毡层组织破坏,花粉发育不良,会出现“花而不实”的现象。(B) 10.研究植物对矿质元素的吸收,不能只用含一种盐分的营养液培养植物,因为当溶液中只有一种盐类时即使浓度较低,植物也会发生。(单盐毒害) 11.矿质元素主动吸收过程中有载体参与,可以从现象和现象两现象得到证实。(离子竞争抑制,饱和) 12.植物吸收(NH4)2SO4后会使根际pH值,而吸收NaNO3后却使根际pH值。(降低,升高)13.植物体内硝酸盐还原速度白天比夜间。(快) 14.果树“小叶病”是由于缺的缘故。(锌) 15.植物体内与光合放氧有关的微量元素有、和。(Mn,Cl,Ca)。 二、选择题 1.植物体中磷的分布不均匀,下列哪种器官中的含磷量相对较少:。D.A.茎的生长点 B.果实、种子 C.嫩叶 D.老叶 2.构成细胞渗透势的重要成分的元素是。C. A.氮 B.磷 C.钾 D.钙 3.元素在禾本科植物中含量很高,特别是集中在茎叶的表皮细胞内,可增强对病虫害的抵抗力和抗倒伏的能力。D. A.硼 B.锌 C.钴 D.硅 4.植物缺锌时,下列的合成能力下降,进而引起吲哚乙酸合成减少。D.A.丙氨酸 B.谷氨酸 C.赖氨酸 D.色氨酸 5.植物白天吸水是夜间的2倍,那么白天吸收溶解在水中的矿质离子是夜间的。D.A.2倍 B.小于2倍 C.大于2倍 D.不一定 6.植物吸收下列盐分中的不会引起根际pH值变化。A. A.NH4N03 B.NaN03 C.Ca(N03)2 D.(NH4)2S04

氮素是植物的重要营养元素之一

氮素是植物的重要营养元素之一,植物生长的主要限制因子,但多以植物难以利用的有机态存在土壤中。土壤微生物是氮素转化(如氨化过程、硝化过程)的主要驱动力。水热条件和土壤性质是影响土壤微生物数量和活性的重要因素。 在脱氨的同时,产生有机酸、醇或碳氢化合物以及二氧化碳等。具体途径和产物随作用的底物、微生物种类以及环境条件而异。 氨作为微生物的代谢产物释放出来,一部分被植物吸收,一部分被土壤颗粒吸附,另一部分被其他微生物吸收利用。如果土壤中的碳氮比(C:N)大于25:1,碳源和能源充足,微生物将迅速生长,充分利用氨合成细胞物质,把氨固定起来。在这种情况下,微生物常与植物争夺无机氮。如果土壤中的碳氮比小于25:1,微生物的生长和细胞物质的合成,因受可利用碳源的限制,使氨能有剩余,可供植物利用。微生物死亡后,其所吸收固定的氮,经细胞的分解再被释放出来。 土壤中氨化作用的强弱除与有机含氮化合物的数量有关外,还受土壤环境条件的影响。在水分适宜、通气良好的中性土壤中,氨化作用能正常进行,作用的速度随温度的升高而加强。另外,土壤中的通气状况不同,参与氨化作用的微生物种类就不同,最终产物也不一样。通气良好时,主要由好气微生物作用,最终产物为氨;在通气不良的条件下,由厌气微生物作用,最终产物为氨和胺。 一般数量比根际外多几倍至几十倍。它们和植物间是互生关系,与植物根系相互作用、相互促进。微生物大量聚集在根系周围,将有机物转变为无机物,为植物提供有效的养料;同时,微生物还能分泌维生素,生长刺激素等,促进植物生长。在植物生长过程中,死亡的根系和根的脱落物(根毛、表皮细胞、根冠等),以及根系向根外分泌的无机物和有机物是微生物重要的营养来源和能量来源;由于根系的穿插,使根际的通气 根际微生物 条件和水分状况优于根际外,从而形成利于微生物的生态环境。根际微生物在同一植物的不同品种可表现出其特异性,如雀稗根际内的雀稗固氮菌(Azotobacter paspali)只在雀稗品种的根际内受到刺激,而在另一品种的根际内则发育不好。固氮螺菌(Azospirillas sp.)在玉米品种UR-1根际内固氮活性不强,而在UR-1的杂种S1根际内则固氮酶活性很高。 2特征 植物根表及近根土壤中的微生物。根际一词是希尔特纳于1904年提出的,指植物的根表以及受根系直接影响的土壤区域。根际微生物在数量和质量上都与根际以外的微生物不同。根际微生物数量常比根际以外的微生物数量高几倍至几十倍,个别的细菌群可高达上千倍(平板计数)。这两者的数量比称为根土比(R∶S),表示植物根系对微生物的影响程度,所以又称根际效应。 3种类 根际微生物以细菌为主,并且是革兰氏阴性菌占优势。 常见的有假单胞菌、黄杆菌、产碱杆菌、土壤杆菌和色杆菌等。

第七章植物的矿质与氮素营养思考题答案(精)

第七章植物的矿质与氮素营养思考题答案 (一)名词解释 矿质营养:植物对矿质的吸收、转运和同化以及矿质在生命活动中的作用。 灰分元素:干物质充分燃烧后,剩余下一些不能挥发的灰白色残渣,称为灰分。构成灰分的元素称为灰分元素。灰分元素直接或间接来自土壤矿质,所以又称为矿质元素。 必需元素:植物生长发育中必不可少的元素。国际植物营养学会规定的植物必需元素的三条标准是:①由于缺乏该元素,植物生长发育受阻,不能完成其生活史;②除去该元素,表现为专一的病症,这种缺素病症可用加入该元素的方法预防或恢复正常;③该元素在植物营养生理上表现直接的效果,不是由于土壤的物理、化学、微生物条件的改善而产生的间接效果。 大量元素:植物生命活动必需的、且需要量较多的一些元素。它们约占植物体干重的0.01%~10%,有C、H、O、N、P、K、Ca、Mg、S等。 微量元素:植物生命活动必需的、而需要量很少的一类元素。它们约占植物体干重的10-5%~10-3%,有Fe、B、Mn、Zn、Cu、Mo、Cl等。 有益元素:并非植物生命活动必需,但能促进某些植物的生长发育的元素。如Na、Si、Co、Se等。 水培法:亦称溶液培养法或无土栽培法,是在含有全部或部分营养元素的溶液中培养植物的方法。 砂培法:全称砂基培养法,在洗净的石英砂或玻璃球等基质中,加入营养液培养植物的方法。 气栽法:将植物根系置于营养液气雾中栽培植物的方法。 离子的主动吸收:细胞利用呼吸释放的能量逆电化学势梯度吸收矿质的过程。离子的被动吸收:细胞不需要由代谢提供能量的顺电化学势梯度吸收矿质的过程。 扩散作用:分子或离子沿着化学势或电化学势梯度转移的现象。电化学势梯度包括化学势梯度和电势梯度两方面,细胞内外的离子扩散决定于这两种梯度的大小;而分子的扩散决定于化学势梯度或浓度梯度。 单盐毒害:植物培养在单种盐溶液中所引起的毒害现象。单盐毒害无论是营养元素或非营养元素都可发生,而且在溶液很稀时植物就会受害。 离子颉颃:离子间相互消除毒害的现象,也称离子对抗。 生理酸性盐:植物根系从溶液中有选择地吸收离子后使溶液酸度增加的盐类。如供给(NH4)2SO4,植物对其阳离子(NH4+)的吸收大于阴离子(SO42-),根细胞释放的H+与NH4+交换,使介质pH值下降,这种盐类被称为生理酸性盐,如多种铵盐。 生理碱性盐:植物根系从溶液中有选择地吸收离子后使溶液酸度降低的盐类。如供给NaNO3,植物对其阴离子(NO3-)的吸收大于阳离子(Na+),根细胞释放

土壤中氮素转化过程及植物吸收方式土壤部分初稿

土壤中氮素转化过程及植物吸收方式 我国耕地土壤全氮含量为 0.04?0.35 %之间,且土壤有机质含量呈正相关。其 氮素来源包括: 生物固氮、降水、农业灌溉和施肥等,而目前肥料是农田土壤氮 肥的主要来源。 绍: 下面就从土壤中氮素的主要表现形态和转化过程等进行详细的介 (一) 土壤中氮素的主要形态 水溶性速效氮源 <全氮的5%包括游离氨基酸、胺盐及酰胺类化合物等 有机氮水解性缓效氮源占50?70%包括 蛋白质及肽类、核蛋白类、氨基糖类 (>98%)非水解性难利用占30?50%包括杂环态氮、缩胺类 注明:其中无机氮包括: 铵态氮(NH 4+ — N )、硝态氮(N6 — N )、亚硝态氮(NQ - — N )三种主要形 态。 般情况下,土壤中存在的主要是有机态氮,占土壤总氮的 90~98% 土壤中氮的形态 「水溶件 速效氮源 < 全氮的5% 右机氮{水解 性缓效氮源占40%-60% (>98%) I 非水斛性 难利用占40%-50% 土壤溶液中 土壤胶体吸附 2: 1型粘上矿物固定有机氮 矿化作用 1川尢什川 上无机氮 离子态 无机氮 吸 附 (1?2%)固定态 土壤溶液中 吸附态 土壤胶体吸附 :1型粘土矿物固定 「离子态 无机氮寸 吸附态 固建态

(二)土壤中氮素的转化过程 1. 有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过 程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速 率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程 是包括许多过程在内的复杂过程。 ① 水解过程 蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步 分解为各种氨基酸。 ② 氨化过程 氨基酸在多种微生物作用下分解成氨的过程称为氨 化过程。如: RCHOI+ NH 3 + CQ + 能量 一水解一-> RCHNH 2COOH- H 2O RCHOHCOOHN" + 能量 一氧化一-> RCHNHCOO + Q RCOO + NH3 + CQ + 能量—— 还原一-> RCHN 2COO + H 2 由此可见,氨化作用可在多种多样条件下进行。无论水田、旱田,只要 微生物活动旺盛,氨化作用都可以进行。 氨化 作用 产生 的铵 态氮能 被植 物和 微生 物 吸收 利用 ,是 农作 物的 优良 氮素 营 养 。未 被作物 吸收 利用 的铵 ,可被 土壤 胶体 吸收 保 存。但在 旱地 通气 良好 的条 件下,铵态 氮可 进一 步为微 生物 转化 。 r 钱态氮 风素在土塢中变化的示意图 ” NO, N :0 硝态氮上 吸附杰镀或 水体中的 固定态皴 硝态氮 有 机 态 氮

土壤中氮素转化过程及植物吸收方式(土壤部分)

土壤中氮素转化过程及植物吸收方式 我国耕地土壤全氮含量为 0.04~0.35%之间,且土壤有机质含量呈正相关。其氮 素来源包括:生物固氮、降水、农业灌溉和施肥等,而目前肥料是农田土壤氮肥 的主要来源。下面就从土壤中氮素的主要表现形态和转化过程等进行详细的介绍: 一) 土壤中氮素的主要形态 注明:其中无机氮包括:铵态氮(NH 4+ — N)、硝态氮(NO 3- — N)、亚硝态氮(NO 2- — N)三种主要形态。 一般情况下,土壤中存在的主要是有机态氮,占土壤总氮的 90~98%。 水溶性 速效氮源 < 全氮的 5% 包括游离氨基酸、胺盐及酰胺类化合物等 有机氮 水解性 缓效氮源 占 50~70% 包括蛋白质及肽类、核蛋白类、氨基糖类 (>98%) 非水解性 难利用 占 30~ 50% 包括杂环态氮、缩胺类 土壤溶液中 土壤胶体吸附 (1~2%) 固定态 2:1 型粘土矿物固定 离子态 无机氮 吸附态

二)土壤中氮素的转化过程 1.有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速率就成为决定土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程是包括许多过程在内的复杂过程。 ①水解过程蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步分解为各种氨基酸。 ②氨化过程氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。如:

RCH2OH+ NH3+ CO2+能量—水解—→ RCHNH2COOH+ H2O RCHOHCOOH+NH3+能量—氧化—→ RCHNH2COOH+ O2 RCOOH+ NH3 + CO2+能量——还原—→RCHNH2COOH+H2 由此可见,氨化作用可在多种多样条件下进行。无论水田、旱田,只要微生物活动旺盛,氨化作用都可以进行。 氨化作用产生的铵态氮能被植物和微生物吸收利用,是农作物的优良氮素营养。未被作物吸收利用的铵,可被土壤胶体吸收保存。但在旱地通气良好的条件下,铵态氮可进一步为微生物转化。 ③硝化过程指氨或铵盐在微生物作用下转化成硝酸态氮化合物的过程。它是由两组微生物分两步完成的。第一步铵先转化成亚硝酸盐,紧接着亚硝酸盐又转化成硝酸盐,消化过程是一个氧化需氧过程,只有在通气良好的情况下才能进行。所以水稻田在淹水期间主要为铵态氮,硝态氮很少,旱地土壤一般硝化作用速率快于氨化作用,土壤中主要为硝态氮。硝态氮也是为植物吸收利用的优良氮源,所以可以利用土壤硝化作用强度来了解旱地土壤的供氮性能。 ④反硝化作用指土壤中硝态氮被还原为氧化氮和氮气,扩散至空气中损失的过程。反硝化作用主要由反硝化细菌引起。在通气不良的条件下,反硝化细菌可夺取硝态氮及其某些还原产物中的化合氧,使硝态氮变为氮气损失。 2.无机态氮的转化过程 无机态氮包括硫酸铵、硝酸铵、碳酸铵、碳酸氢铵、氢氧化铵等。由于这些都属于不稳定的化合物,易氨化释放出氨,同时也遵循硝化过程和反硝化作用;但应指出,施用时需在保护地的密闭环境中施用,除应注意土壤适当湿度和通透性外,还应掌握少施、勤施和深施。如施用不当,极易熏坏叶片,甚至造成全株死亡。 尿素虽属有机氮肥,但因结构简单,其转化过程与无机氮肥基本相同,以尿素为例

第三章-植物的矿质与氮素营养-六节-复习题

第三章植物的矿质与氮素营养 第一节植物体内的必须元素 (一)填空 1.物必需的大量元素包括、、、、、、。 2.植物必需的微量元素有、、、、、、、、。3.除了碳、氢、氧三种元素以外,植物体内含量最高的元素是。 4.必需元素在植物体内的一般生理作用可以概括为四方面:(1) ,(2),(3)起作用,(4)。 5.氮是构成蛋白质的主要成分,占蛋白质含量的。 6.可被植物吸收的氮素形态主要是和。 7. N、P、K的缺素症从叶开始,因为这些元素在体内可以。8.通常磷以形式被植物吸收。 9.K+在植物体内总是以形式存在。 10.氮肥施用过多时,抗逆能力,成熟期。 11.植物叶片缺铁黄化和缺氮黄化的区别是,前者症状首先表现在叶而后者则出现在叶。 12.缺时,花药和花丝萎缩,绒毡层组织破坏,花粉发育不良,会出现“花而不实”的现象。 13.必需元素中可以与CaM结合,形成有活性的复合体,在代谢调节中起“第二信使”的作用。 14.植株各器官间硼的含量以器官中最高。硼与花粉形成、花粉管萌发和 过程有密切关系。 15.果树“小叶病”是由于缺的缘故。 (二)选择 1.植物体中磷的分布不均匀,下列哪种器官中的含磷量相对较少:。 A.茎的生长点 B.果实、种子 C.嫩叶 D.老叶 2.构成细胞渗透势的重要成分的元素是。 A.氮 B.磷 C.钾 D.钙 3.元素在禾本科植物中含量很高,特别是集中在茎叶的表皮细胞内,可增强对病虫害的抵抗力和抗倒伏的能力。 A.硼 B.锌 C.钴 D.硅 4.缺锌时,植物的合成能力下降,进而引起吲哚乙酸合成减少。 A.丙氨酸 B.谷氨酸 C.赖氨酸 D.色氨酸 5.占植物体干重以上的元素称为大量元素。 A.百分之一 B.千分之一 C.万分之一 D.十万分之一 6.除了碳氢氧三种元素以外,植物体中含量最高的元素是。 A.氮 B.磷 C.钾 D.钙 7.水稻植株瘦小,分蘖少,叶片直立,细窄,叶色暗绿,有赤褐色斑点,生育期延长,这与缺有关。 A.N B.P C.K D.Mg

第一节 氮素营养与氮肥

第一节氮素营养与氮肥 一、植物氮元素的作用和特点 氮是影响植物生长和产量的首要元素,在氮、磷、钾三要素中,氮肥的肥效一直居于位。而我国的土壤普遍缺氮,氮肥的用量远远超过磷肥和钾肥。 氮占植物体干重的0.3%~5%,平均含量约为1.5%,是除碳、氢、氧之外的含量最高的营养元素。它的生理功能主要有以下几个方面。 1、是蛋白质和核酸的主要元素。蛋白质中含氮16%~18%,核酸中含氮15%~16%,没有氮元素,就没有蛋白质,植物就不能维持生命,故氮又称生命元素。 2、是叶绿素的组成元素。没有叶绿素,植物就不能进行光合作用。 3、是植物体内许多酶的组成元素。酶是一种特殊的蛋白质,是植物体内各种物质之间转化的催化剂。 植物缺氮,植株矮小,叶片薄,下部叶片先发黄并向上扩展。 植物氮过量,叶片肥大,颜色深绿,茎秆柔软,贪青晚熟,易倒伏。 除豆科植物能与根瘤菌共生,固定空气中的氮素,满足豆科植物部分的氮素需求外,其它植物所需的氮素均来自土壤和外施化肥。 二、氮肥的种类和性质 1、根据氮肥中氮素的形态,可将划分为铵态氮肥、硝态氮肥和酰胺态氮肥。 铵态氮肥是指氮肥中的氮素是以氨(NH3)或铵离子(NH4+)存在,主要品种有: 碳酸氢铵又叫碳铵,分子式为NH4HCO3,含

氮17%,白色细小颗粒,生理碱性肥料,肥效快,宜做基肥和追肥。 氯化铵又叫氯铵,分子式为NH4Cl,含氮24%~26%,白色细小颗粒,生理酸性肥料,施肥后残留Cl-,在干旱的盐碱地和忌氯植物上要控制用量,主要是作为生产复合肥原料用。 硫酸铵又叫硫铵,分子式为(NH4)2SO4,含氮21%,白色结晶,生理酸性肥料,肥效快,一般用在旱地植物上,用在水稻上会产生H2S,对植物的根系有毒害作用。 2、硝态氮肥是指氮肥中的氮素是以硝酸根离子(NO3-)存在,主要品种是: 硝酸铵又叫硝铵,分子式为NH4NO3,含氮33%~35%。硝酸铵是一种肥效很好的氮肥,适合在旱地作物、烟草、果树和蔬菜上施用,但由于性能不稳定,易爆炸,在我国已经禁止作为肥料来使用。 3、酰胺态氮肥是指氮肥中的氮素是以有机的N-H羟基存在,主要品种是: 尿素,分子式为CO(NH2)2,含氮46%,生理中性肥料,因施入土壤后要经过土壤中脲酶作用,水解成碳酸氢铵或碳酸铵才能被植物吸收,它的肥效转化有一个过程,肥效较长,有一定的缓释性,宜做基肥和追肥。尿素中含有少量的缩二脲,它对植物生长有压制作用,国家规定尿素中缩二脲的含量不得超过 1.5%。在施用尿素的过程中会出现一些烧种、烧苗现象,其原因是除施用的方法不当外,常与尿素中的缩二脲含量过高有关。

第三章 植物的矿质与氮素营养 知识要点

第三章植物的矿质与氮素营养知识要点

第三章植物的矿质与氮素营养知识要点一、教学大纲基本要求 了解高等植物矿质营养的概念、研究历史、植物必需元素的名称及其在植物体内的生理作用、植物缺乏必需元素所出现的特有症状;理解营养离子跨膜运输的机理、植物根系吸收养分的过程、特点以及根外营养的意义;了解NO3-、NH4+ 在植物体内的同化过程、同化部位,以及营养物质在体内的运输方式;了解影响植物吸收矿质养分的环境因素、作物生产与矿质营养的密切关系并理解合理施肥的生理基础,能够提出合理施肥的措施。 二、本章知识要点 (一)名词解释 1.矿质营养(mineral nutrition)植物对矿物质的吸收、转运和同化,通称为植物的矿质营养。 2.灰分元素(ash element)干物质充分燃烧后,剩余下一些不能挥发的灰白色残渣,称为灰分。构成灰分的元素称为灰分元素。灰分元素直接或间接来自土壤矿质,所以又称为矿质元素。

3.必需元素(essential element)在植物生长发育中起着不可替代的、直接的、必不可少的作用的元素。 4.大量元素(major element,macroelement)植物生命活动必需的、且需要量较多的一些元素。它们约占植物体干重的0.01%~10%,有C、H、O、N、P、K、Ca、Mg、S等九种元素。 5.微量元素(minor element,microelement,trace element)植物生命活动必需的、而需要量很少的一类元素。它们约占植物体干重的10-5%~10-3%,有Fe、B、Mn、Zn、Cu、Mo、Cl等。 6.有益元素(beneficial element)并非植物生命活动必需,但能促进某些植物的生长发育的元素。如Na、Si、Co、Se、V等。 7.稀土元素(Rare earth element)又称稀土金属,是元素周期表中原子序数由57~71的镧系元素及其化学性质与La系相近的钪(Sc)和钇(Y)共17种元素的统称。稀土微肥就是含有稀土元素的肥料的简称。 8.水培法(water culture method)亦称溶液培养法(solution culture method) ,是在含有

第三章 植物的矿质与氮素营养复习思考题与答案

第三章植物的矿质与氮素营养复习思考题与答案 (一)名词解释 矿质营养(mineral nutrition)植物对矿质的吸收、转运和同化以及矿质在生命活动中的作用。 灰分元素(ash element)干物质充分燃烧后,剩余下一些不能挥发的灰白色残渣,称为灰分。构成灰分的元素称为灰分元素。灰分元素直接或间接来自土壤矿质,所以又称为矿质元素。 必需元素(essential element)植物生长发育中必不可少的元素。国际植物营养学会规定的植物必需元素的三条标准是:①由于缺乏该元素,植物生长发育受阻,不能完成其生活史; ②除去该元素,表现为专一的病症,这种缺素病症可用加入该元素的方法预防或恢复正常; ③该元素在植物营养生理上表现直接的效果,不是由于土壤的物理、化学、微生物条件的改善而产生的间接效果。 大量元素(major element,macroelement)植物生命活动必需的、且需要量较多的一些元素。它们约占植物体干重的0.01%~10%,有C、H、O、N、P、K、Ca、Mg、S等。 微量元素(minor element,microelement,trace element)植物生命活动必需的、而需要量很少的一类元素。它们约占植物体干重的10-5%~10-3%,有Fe、B、Mn、Zn、Cu、Mo、Cl等。 有益元素(beneficial element)并非植物生命活动必需,但能促进某些植物的生长发育的元素。如Na、Si、Co、Se、V等。 水培法(water culture method)亦称溶液培养法或无土栽培法,是在含有全部或部分营养元素的溶液中培养植物的方法。 砂培法(sand culture method)全称砂基培养法,在洗净的石英砂或玻璃球等基质中,加入营养液培养植物的方法。 气栽法(aeroponic)将植物根系臵于营养液气雾中栽培植物的方法。 离子的主动吸收(ionic active absorption)细胞利用呼吸释放的能量逆电化学势梯度吸收矿质的过程。 离子的被动吸收(ionic passive absorption)细胞不需要由代谢提供能量的顺电化学势梯度吸收矿质的过程。 初级共运转(primary cotransport)质膜H+-ATPase把细胞质的H+向膜外"泵"出的过程。又称为原初主动运转。原初主动运转在能量形式的转化上是把化学能转为渗透能。 次级共运转(secondary cotransport)以△μH+作为驱动力的离子运转称为次级共运转。离子的次级运转是使质膜两边的渗透能增减,而这种渗透能是离子或中性分子跨膜运输的动力。 扩散作用(diffusion)分子或离子沿着化学势或电化学势梯度转移的现象。电化学势梯度包括化学势梯度和电势梯度两方面,细胞内外的离子扩散决定于这两种梯度的大小;而分子的扩散决定于化学势梯度或浓度梯度。 单盐毒害(toxicity of single salt)植物培养在单种盐溶液中所引起的毒害现象。单盐毒害无论是营养元素或非营养元素都可发生,而且在溶液很稀时植物就会受害。 离子颉颃(ion antagonism)离子间相互消除毒害的现象,也称离子对抗。 生理酸性盐(physiologically acid salt)植物根系从溶液中有选择地吸收离子后使溶液酸度增加的盐类。如供给(NH4)2SO4,植物对其阳离子(NH4+)的吸收大于阴离子(SO42-),

植物对氮素的吸收

植物对氮素吸收分子机理研究进展 生物科学系2012级生物技术本科班张亚辉 指导老师吴子龙讲师 【摘要】: 多年来学科的交叉发展,人们开始将分子生物学技术应用于植物营养的研究中,对N 素吸收的分子机理的研究就是其中一项重要的内容。NH4+ 和NO3- 是高等植物吸收的两种主随着近要形态的N素,本文对近年来国内外关于NH4+ 吸收以及NO3- 吸收的研究进行了概述。 【关键词】:氮素;吸收;分子机理 氮(N)素是作物从土壤中吸收量最多的元素, 是作物必需的营养元素之一,其对作物的生命活动和产量形成具有重要意义。但是近年来,由于不合理施肥导致的环境污染问题越发严重,改善施肥措施、改良品种、提高N素利用效率、减轻施肥对环境造成的压力是目前迫切需要解决的问题。因此植物吸N机制一直是植物营养界高度重视的研究内容。NH4+ 和NO3-是N素吸收的主要形态,随着近年来多学科交叉发展,分子生物学技术在植物营养领域中的应用也越来越多,对N素吸收的分子机理研究就是其中一项重要的内容,同时明确这一机理也有助于从分子生物学途径改良品种,提高N素利用率,减轻环境污染 1.高等植物NH4+ 吸收的分子机理研究 早期NH4+ 吸收动力学表明NH4+的吸收有两个明显的动力学吸收特性:低亲和的非饱和吸收和高亲和的饱和吸收[1],高亲和力系统在低浓度下(μmol/L)起作用,低亲和力系统在高浓度(mmol/L)下起作用[2]。研究表明高等植物NH4+ 的吸收是一个由NH4+ 转运蛋白基因(AMT)参与的过程,并且在植物、酵母、细菌和哺乳动物中都发现AMT基因的存在[3]很多证据说明AMT1因基家族编码的蛋白在植物中具有NH4+转运蛋白的功能[2]。首先,AMT1基因属于真核和原核NH4+ 转运蛋白基因家族MEP/AMT1中的成员,番茄和拟南芥的高亲和NH4+ 转运蛋白基因AMT1.1已经通过酵母突变体得到功能鉴定[4];其次,在酵母中AMT 转运蛋白的生化特性如能量来源、最佳pH值以及受K+ 抑制的程度[4]都反应了完整植株根系中的NH4+ 吸收特性;最后,番茄中的AMT1.1首先在根毛中表达,这一点足以说明AMT基因在植物从生长介质中吸收NH4+ 这一过程中所起的作用。 2 高等植物NO3- 吸收的分子机理研究 硝酸盐是植物生长所必须的,既是作为N吸收的基本营养,同时也是植物发育的重要信号。高等植物的硝酸盐吸收中有高亲和吸收系统(HATS)与低亲和吸收系统(LATS)2种。通常,LATS比HATS容量大。拟南芥在10 mmol/L NO3- 中LATS吸收速率比HAT s的Vmax高24倍,因此,虽然HATS在外源硝酸根浓度很低时对N的获得有重要作用,但LATS对于大量硝酸盐的获得还是必要的,而且后者可能对于植物的生长更重要,因为NO3- 很难残留,且在耕地土壤中变化明显。根据对NO3- 诱导的反应,HATS可以进一步分为两部分,一个是

缺氮素对植物生长的影响

缺氮素对植物生长的影响 摘要:用植物无土培养法,对二叶一心得玉米幼苗进行缺素培养。所缺元素为N、P、K、ca、Mg、Fe。培养三周后取出并对玉米进行生理生化指标测量,实验结果表明:在六种缺素培养下的玉米幼苗,生长情况明显差于全素培养的玉米幼苗,且各缺素症状表现在不同部位。缺素培养下,植物生长速率下降,根冠比改变,对植物生长产生了很大影响。 关键词:缺素培养缺氮缺素症状 前言:氮素:是蛋白质的主要成分,蛋白质是构成细胞原生质的基本组成部分, 氮素是植物的生命基础。氮素供应充足,蛋白质合成得多,原生质的构成就有充分的物质基础,细胞分裂快、增长迅速、植株高大、枝叶旺盛、根系发达,为高产奠定基础;氮素是叶绿素的重要组成部分,叶绿素是含氮的有机物,在叶片上叶绿体起着吸收光能的作用。通过叶绿素供应的光能将二氧化碳和水合成葡萄糖,葡萄糖再转化为碳水化合物;氮是一些酶的组成部分,这些酶可以促进作物的新陈代谢,植物体内的维生素生物碱等都含有氮素。氮素不仅是植物的组成部分,而且还参与植物的多种生化过程,氮与植物生命活动有着密切的相关性。缺氮时:植物缺氮就会失去绿色,植株生长矮小细弱,分枝分蘖少,叶色变淡,呈色泽均一的 浅绿或黄绿色。蛋白质在植株体内不断合成和分解,因氮易从较老组织运输到幼 嫩组织中被再利用,首先从下部老叶片开始均匀黄化,逐渐扩展到上部叶片,黄叶 脱落提早。株型也发生改变,瘦小、直立,茎杆细瘦。根量少、细长而色白。侧芽呈休眠状态或枯萎。花和果实少。成熟提早。产量、品质下降。 磷素: 植物体中磷的分布不均匀,根、茎的生长点较多,嫩叶比老叶多,果实、种子中也较丰富。由于磷参与多种代谢过程, 而且在生命活动最旺盛的分生组织中含量很高,因此施磷对分蘖、分枝以及根系生长都有良好作用。由于磷促进碳水化合物的合成、转化和运输,对种子、块根、块茎的生长有利,故马铃薯、甘薯和禾谷类作物施磷后有明显的增产效果。由于磷与氮有密切关系,所以缺氮时,磷肥的效果就不能充分发挥。只有氮磷配合施用,才能充分发挥磷肥效果。 钾素: 钾在土壤中以KCl、K2SO4等盐类形式存在,在水中解离成K+而被根系吸收。 在植物体内钾呈离子状态。钾主要集中在生命活动最旺盛的部位,如生长点,形成层,幼叶等。钾在细胞内可作为60多种酶的活化剂,如丙酮酸激酶、果糖激酶、 苹果酸脱氢酶、琥珀酸脱氢酶、淀粉合成酶、琥珀酰CoA合成酶、谷胱甘肽合成酶等。因此钾在碳水化合物代谢、呼吸作用及蛋白质代谢中起重要作用。 钙素: 植物从土壤中吸收CaCl2、CaSO4等盐类中的钙离子。钙离子进入植物体后一部分仍以离子状态存在,一部分形成难溶的盐(如草酸钙),还有一部分与有机物(如植酸、果胶酸、蛋白质)相结合。钙在植物体内主要分布在老叶或其它老组织中。钙是植物细胞壁胞间层中果胶酸钙的成分,因此,缺钙时,细胞分裂不能进行或不 能完成,而形成多核细胞。钙离子能作为磷脂中的磷酸与蛋白质的羧基间联结的 桥梁,具有稳定膜结构的作用。 镁素:

植物的矿质与氮素营养

第三章植物的矿质与氮素营养 植物除了从土壤中吸收水分以外,还要从中吸收各种矿质元素和氮素以维持正常的生理活动。植物所吸收的这些矿质元素,有的作为植物体组成成分,有的参与调节植物的生命活动,有的兼有两种功能,所以矿质营养在植物的生命活动中具有非常重要的作用。 矿质养分的供应状况也影响农产品的产量和质量。因土壤往往不能完全及时满足作物的需要,施肥就成为提高产量和改进品质的主要措施之一。“有收无收在于水,收多收少在于肥”,这句话对水分生理和矿质营养在农业生产中的重要性作了恰当的评价。 植物对矿物质的吸收、转运和同化,称为矿质营养(mineral nutrition )。 第一节植物必需的矿质元素 一、植物体内的元素 植物体内含有各种化合物,也有各种离子,无论是化合物,还是无机离子,都是由各种元素组成的,研究植物的矿质营养首先要弄清楚植物体内含有哪些元素,哪些元素是植物必需的。 植物体由水、有机物和无机物组成,研究植物体的成分一般先把一定的新鲜的植物于105℃烘10—15分钟(使酶迅速钝化),然后于80℃(防止某些成分挥发,或化学性质发生改变)烘干秤重,水分散失10-95%,剩余5-90%的干物质在600℃灼烧,其中有机物中的碳、氢、氧、氮等元素以二氧化碳、水、分子态 氮、NH 3和氮的氧化物形式,小部分硫以H 2 S和SO 2 的形式散失到空气中,余下一 些不能挥发的残渣称为灰分(ash)。灰分中的物质为各种元素的氧化物,另外还有少量的硫酸盐、磷酸盐、硅酸盐等。构成灰分的元素称为灰分元素(ash element)又称矿质元素(mineral element)。氮在燃烧过程中散失而不存在于灰分中,所以氮不是灰分元素。但氮和灰分元素一样,都是植物从土壤中吸收的, 而且氮通常是以硝酸盐( NO- 3)和铵盐(NH 4 )的形式被吸收,所以将氮和矿质元 素一起讨论。 矿质元素在植物体内的含量变幅很大,自然界存在92种元素,植物中发现70多种,成分和含量多少是与植物种类、不同器官组织和土壤含盐量等因素有关。如禾本科植物含Si较多,十字花科植物含S较多,豆科植物含Ca较多;

植物的氮素营养与氮肥笔记

第三章植物的氮素营养与氮肥 第一节植物的氮素营养 一、植物体内氮的含量与分布 1. 含量:占植物干重的0.3~5% 影响因素: 植物种类:豆科植物>非豆科植物 品种:高产品种>低产品种 器官:种子>叶>根>茎秆 组织:幼嫩组织>成熟组织>衰老组织,生长点>非生长点 生长时期:苗期>旺长期>成熟期>衰老期,营养生长期>生殖生长期 2. 分布:幼嫩组织>成熟组织>衰老组织,生长点>非生长点 原因:氮在植物体内的移动性强 在作物一生中,氮素的分布是在变化的: 营养生长期:大部分在营养器官中(叶、茎、根) 生殖生长期:转移到贮藏器官(块茎、块根、果实、籽粒),约占植株体内全氮的70% 注意:作物体内氮素的含量和分布,明显受施氮水平和施氮时期的影响。通常是营养器官的含量变化大,生殖器官则变动小,但生长后期施用氮肥,则表现为生殖器官中的含氮量明显上升。 二、植物体内含氮化合物的种类(氮的生理功能) 1. 氮是蛋白质的重要成分(蛋白质含氮16~18%)——生命物质 2. 氮是核酸和核蛋白的成分(核酸中的氮约占植株全氮的10%)——合成蛋白质和决定生物遗传性的物质基础 3. 氮是酶的成分——生物催化剂 4.氮是叶绿素的成分(叶绿体含蛋白质45~60%)——光合作用的场所 5. 氮是多种维生素的成分(如维生素B1、B2、B6等)--辅酶的成分 6. 氮是一些植物激素的成分(如IAA、CK)--生理活性物质 7. 氮也是生物碱的组分(如烟碱、茶碱、可可碱、咖啡碱、胆碱--卵磷脂--生物膜)氮素通常被称为生命元素 三、植物对氮的吸收与同化 吸收的形态无机态:NO3--N、NH4+-N (主要) 有机态:NH2 -N、氨基酸、核酸等(少量) (一)植物对硝态氮的吸收与同化 1. 吸收:旱地作物吸收NO3--N为主,属主动吸收 吸收后:10%~30%在根还原;70%~90%运输到茎叶还原;小部分贮存在液胞内(硝酸根在液泡中积累对离子平衡和渗透调节作用具有重要意义。) 2. 同化 (1) NO3--N的还原作用 过程:NO3- NO2- NH3 NR:硝酸还原酶NiR:亚硝酸还原酶 总反应式: NO3-+8H++8e- NH3+2H2O+OH- 结果:产生OH-,一部分用于代谢;一部分排出体外,介质pH值? (资料:植物吸收的NO3-与排出的OH-的比值约为10:1)

土壤中氮素转化过程及植物吸收方式 土壤部分初稿

土壤中氮素转化过程及植物吸收方式我国耕地土壤全氮含量为0.04~0.35%之间,且土壤有机质含量呈正相关。其氮素来源包括:生物固氮、降水、农业灌溉和施肥等,而目前肥料是农田土壤氮肥的主要来源。下面就从土壤中氮素的主要表现形态和转化过程等进行详细的介绍: (一)土壤中氮素的主要形态 水溶性速效氮源 < 全氮的5% 包括游离氨基酸、胺盐及酰胺类化合物等 有机氮水解性缓效氮源占50~70% 包括蛋白质及肽类、核蛋白类、氨基糖类 (>98%) 非水解性难利用占30~50% 包括杂环态氮、缩胺类 离子态土壤溶液中 无机氮吸附态土壤胶体吸附 (1~2%) 固定态 2:1型粘土矿物固定 注明:其中无机氮包括:铵态氮(NH4+ — N)、硝态氮(NO3-— N)、亚硝态氮(NO2- — N)三种主要形态。 一般情况下,土壤中存在的主要是有机态氮,占土壤总氮的90~98%。 (二)土壤中氮素的转化过程 1.有机态氮的转化 土壤中的有机态氮是较复杂的有机化合物,必须要经过各种矿化过程,变 为易溶的形态,才能发挥作物营养的功能。它的矿化量和矿化速率就成为决定 土壤供氮能力的极其重要的因素。土壤有机氮的矿化过程是包括许多过程在内 的复杂过程。 ①水解过程蛋白质在微生物分泌的蛋白质水解酶的作用下,逐步分解 为各种氨基酸。 ②氨化过程氨基酸在多种微生物作用下分解成氨的过程称为氨化过程。如: RCH2OH+NH3+CO2+能量—水解—→ RCHNH2COOH+H2O RCHOHCOOH+NH3+能量—氧化—→ RCHNH2COOH+O2 RCOOH+NH3+CO2+能量——还原—→RCHNH2COOH+H2

相关主题
文本预览
相关文档 最新文档