当前位置:文档之家› 第二讲完全平方公式公式拓展及常考题型

第二讲完全平方公式公式拓展及常考题型

第二讲完全平方公式公式拓展及常考题型
第二讲完全平方公式公式拓展及常考题型

第二讲:完全平方公式公式拓展及常考题型 一.公式拓展:

拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+

2)1(1222-+=+a a a a 2)1

(1222+-=+a

a a a

拓展二:ab b a b a 4)()(22=--+ ()()22

2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形

3223333)(b ab b a a b a +++=+

4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差

))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=-

二.常见题型: (一)公式倍比

例1:已知b a +=4,求

ab b a ++2

2

2。

⑴如果1,3=-=-c a b a ,那么()()()2

2

2

a c c

b b a -+-+-的值是

⑵1=+y x ,则222

1

21y xy x ++=

⑶已知xy 2

y x ,y x x x -+-=---222

2)()1(则=

(二)公式组合

例2:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab

⑴若()()a b a b -=+=22

713,,则a b 22

+=____________,a b =_________

⑵设(5a +3b )2

=(5a -3b )2

+A ,则A= ⑶若()()x y x y a -=++22

,则a 为 ⑷如果22)()(y x M y x +=+-,那么M 等于 ⑸已知(a+b)2

=m ,(a —b)2

=n ,则ab 等于

⑹若

N b a b a ++=-2

2)32()32(,则N 的代数式是 ⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++2

2的值为 。 ⑻已知实数a,b,c,d 满足53=-=+bc ,ad bd ac ,求)

)((2222d c b a ++

(三)整体代入

例3:242

2=-y x ,6=+y x ,求代数式y x 35+的值。

例4:已知a=

201x +20,b=201x +19,c=20

1x +21, 求a 2

+b 2

+c 2

-ab -bc -ac 的值

⑴若499,7322=-=-y x y x ,则y x 3+=

⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++=

⑶已知a 2

+b 2

=6ab 且a >b >0,求

b

a b

a -+的值为 ⑷已知20042005+=x a ,20062005+=x

b ,20082005+=x

c , 则代数式ca bc ab c b a ---++2

2

2

的值是 .

完全平方公式 典型应用

完全平方公式的典型应用 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y ); (2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________. 3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2. 5.代数式xy -x 2- 41y 2等于-( )2 题型四、配方思想 1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____. 2、已知0136422=+-++y x y x ,求y x =_______. 3、已知222450x y x y +--+=,求 21(1)2x xy --=_______. 4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +=_______. 5.已知014642222=+-+-++z y x z y x ,则z y x ++= . 6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角

最新完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()22 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是

完全平方公式变形的应用练习题

乘法公式的拓展及常见题型整理 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222 +-=+a a a a 拓展二:ab b a b a 4)()(22=--+ ()()2 2 2222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求 ab b a ++2 2 2。 ⑴如果1,3=-=-c a b a ,那么()()()2 2 2 a c c b b a -+-+-的值是 ⑵1=+y x ,则2221 21y xy x ++= ⑶已知xy 2 y x ,y x x x -+-=---2 22 2)()1(则 = (二)公式组合 例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab ⑴若()()a b a b -=+=2 2 713,,则a b 22 +=____________,a b =_________

平方差完全平方公式(培优)

平方差完全平方公式 ?选择题(共1小题) 二.填空题(共3小题) 2. (2011?湛江)多项式 2x 2- 3X +5是 _____________________ 次 3. (2010?毕节地区)写出含有字母 x , y 的四次单项式 ____________________ .(答案不唯一,只要写出一个) 4. ( 2004?南平)把多项式 2x 2- 3X +X 3按x 的降幕排列是 _ _ 5. (1999?内江)配方:X 2+4X + =(X + ) 2 配方:x 2-x+ =(x-1) 2 2 三.解答题(共小题) 5.计算: (1) (x - y ) (x+y ) (x 2+y 2) (2) (a - 2b+c ) ( a+2b - c ) 6 .计算:1232 - 124 X 122 . 7 .计算: 2004 2tfi)4 2- 2005X2003 8. (x - 2y+z ) (- x+2y+z ). 9 .运用乘法公式计算. (1) (x+y ) 2-(x -y ) 2; (2) (x+y - 2) (x - y+2); (3) X ; (4) . 10 .化简:(m+n - 2) ( m+n+2). 11 . (x - 2y - m ) (x - 2y+m ) 12 .计算 (1) (a - b+c - d ) (c- a - d - b ); (2) (x+2y ) (x - 2y ) (x 4- 8x 2/+16y 4). 13 .计算:20082- 20072+20062- 20052+…+22- 12. 14 .利用乘法公式计算: ◎ ( a - 3b+2c ) (a+3b - 2c ) ② 472 - 94 X 27+272. 1. (1999?烟台) F 列代数式I ,比逹,普 ,其中整式有( A . 1个 B . 2个 C. 3个 D. 4个 项式.

完全平方公式经典习题

完全平方公式一 1.(a +2b )2=a 2+_______+4b 2;(3a -5)2=9a 2+25-_______. 2.(2x -_____)2=____-4xy +y 2;(3m 2+_____)2=______+12m 2n +______. 3.x 2-xy +______=(x -______)2;49a 2-______+81b 2=(______+9b )2. 4.(-2m -3n )2=_________;(41s +3 1t 2)2=_________. 5.4a 2+4a +3=(2a +1)2+_______. (a -b )2=(a +b )2-________. 6.a 2+b 2=(a +b )2-______=(a -b )2-__________. 7.(a -b +c )2=________________________. 8.(a 2-1)2-(a 2+1)2=[(a 2-1)+(a 2+1)][(a 2-1)-(______)]=__________. 9.代数式xy -x 2-41y 2等于……………………( ) (A )(x -21y )2(B )(-x -21y )2(C )(21y -x )2(D )-(x -21y )2 10.已知x 2(x 2-16)+a =(x 2-8)2,则a 的值是…………………………( ) (A )8(B )16(C )32(D )64 11.如果4a 2-N ·ab +81b 2是一个完全平方式,则N 等于……………………… ( ) (A )18(B )±18(C )±36(D )±64 12.若(a +b )2=5,(a -b )2=3,则a 2+b 2与ab 的值分别是………………( ) (A )8与21(B )4与21(C )1与4 (D )4与1 13.计算:(1)(-2a +5b )2; (2)(-21ab 2-3 2c )2; (3)(x -3y -2)(x +3y -2);(4)(x -2y )(x 2-4y 2)(x +2y ); (5)(2a +3)2+(3a -2)2; (6)(a -2b +3c -1)(a +2b -3c -1); (7)(s -2t )(-s -2t )-(s -2t )2; (8)(t -3)2(t +3)2(t 2+9)2. 14. 用简便方法计算:(1)972; (2)992-98×100; 15.求值:(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.

完全平方公式之恒等变形

§1.6 完全平方公式(2) 班级: 姓名: 【学习重点、难点】 重点: 1、弄清完全平方公式的结构特点; 2、会进行完全平方公式恒等变形的推导. 难点:会用完全平方公式的恒等变形进行运算. 【学习过程】 ● 环节一:复习填空 ()2_____________a b += ()2_____________a b -= ● 环节二: 师生共同推导完全平方公式的恒等变形 ①()222_______a b a b +=+- ②()222_______a b a b +=-+ ③()()22_______a b a b ++-= ④()()22_______a b a b +--= ● 典型例题及练习 例1、已知8a b +=,12ab =,求22a b +的值 变式训练1:已知5a b -=,22=13a b +,求ab 的值 变式训练2:已知6ab =-,22=37a b +,求a b +与a b -的值 方法小结:

提高练习1:已知+3a b =,22+30a b ab =-,求22a b +的值 提高练习2:已知210a b -=,5ab =-,求224a b +的值 例2、若()2=40a b +,()2=60a b -,求22a b +与ab 的值 小结: 课堂练习 1、(1)已知4x y +=,2xy =,则2)(y x -= (2)已知2()7a b +=,()23a b -=,求=+22b a ________,=ab ________ (3)()()2222________a b a b +=-+ 2、(1)已知3a b +=,4a b -=,求ab 与22a b +的值 (2)已知5,3a b ab -==求2()a b +与223()a b +的值。 (3)已知224,4a b a b +=+=,求22a b 与2()a b -的值。

完全平方公式与平方差公式培优训练

变形公式???????-+=-+-=++-=+-+=+ab b a b a ab b a b a ab b a b a ab b a b a 4)()(4)()(2)(2)(2222222222常考公式???????+-=+-+=+ 2)1(12)1(1222222x x x x x x x x 知识点一、多项式乘多项式法则: 多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。由多项式乘多项式法则可以得到: bd bc ad ac d c b d c a d c b a +++=+++=++)()())(( 知识点二、平方差公式:22))((b a b a b a -=-+ 两数和与这两数差的积,等于它们的平方之差。 1、即:=-+))((b a b a 相同符号项的平方 - 相反符号项的平方 2、平方差公式可以逆用,即:))((2 2b a b a b a +-=-。 3、能否运用平方差公式的判定 ①有两数和与两数差的积 即:(a+b )(a-b)或(a+b )(b-a) ②有两数和的相反数与两数差的积 即:(-a-b )(a-b)或(a+b )(b-a) ③有两数的平方差 即:a 2-b 2 或-b 2+a 2 知识点三、完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。 知识点四、变形公式 例题讲解 1、计算 10199? 2222211111(1)(1)(1)(1)(1)23499100-----L 298 (22)(22)a b c a b c +++-

完全平方公式经典题型 (1)

完全平方(和、差)公式: 1. 公式:()2222a b a ab b ±=±+ 逆用:()2 222a ab b a b ±+=± 文字叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 口诀:首平方加尾平方,乘积二倍在中央。 其中,a b 可以是数字、单项式和多项式。其中22,a b 称为二次项,均为正项;2ab 为中间项,符号由括号里的符号确定。 扩展:()222222ax by a x abxy b y ±=±+ a,b 为x 、y 系数,那么展开式的中间项系数为2ab 。 例:1.229124a ab b -+= 2. 2244a ab b -+= 3. 2(23)x -= 4. 221()32x y -= 4. 2102= 6. 299= 题型解析: 一、添括号运用乘法公式计算: (1)2)(b a -- (2)2)(c b a ++ (4) ()()22 225x 4y 5x 4y --+ (5)2)12(-+b a (6)2)12(--y x 二、展开式系数的判断:公式逆用 1、要使k x x +-62是完全平方式,则k=________ 2、要使42++my y 成为完全平方式,那么m=________ 3、将多项式92+x 加上一个整式,使它成为完全平方式,这个整式可以是_______________ 4、多项式()2249a ab b -+是完全平方差公式,则括号里应填 。 5、将下列式子补充完整: (1)24x - xy +216y =( ) 2 (2)225a +10ab + =( )2 (3) -4ab + =(a - )2 (4)216a + + =( +)22b (5)2916x - + =( 223y ?-?? 三、利用公式加减变形 例.已知5=+b a 3ab =,求22b a +和 2)(b a -的值 1. 若a+b=0,ab=11,求a 2﹣ab+b 2的值。 2.已知 x + y = 8,xy = 12,求 x 2 + y 2 的值 3. 已知,(x+y )2=16,(x ﹣y )2=8,那么xy 的值是多少? 4. 如果,求和1a-a 的值。 5. 已知x 2+y 2=13,xy=6,则x+y 的值是多少?

平方差完全平方公式(培优)

平方差完全平方公式 一.选择题(共1小题) 1.(1999?烟台)下列代数式,x 2+x ﹣,,,其中整式有( ) A . 1个 B . 2个 C . 3个 D . 4个 二.填空题(共3小题) 2.(2011?湛江)多项式2x 2﹣3x+5是 _________ 次 _________ 项式. 3.(2010?毕节地区)写出含有字母x ,y 的四次单项式 _________ .(答案不唯一,只要写出一个) 4.(2004?南平)把多项式2x 2﹣3x+x 3按x 的降幂排列是 _________ . 5.(1999?内江)配方:x 2+4x+___=(x+___)2 配方:x 2-x+ ___=(x- 2 1)2 三.解答题(共26小题) 5.计算: (1)(x ﹣y )(x+y )(x 2+y 2) (2)(a ﹣2b+c )(a+2b ﹣c ) 6.计算:1232﹣124×122. 7.计算:. 8.(x ﹣2y+z )(﹣x+2y+z ). 9.运用乘法公式计算. (1)(x+y )2﹣(x ﹣y )2; (2)(x+y ﹣2)(x ﹣y+2); (3)×; (4). 10.化简:(m+n ﹣2)(m+n+2). 11.(x ﹣2y ﹣m )(x ﹣2y+m ) 12.计算 (1)(a ﹣b+c ﹣d )(c ﹣a ﹣d ﹣b ); (2)(x+2y )(x ﹣2y )(x 4﹣8x 2y 2+16y 4). 13.计算:20082﹣20072+20062﹣20052+…+22﹣12. 14.利用乘法公式计算: ①(a ﹣3b+2c )(a+3b ﹣2c )

完全平方公式常考题型(经典)

完全平方公式典型题型 一、公式及其变形 1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2) 公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。 注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。 2、公式变形 (1)+(2)得:22 22 ()()2a b a b a b ++-+= (12)-)(得: 22 ()()4 a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=- 3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++ 二、题型 题型一、完全平方公式的应用 例1、计算(1)(- 21ab 2-3 2c )2; (2)(x -3y -2)(x +3y -2); 练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1); 题型二、配完全平方式 1、若k x x ++22是完全平方式,则k = 2、.若x 2-7xy +M 是一个完全平方式,那么M 是 3、如果4a 2-N ·ab +81b 2 是一个完全平方式,则N = 4、如果224925y kxy x +-是一个完全平方式,那么k = 题型三、公式的逆用 1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.

数学教案的运用完全平方公式法

数学教案的运用完全平方公式法 1。使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法; 2。理解完全平方式的意义和特点,培养学生的判断能力。 3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力. 4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。 1。问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法? 答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解。我们学过的因式分解的方法有提取公因式法及运用平方差公式法。 2。把下列各式分解因式: (1)ax4-ax2 (2)16m4-n4。 解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1) (2) 16m4-n4=(4m2)2-(n2)2 =(4m2+n2)(4m2-n2) =(4m2+n2)(2m+n)(2m-n)。 问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

答:有完全平方公式。 请写出完全平方公式。 完全平方公式是: (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。 这节课我们就来讨论如何运用完全平方公式把多项式因式分解。 和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到 a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。式子 a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式。运用这两个式子,可以把形式是完全平方式的多项式分解因式。 问:具备什么特征的多项是完全平方式? 答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式。 问:下列多项式是否为完全平方式?为什么? (1)x2+6x+9; (2)x2+xy+y2; (3)25x4-10x2+1; (4)16a2+1。

初中数学完全平方公式的变形与应用

完全平方公式的变形与应用 提高培优完全平方公式 222222()2,()2a b a a b b a b a a b b 在使用时常作如下变形: (1) 222222()2,()2a b a b a b a b a b a b (2) 2222()()4,()()4a b a b a b a b a b a b (3) 2222 ()()2()a b a b a b (4) 2222 1 [()()]2a b a b a b (5) 22 1 [()()]2a b a b a b (6) 222222 1 [()()()]2a b c a b b c ca a b b c c a 例1 已知长方形的周长为 40,面积为75,求分别以长方形的长和宽为边长的正方形面积之和是多少? 解设长方形的长为α,宽为b ,则α+b=20,αb=75. 由公式(1),有: α2+b 2=(α+b)2-2αb=202-2×75=250. (答略,下同) 例2 已知长方形两边之差 为4,面积为12,求以长方形的长与宽之和为边长的正方形面积. 解设长方形长为 α,宽为b ,则α-b=4,αb=12.由公式(2),有:(α+b)2=(α-b)2+4αb=42+4×12=64. 例3 若一个整数可以表示为两个整数的平方和, 证明:这个整数的2倍也可以表示为两个整数的平方和 . 证明设整数为x ,则x=α2+b 2(α、b 都是整数).

由公式(3),有2x=2(α2+b 2)=(α+b)2+(α-b)2.得证 例4 将长为64cm 的绳分为两段,各自围成一个小正方形,怎样分法使得两个正方形面积之和最小? 解设绳被分成的两部分为x 、y ,则x+y=64. 设两正方形的面积之和为 S ,则由公式(4),有:S=(x 4)2+(y 4)2=116 (x 2+y 2) =132 [(x+y)2+(x-y)2] =132 [642+(x-y)2]. ∵(x-y)2 ≥0,∴当x=y 即(x-y)2=0时,S 最小,其最小值为 64232=128(cm 2). 例5 已知两数的和为 10,平方和为52,求这两数的积. 解设这两数分别为α、b ,则α+b =10,α2+b 2 =52. 由公式(5),有: αb=12 [(α+b)2-(α2+b 2)] =12 (102-52)=24. 例6 已知α=x+1,b=x+2,c=x+3. 求:α2+b 2+c 2-αb-bc-c α的值. 解由公式(6)有: α2+b 2+c 2-αb-bc-αc =12 [(α-b)2+(b-c )2+(c-α)2] =12 [(-1)2+(-1)2+22] =12×(1+1+4)=3.

(完整版)完全平方公式培优训练题(含答案)

平方差公式培优训练 ◆基础训练 平方差公式:(a+b)(a-b)=________________________________, 1.下列计算中,错误的有() ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2. A.1个B.2个C.3个D.4个 2.若x2-y2=30,且x-y=-5,则x+y的值是()3.(a+b-1)(a-b+1)=(_____)2-(_____)2.A.5 B.6 C.-6 D.-5 4.计算:(a+2)(a2+4)(a4+16)(a-2). 5(1)(2+1)(22+1)(24+1(28+1) (2)(3+1)(32+1)(34+1)…(32008+1)- 4016 3 2 . 6.(一题多变题)利用平方差公式计算:2009×2007-20082., 22007 200720082006 -? , 2 2007 200820061 ?+ . 完全平方公式培优训练 ◆基础训练 1.完全平方公式:(a+b)2=______,(a-b)2=______.即两数的_____的平方等于它们的_____,加上(或减去)________. 2.计算: (1)(2a+1)2=(_____)2+2·____·_____+(____)2=________;

(2)(2x-3y)2=(_____)2-2·____·_____+(_____)2=_______.3.(____)2=a2+12ab+36b2;(______)2=4a2-12ab+9b2. 4.(3x+A)2=9x2-12x+B,则A=_____,B=______. 5.m2-8m+_____=(m-_____)2. 6.下列计算正确的是() A.(a-b)2=a2-b2B.(a+2b)2=a2+2ab+4b2 C.(a2-1)2=a4-2a2+1 D.(-a+b)2=a2+2ab+b2 7.运算结果为1-2ab2+a2b4的是() A.(-1+ab2)2B.(1+ab2)2C.(-1+a2b2)2D.(-1-ab2)2 8.计算(x+2y)2-(3x-2y)2的结果为() A.-8x2+16xy B.-4x2+16xy C.-4x2-16xy D.8x2-16xy 9.计算(a+1)(-a-1)的结果是() A.-a2-2a-1 B.-a2-1 C.a2-1 D.-a2+2a-1 10.运用完全平方公式计算: (1)(-1+3a)2 (2)(1 3 a+ 1 5 b)2 (3)(-a-b)2(4)(-a+1 2 )2 (5)(xy+4)2(6)(a+1)2-a2(7)1012(8)1982 11.计算: (1)(a+2b)(a-2b)-(a+b)2(2)17.计算(a-2b+3c)2-(a+2b-3c)2

完全平方公式变形公式专题

半期复习(3)——完全平方公式变形公式及常见题型一.公式拓展: 2a2b2(a b)22ab 22 拓展一:a b(a b)2ab 11211 2 2 2 a(a)2a(a)2 22 a a a a 2a b2a b22a22b2 2 拓展二:(a b)(a b)4ab 22(a b)2(a b)24ab (a b)(a b)4ab 2222 拓展三:a b c(a b c)2ab2ac2bc 拓展四:杨辉三角形 33232 33 (a b)a a b ab b

444362243 4 (a b) a a b a b ab b 拓展五:立方和与立方差 3b a b a ab b 3223b3a b a ab b 22 a()()a()() 第1页(共5页)

二.常见题型: (一)公式倍比 。 2 2 a b 例题:已知 a b =4,求ab 2 1 1 (1) x y 1,则 2 2 x xy y = 2 2 2 2 x y 2 ) 2 (2) 已知x x x y ,xy ( 1) ( 则= 2 ( 二)公式变形 (1) 设(5a+3b)2=(5a-3b)2+A,则A= 2 2 (2) 若( x y) ( x y) a ,则a 为 (3) 如果 2 ( ) 2 (x y) M x y ,那么M等于(4) 已知(a+b) 2=m,(a —b) 2=n,则ab 等于 2 (2 3 ) 2 ( ,则N的代数式是(5) 若2a b a b N 3 ) (三)“知二求一” 1.已知x﹣y=1,x 2+y2=25,求xy 的值. 2.若x+y=3 ,且(x+2)(y+2)=12. (1)求xy 的值; 2+3xy+y 2 的值. (2)求x

初中数学 完全平方公式的五种常见应用举例

完全平方公式的五种常见应用举例 完全平方公式是整式乘法中最重要的公式之一在运用完全平方公式时,必须掌握一些使用技巧,才能灵活应用公式,其中包括“顺用”、“逆用”、“顺逆联用”,以及“特例应用”和“变形应用”等.下面举例说明. 一、正用 根据算式的结构特征,由左向右套用. 例1 计算22 (23)m m -- 分析 本题是一个三项式的平方,可考虑将三项式中任意两项组合成一个整体,使其转化为一个二项式的平方,然后再运用完全平方公式便可以顺利求解.解 22(23)m m --22 [(2)3]m m =--222(2)6(2)9 m m m m =---+4322446129 m m m m m =-+-++43242129 m m m m =--++ 思考 本题中三项式转化为二项式的根据是什么?还有其它的方法吗? 二、逆用 将公式逆向使用,即由右向左套用. 例2 己知,,,则多项式20172018a x =+20172019b x =+20172020c x =+的值为( ) 222a b c ab bc ac ++--- (A) 0 (B)1 (C)2 (D)3 分析观察本题已知条件,直接代入求值困难.但换个角度仔细观察多项式的结构就不难发现,该多项式的2倍恰好是3个完全平方公式的右端,于是逆用完全平方公式,就可以得到,而,,的值可求,故本题巧妙得解.222()()()a b b c c a -+-+-a b -b c -c a -解 ∵20172018a x =+20172019 b x =+20172020 c x =+∴,,1a b -=-1b c -=-2 c a -=∴222 a b c ab bc ac ++---2221(222222)2 a b c ab bc ac = ++---2222221(222)2 a a b b b b c c c ac a =-++-++-+2221[()()()]2 a b b c c a =-+-+-2221[(1)(1)2]2=-+-+

七年级完全平方公式培优

32 5 2 乘法公式 1.乘法公式: 平方差公式(a+b )(a -b )=a 2+b 2, 完全平方公式:(a±b )2=a 2±2ab+b 2 2.运用平方差公式应注意的问题: (1)公式中的 a 和 b 可以表示单项式,也可以是多项式; (2)有些多项式相乘,表面上不能用公式,但通过适当变形后可以用公式. 如 (a +b -c )(b -a+c )=[(b +a )-c )][b -(a -c )] =b 2 -(a -c ) 3.运用完全平方公式应注意的问题: (1)公式中的字母具有一般性,它可以表示单项式、多项式,只要符合公式的 结构特征,就可以用公式计算; (2)在利用此公式进行计算时,不要丢掉中间项“2ab ”或漏了乘积项中的系数 积的“ 2”倍; (3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以 直接用公式进行计算;如不符合,应先变形为公式的结构特点,再利用公式 进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算. 【典例评析】: 例 1、计算:(1)(-3mn-1)(1-3mn)-8m 2n 2; (2)(a+b-c)(a-b+c) 例 2、计算:(a-2) (a+2) (a 2+4)(a 4+16) 例 3、计算: (1)20 1 ×19 8 ; (2) 9 9 100 2 99 ? 101 + 1 例 4、逆用平方差公式巧算: (1)(2a+3)2-(2a-3)2; (2)(1- 1 )(1- 1 )(1- 1 )(1- 1 )(1- 1 ) 22 42 62 例 5..已知 x - y = a, z - y = 10, 则代数式 x 2 + y 2 + z 2 - xy - yz - zx 的最小值等于多 少?

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一: 拓展二: 拓展三: 拓展四:杨辉三角形 拓展五: 立方与与立方差 二.常见题型: (一)公式倍比 例题:已知=4,求。 (1),则= (2)已知= (二)公式变形 (1)设(5a +3b)2=(5a -3b)2+A,则A= (2)若()()x y x y a -=++22 ,则a 为 (3)如果,那么M 等于 (4)已知(a+b)2=m,(a —b)2=n,则ab 等于 (5)若,则N 得代数式就是 (三)“知二求一” 1.已知x ﹣y=1,x 2+y 2=25,求xy 得值. 2.若x+y=3,且(x+2)(y+2)=12. (1)求xy 得值; (2)求x 2+3xy+y 2得值. 3.已知:x+y=3,xy=﹣8,求: (1)x 2+y 2 (2)(x 2﹣1)(y 2﹣1). 4.已知a ﹣b=3,ab=2,求: (1)(a+b)2 (2)a 2﹣6ab+b 2得值. (四)整体代入 例1:,,求代数式得值。 例2:已知a= x +20,b=x +19,c=x +21,求a 2+b 2+c 2-ab -bc -ac 得值 ⑴若,则= ⑵若,则= 若,则=

⑶已知a2+b2=6ab且a>b>0,求得值为 ⑷已知,,,则代数式得值就是. (五)杨辉三角 请瞧杨辉三角(1),并观察下列等式(2): 根据前面各式得规律,则(a+b)6=. (六)首尾互倒 1.已知m2﹣6m﹣1=0,求2m2﹣6m+=. 2.阅读下列解答过程: 已知:x≠0,且满足x2﹣3x=1.求:得值. 解:∵x2﹣3x=1,∴x2﹣3x﹣1=0 ∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题: 已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7, 求:(1)得值;(2)得值. (七)数形结合 1.如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形. (1)您认为图(2)中得阴影部分得正方形边长就是多少? (2)请用两种不同得方法求图(2)阴影部分得面积; (3)观察图(2),您能写出下列三个代数式之间得等量关系吗? 三个代数式:(m+n)2,(m﹣n)2,mn. (4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值. 2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例 如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示. (1)请写出图3图形得面积表示得代数恒等式; (2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2. (八)规律探求 15.有一系列等式:

完全平方公式培优训练题

完全平方公式天才教育 ◆填空 1.完全平方公式:(a+b)2=______,(a-b)2=______.即两数的_____的平方等于它们的_____,加上(或减去)________. 2.计算: (1)(2a+1)2=(_____)2+2·____·_____+(____)2=________; (2)(2x-3y)2=(_____)2-2·____·_____+(_____)2=_______. 3.(____)2=a2+12ab+36b2;(______)2=4a2-12ab+9b2. 4.(3x+A)2=9x2-12x+B,则A=_____,B=______. 5.m2-8m+_____=(m-_____)2. 6.下列计算正确的是() A.(a-b)2=a2-b2B.(a+2b)2=a2+2ab+4b2 C.(a2-1)2=a4-2a2+1 D.(-a+b)2=a2+2ab+b2 7.运算结果为1-2ab2+a2b4的是() A.(-1+ab2)2B.(1+ab2)2C.(-1+a2b2)2D.(-1-ab2)2 8.计算(x+2y)2-(3x-2y)2的结果为() A.-8x2+16xy B.-4x2+16xy C.-4x2-16xy D.8x2-16xy 9.计算(a+1)(-a-1)的结果是() A.-a2-2a-1 B.-a2-1 C.a2-1 D.-a2+2a-1 10.运用完全平方公式计算: (1)(a+3)2(2)(5x-2)2(3)(-1+3a)2 (4)(1 3 a+ 1 5 b)2(5)(-a-b)2(6)(-a+ 1 2 )2 (7)(xy+4)2(8)(a+1)2-a2(9)(-2m2-1 2 n2)2 - 1 -

八年级数学上册 完全平方公式的综合应用(习题及答案)

完全平方公式的综合应用(习题) 例题示范 例1:已知12x x - =,求221x x +,441x x +的值. 【思路分析】 ① 观察题目特征(已知两数之差和两数之积11x x ? =,所求为两数的平方和),判断此类题目为“知二求二”问题; ② “x ”即为公式中的a ,“ 1x ”即为公式中的b ,根据他们之间的关系可得:2221112x x x x x x ??+=-+? ???; ③ 将12x x -=,11x x ?=代入求解即可; ④ 同理,24224221112x x x x x x ??+=+-? ???,将所求的221x x +的值及2211x x ?=代入即可求解. 【过程书写】 例2:若2226100x x y y -+++=,则x =_______,y =________. 【思路分析】 此题考查完全平方公式的结构,“首平方,尾平方,二倍乘积放中央”. 观察等式左边,22x x -以及26y y +均符合完全平方式结构,只需补全即可,根据“由两边定中间,由中间凑两边”可配成完全平方式,得到22(1)(3)0x y -++=. 根据平方的非负性可知:2(1)0x -=且2(3)0y +=,从而得到1x =,3y =-. 巩固练习 1. 若2(2)5a b -=,1ab =,则224a b +=____,2(2)a b +=____. 2. 已知3x y +=,2xy =,求22x y +,44x y +的值.

3. 已知2310a a -+=,求221a a +,44 1a a +的值. 4. (1)若229x mxy y ++是完全平方式,则m =________. (2)若22916x kxy y -+是完全平方式,则k =_______. 5. 多项式244x +加上一个单项式后,能使它成为一个整式的平方,则可以加上 的单项式共有_______个,分别是__________ ______________________________. 6. 若22464100a b a b +--+=,则a b -=______. 7. 当a 为何值时,2814a a -+取得最小值,最小值为多少? 8. 求224448x y x y +-++的最值. 思考小结 1. 两个整数a ,b (a ≠b )的“平均数的平方”与他们“平方数的平均数”相等 吗?若不相等,相差多少? 2. 阅读理解题:

完全平方公式变形公式专题

半期复习(3)—— 完全平方公式变形公式及常见题型 一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ 2)1(1222-+=+ a a a a 2)1(1222+-=+a a a a 拓展二:a b b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=- 拓展三:bc ac ab c b a c b a 222)(2 222---++=++ 拓展四:杨辉三角形 3223333)(b ab b a a b a +++=+ 4322344464)(b ab b a b a a b a ++++=+ 拓展五: 立方和与立方差 ))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 二.常见题型: (一)公式倍比 例题:已知b a +=4,求ab b a ++2 2 2。 (1)1=+y x ,则222 121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2 222)()1(则= (二)公式变形 (1)设(5a +3b )2=(5a-3b )2+A ,则A= (2)若()()x y x y a -=++22,则a 为 (3)如果2 2)()(y x M y x +=+-,那么M 等于 (4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于 (5)若N b a b a ++=-22)32()32(,则N 的代数式是 (三)“知二求一” 1.已知x﹣y=1,x 2+y 2=25,求xy 的值. 2.若x +y=3,且(x+2)(y +2)=12. (1)求xy的值; (2)求x 2+3x y+y2的值.

完全平方公式 典型培优练习题

完全平方公式 典型提高练习题 一、点击公式 1、()2a b ±= ,()2 a b --= ,()()a b b a --= . 2、()222a b a b +=++ =()2a b -+ .3、()()22a b a b +--= . 二、公式运用 1、计算化简 (1) ()()()2222x y x y x y ??+-+-?? (2)2)())((y x y x y x ++--- (3)2)21(1x --- (4)()()z y x z y x 3232+--+ (5)()()2121a b a b -+-- 2、简便计算: (1)(-69.9)2 (2)472-94×27+272 3、公式变形应用: 在公式(a ±b )2=a 2±2ab+b 2中,如果我们把a+b ,a-b ,a 2+b 2,ab 分别看做一个整体,那么 只要知道其中两项的值,就可以求出第三项的值. (1)已知a+b =2,代数式a 2-b 2+2a +8b +5的值为 ,已知11 25 ,,7522x y ==代数式 (x +y )2-(x -y )2的值为 ,已知2x -y -3=0,求代数式12x 2-12xy +3y 2的值

是 ,已知x=y +4,求代数式2x 2-4x y+2y 2-25的值是 . (2)已知3=+b a ,1=ab ,则22b a += ,44a b += ;若5a b -=,4a b =,则2 2b a +的值为______;()28a b -=,()22a b +=,则ab =_______. (3)已知:x+y =-6,xy =2,求代数式(x-y )2的值. (4)已知x+y =-4,x-y =8,求代数式x 2-y 2的值. (5已知a+b =3, a 2+b 2=5,求ab 的值. (6)若()()222315x x -++=,求()()23x x -+的值. (7)已知x-y =8,xy =-15,求的值. (8)已知:a 2+b 2=2,ab =-2,求:(a-b )2的值.

相关主题
文本预览
相关文档 最新文档