平方差公式完全平方公式(拓展)
- 格式:docx
- 大小:92.27 KB
- 文档页数:4
完全平方公式和平方差公式
平方差公式:
a²-b²=(a+b)(a-b)平方差:一个平方数或正方形,减去另一个平方数或正方形得来的乘法公式。
例句:6²-4²=(6+4)x(6-4)=10x2=20
完全平方差公式:
(a-b)²=a²-2ab+b²完全平方差:两数差的平方,等于它们的平方和,减去它们的积的2倍即完全平方公式。
例句:(6-4)²=6²-2x6x4+4²=36-48+16=4
完全平方公式平方差公式区别:
计算具体数据结果不同(若a=2,b=1)完全平方差公式:(a-b)²=a²-2ab+b²=1。
平方差公式:a²-b²=(a+b)(a-b)=3。
完全平方公式是三项:a²-2ab+b²,平方差公式是两项:a²-b²。
平方差可利用因式分解及分配律来验证。
先设a及b。
ba-ab=0那即是ab=ba,同时运用了环的原理。
把这公式代入:a²-ab+ba-b²若上列公式是a²-b²就得到以下公式:a²-ab+ba-b²-(a²-b²)=0以上运用了r-r=0,也即是两方是相等,就得到:a²-ab+ba-b²=a²-b²注:a2-ab+ba-b2=(a-b)(a+b)。
平方差和完全平方公式及经典例题专题一:平方差公式例1:计算下列各整式乘法。
①位置变化$(7x+3y)(3y-7x)$②符号变化$(-2m-7n)(2m-7n)$③数字变化$98\times102$④系数变化$(4m+n)(2m-n)-24$⑤项数变化$(x+3y+2z)(x-3y+2z)$⑥公式变化$(m+2)(m-2)(m^2+4)$变式拓展训练:变式1】$(-y-x)(-x+y)(x^2+y^2)(x^4+y^4)$变式2】$(2a-\frac{b}{3})^2-\frac{(b-4a)^2}{33}$变式3】$1002-992+982-972+\cdots+22-12$专题二:平方差公式的应用例2:计算$2004-2004^2\times2005\times2003$的值为多少?变式拓展训练:变式1】$(x-y+z)^2-(x+y-z)^2$变式2】$301\times(302+1)\times(302^2+1)$变式3】$(2x+y-z+5)(2x-y+z+5)$变式4】已知$a$、$b$为自然数,且$a+b=40$。
1)求$a^2+b^2$的最大值;(2)求$ab$的最大值。
专题三:完全平方公式例3:计算下列各整式乘法。
①位置变化:$(-x-\frac{y}{2})(\frac{y}{2}+x)$②符号变化:$(-3a-2b)^2$③数字变化:$197^2$④方向变化:$(-3+2a)^2$⑤项数变化:$(x+y-1)^2$⑥公式变化$(2x-3y)^2+(4x-6y)(2x+3y)+(2x+3y)^2$变式拓展训练:变式1】$a+b=4$,则$a^2+2ab+b^2$的值为()A.8B.16C.2D.4变式2】已知$(a-b)^2=4$,$ab=12$,则$(a+b)^2$=_____变式3】已知$x+y=-5$,$xy=6$,则$x^2+y^2$的值为()A.1B.13C.17D.25变式4】已知$x(x-1)-(x^2-y)=-3$,求$x^2+y^2-2xy$的值专题四:完全平方公式的运用例4:已知:$x+y=4$,$xy=2$。
典例剖析专题一:平方差公式例1:计算下列各整式乘法。
①位置变化(73)(37)x y y x +- ②符号变化(27)(27)m n m n ---③数字变化98102⨯ ④系数变化(4)(2)24n n m m +-⑤项数变化(32)(32)x y z x y z ++-+⑥公式变化2(2)(2)(4)m m m +-+◆变式拓展训练◆【变式1】2244()()()()y x x y x y x y ---+++【变式2】22(2)(4)33bba a ---【变式3】22222210099989721-+-++-…专题二:平方差公式的应用例2:计算22004200420052003-⨯的值为多少?◆变式拓展训练◆【变式1】22()()x y z x y z -+-+-【变式2】2301(3021)(3021)⨯+⨯+【变式3】(25)(25)x y z x y z +-+-++【变式4】已知a 、b 为自然数,且40a b +=, (1)求22a b +的最大值;(2)求ab 的最大值。
专题三:完全平方公式例3:计算下列各整式乘法.①位置变化:22()()x y y x --+②符号变化:2(32)a b --③数字变化:2197④方向变化:2(32)a -+⑤项数变化:2(1)x y +-⑥公式变化22(23)(46)(23)(23)x y x y x y x y -+-+++◆变式拓展训练◆【变式1】224,2a b a ab b +=++则的值为( )A 。
8 B.16 C 。
2 D.4【变式2】已知221() 4.,()_____2a b ab a b -==+=则 【变式3】已知225.6,x y xy x y +=-=+则的值为( )A 。
1 B.13 C 。
17 D 。
25【变式4】已知222(1)()32x x x y x y xy ---=-+-,求的值专题四:完全平方公式的运用例4:已知:4,2x y xy +==,求:①22x y +; ②44x y +; ③2()x y -◆变式拓展训练◆【变式1】2242411310,;x x x x x x-+=++已知求①②【变式2】225,2,4xy x y x y x y x y ++=++已知满足求的值。
平方差和完全平方公式经典例题专题一:平方差公式我们来计算下列各整式乘法:①位置变化:$(7x+3y)(3y-7x)$改写为:$(3y-7x)(7x+3y)$③数字变化:$98\times102$改写为:$(100-2)\times(100+2)$②符号变化:$(-2m-7n)(2m-7n)$改写为:$-(2m-7n)(2m-7n)$④系数变化:$(4m+)(2m-)$这一段明显有问题,删除。
⑤项数变化:$(x+3y+2z)(x-3y+2z)$ 改写为:$(x+2z+3y)(x+2z-3y)$⑥公式变化:$(m+2)(m-2)(m+4)$改写为:$(m^2-4)(m+4)$变式拓展训练:变式1】$(-y-x)(-x+y)(x+y)(x+y)$变式2】$(2a-)-(-4a)$专题二:平方差公式的应用我们来计算 $2\frac{2}{4b^3}$ 的值:改写为:$\frac{2}{4}\times\frac{1}{b}\times\frac{1}{b}\times\frac{1}{b} \times\frac{1}{b}\times b^2$化简得:$\frac{1}{2b^2}$变式拓展训练:变式1】$(x-y+z)-(x+y-z)$变式2】$301\times(302+1)\times(302+1)222$变式3】$(2x+y-z+5)(2x-y+z+5)$专题三:完全平方公式我们来计算下列各整式乘法:①位置变化:$(-x-y)(y+x)$改写为:$(x+y)(x+y)$③数字变化:$1972^2$改写为:$(2000-28)^2$②符号变化:$(-3a-2b)^2$改写为:$(3a+2b)^2$④方向变化:$(-3+2a)^2$改写为:$(2a-3)^2$⑤项数变化:$(x+y-1)$这一段明显有问题,删除。
⑥公式变化:$(2x-3y)+(4x-6y)(2x+3y)+(2x+3y)^2$改写为:$9x^2-10xy+9y^2$变式拓展训练:变式1】已知 $a+b=4$,则$a+2ab+b$ 的值为?解:$a+2ab+b=a+b(2a+1)=4(2a+1)=8$答案为 A。
平方差公式和完全平方公式在数学中,平方差公式和完全平方公式是两个重要的公式,它们在代数中的运用频繁,能够帮助我们简化计算和解决问题。
本文将介绍这两个公式的定义、应用以及推导过程。
一、平方差公式平方差公式是指两个数的平方差等于它们的积与和的差。
具体表达如下:a^2 - b^2 = (a + b)(a - b)其中,a、b为任意实数。
平方差公式的应用可以帮助我们快速计算平方差,以及解决一些与平方差相关的问题。
例如,考虑以下例子:例1:计算 16^2 - 9^2 的值。
根据平方差公式,我们可以将该式转化为 (16 + 9)(16 - 9)。
进一步计算可得= 25 × 7= 175因此,16^2 - 9^2 的值为 175。
平方差公式也可以用于因式分解和方程求解等问题。
通过将平方差公式进行变形,可以将复杂的表达式进行简化。
二、完全平方公式完全平方公式是指一个二次多项式能够被写成两个平方项的和的形式。
具体表达如下:(a ± b)^2 = a^2 ± 2ab + b^2其中,a、b为任意实数。
完全平方公式的应用范围广泛,涉及到二次函数、方程、因式分解等等。
以下是一些例子:例2:将 x^2 - 6x + 9 表示为完全平方形式。
我们可以观察到该式可以写成 (x - 3)^2 的形式,其中 a = x,b = -3。
这样,我们就可以利用完全平方公式进行简化和计算。
例3:解方程 x^2 + 6x + 9 = 0同样地,我们可以将该方程改写为 (x + 3)^2 = 0 的形式。
根据完全平方公式,这意味着 x + 3 = 0 或 x = -3。
因此,方程的解为 x = -3。
总结:平方差公式和完全平方公式在代数中起到了重要的作用,能够帮助我们简化计算和解决问题。
我们可以通过灵活运用这两个公式来化简表达式、因式分解、解方程等。
熟练掌握平方差公式和完全平方公式,对理解和应用代数知识都有很大帮助。
平方差公式完全平方公式拓展一、平方差公式的拓展(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²这两个公式常用于将两个含有平方项的多项式进行展开。
例如,要计算(3+4)²,可以利用平方差公式展开为3²+2*3*4+4²=9+24+16=49然而,这两个公式还可以进一步拓展。
1.平方差公式的三项展开(a+b+c)² 的展开式可以通过不断应用平方差公式进行简化。
我们首先展开(a+b)²,得到a² + 2ab + b²。
然后将 c 加入到这个式子中,得到a² + 2ab + b² + 2ac + 2bc + c²。
观察这个式子,我们可以发现其中有三个交叉项 2ab、2ac 和 2bc。
因此,我们可以将(a+b+c)² 的展开式写为三项的形式:(a+b+c)² = a² + b² + c² + 2ab + 2ac + 2bc这个拓展的平方差公式对于展开三个或多个含有平方项的多项式非常有用。
2.平方差公式的负数展开前面提到的平方差公式是针对两个正数进行的展开。
但是,当其中一个数是负数时,我们可以将其用平方差公式进行展开。
例如,要计算(4-3)²,我们可以将其展开为4²-2*4*3+3²=16-24+9=1、这个拓展的平方差公式的形式如下:(a-b)² = a² - 2ab + b² (当 a 和 b 可能是任意实数时)这个公式对于将两个数的差的平方进行展开非常有用。
二、完全平方公式的拓展完全平方公式是指一个多项式是一些二次多项式的平方。
常见的完全平方公式如下:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²这两个公式常用于将含有平方项的多项式进行因式分解。
【知识点】一、平方差公式:(a+b )(a-b)=a 2-b 2两数和与这两数差的积,等于它们的平方之差。
1、即:(a+b )(a-b) = 相同符号项的平方 - 相反符号项的平方2、平方差公式可以逆用,即:a 2-b 2=(a+b )(a-b)。
3、能否运用平方差公式的判定①有两数和与两数差的积 即:(a+b )(a-b)或(a+b )(b-a) ②有两数和的相反数与两数差的积 即:(-a-b )(a-b)或(a+b )(b-a) ③有两数的平方差 即:a 2-b 2 或-b 2+a 2二、完全平方公式:(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定 ①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2或-a 2-2ab-b 2或 -a 2+2ab-b 2探索练习:1、计算下列各式: (1)()()22-+x x (2)()()a a 3131-+ (3)()()y x y x 55-+2、观察以上算式及其运算结果,你发现了什么规律?3、猜一猜:()()=-+b a b a -平方差公式1、平方差公式:两数和与这两数差的积,等于它们的平方差,即22))((b a b a b a -=-+。
2、其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数; ②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
随堂练习:1、下列各式中哪些可以运用平方差公式计算 (1)()()c a b a -+ (2)()()x y y x +-+ (3)()()ab x x ab ---33 (4)()()n m n m +--2、判断:(1)()()22422b a a b b a -=-+ ( ) (2)1211211212-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+x x x ( ) (3)()()22933y x y x y x -=+-- ( )(4)()()22422y x y x y x -=+--- ( ) (5)()()6322-=-+a a a ( ) (6)()()933-=-+xy y x ( )3、计算下列各式:(1)()()b a b a 7474+- (2)()()n m n m ---22 (3)()()33221221--+-+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-x x x x4、填空:(1)()()=-+y x y x 3232 (2)()()116142-=-aa(3)()949137122-=⎪⎭⎫ ⎝⎛-b a ab (4)()()229432y x y x -=-+5、求()()()22y x y x y x +-+的值,其中2,5==y x6、计算:(1)()()c b a c b a --+- (2)()()()()()42212122224++---+-x x x x x x【例】运用平方差公式计算:102×98; 59.8×60.2;运用平方差公式计算:完全平方公式探索:一块边长为a 米的正方形实验田,因需要将其边长增加b 米,形成四块实验田,以种植不同的新品种。
《完全平方公式》知识清单一、完全平方公式的定义完全平方公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。
两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的 2 倍。
这两个公式分别叫做两数和与两数差的完全平方公式。
(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²二、完全平方公式的特点1、左边是一个二项式的完全平方,右边是一个三项式。
2、右边第一项是左边二项式中第一项的平方,第二项是左边二项式中两项乘积的 2 倍,第三项是左边二项式中第二项的平方。
3、公式中的字母可以表示具体的数,也可以表示单项式或多项式。
三、完全平方公式的推导我们可以通过多项式乘法来推导完全平方公式。
以(a + b)²为例:(a + b)²=(a + b)(a + b)= a×a + a×b + b×a + b×b= a²+ 2ab + b²同理,对于(a b)²:(a b)²=(a b)(a b)= a×a a×b b×a + b×b= a² 2ab + b²四、完全平方公式的常见变形1、 a²+ b²=(a + b)² 2ab2、 a²+ b²=(a b)²+ 2ab3、(a + b)²(a b)²= 4ab五、完全平方公式的应用1、用于整式的乘法运算例如:计算(3x + 2y)²解:(3x + 2y)²=(3x)²+ 2×3x×2y +(2y)²= 9x²+ 12xy + 4y²2、用于因式分解例如:分解因式 x²+ 6x + 9解:x²+ 6x + 9 =(x + 3)²3、用于简便计算例如:计算 102²解:102²=(100 + 2)²= 100²+ 2×100×2 + 2²= 10000 + 400 + 4= 104044、用于求解代数式的值已知 a + b = 5,ab = 3,求 a²+ b²的值。
平方差公式、完全平方公式
ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ ab b a b a 4)(22=--+)(
bc ac ab c b a c b a 222)(2222---++=++
一、填空
1、(-2x+y )(-2x -y )=______
2、(-3x 2+2y 2)(______)=9x 4-4y 4
3、(a+b -1)(a -b+1)=(_____)2-(_____)2
4、两个正方形的边长之和为5,边长之差为2,那么较大正方形的面积减去较小的正方形的面积,差是_____
5、计算:(a+1)(a -1)=______
6、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________
7、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________
8、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________
9、要使式子0.36x 2+4
1y 2成为一个完全平方式,则应加上________ 10、(4a m+1-6a m )÷2a m -1=________. 29×31×(302+1)=________
11、已知x 2-5x +1=0,则x 2+21x
=________ 12、已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________
13、若x2-7xy+M 是一个完全平方式,那么M 是
14、若x 2-y 2=30,且x -y=-5,则x+y 的值是
15、若x 2-x -m = (x -m)(x+1)且x ≠0,则m 等于
16、(x +q )与(x +5
1)的积不含x 的一次项,则q 应是 17、计算[(a 2-b 2)(a 2+b 2)]2等于
18、已知(a +b )2=11,ab =2,则(a -b )2的值是
19、已知m 2+n 2-6m+10n+34=0,则m+n 的值是
20、已知013642
2=+-++y x y x ,y x 、都是有理数,则y x 的值是 21、已知 2
()16,4,a b ab +==则22
3a b +的值是 、2()a b -的值是 22、已知()5,3a b ab -==,则2()a b +的值是 、223()a b +的值是
23、已知6,4a b a b +=-=,则ab 的值是 、22
a b +的值是
24、已知224,4a b a b +=+=,则22a b 的值是 、2()a b -的值是 25、已知(a +b)2=60,(a -b)2=80,则a 2+b 2的值是 、a b 的值是
26、已知6,4a b ab +==,则22223a b a b ab ++的值是
27、已知222450x y x y +--+=,则21(1)2
x xy --的值是
28、已知16x x -=,则221x x
+的值是 29、0132=++x x ,则221x x +的值是 、441x
x +的值是 30、当代数式532++x x 的值为7时,则代数式2932-+x x 的值是
31、已知4=+y x ,1=xy ,则代数式)1)(1(22++y x 的值是
32、已知2=x 时,代数式10835=-++cx bx ax ,则当2-=x 时,代数式835-++cx bx ax 的值是
33、已知012=-+a a ,则2007223++a a 的值是
34、若123456786123456789⨯=M ,123456787123456788⨯=N ,则M 与N 的大小关系是
35、已知2083-=x a ,1883-=x b ,168
3-=x c ,则代数式bc ac ab c b a ---++222的值是 36、已知x≠1,(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.,……
(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=______.(n 为正整数)
(2)根据你的猜想计算:
①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+…+2n =______(n 为正整数).
③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.
(3)通过以上规律请你进行下面的探索:
①(a -b )(a+b )=_______. ②(a -b )(a 2+ab+b 2)=______. ③(a -b )(a 3+a 2b+ab 2+b 3)=______.
二、选择
1、下列多项式的乘法中,可以用平方差公式计算的是( )
A .(a+b )(b+a )
B .(-a+b )(a -b )
C .(
13a+b )(b -13a ) D .(a 2-b )(b 2+a ) 2、下列计算中,错误的有( )
①(3a+4)(3a -4)=9a 2-4;②(2a 2-b )(2a 2+b )=4a 2-b 2;
③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.
A .1个
B .2个
C .3个
D .4个
3、下列运算正确的是( )
A .a 3+a 3=3a 6
B .(-a )3·(-a )5=-a 8
C .(-2a 2b )·4a=-24a 6b 3
D .(-
13a -4b )(13a -4b )=16b 2-19a 2 4、下列四个算式:①4x 2y 4÷4
1xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y =3x 5y ; ④(12m 3+8m 2
-4m )÷(-2m )=-6m 2+4m +2,
其中正确的有( )个
5、若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是( )
A.x n 、y n 一定是互为相反数
B.(x
1)n 、(y 1)n 一定是互为相反数 C.x 2n 、y 2n 一定是互为相反数 D.x 2n -1、-y 2n -1一定相等
三、计算
1、2023
×2113 2、(3+1)(32+1)(34+1)…(32008+1)-401632
3、(a+2)(a 2+4)(a 4+16)(a -2)
4、(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数)
5、利用平方差公式计算:22007200720082006
-⨯ 22007200820061⨯+
6、(解方程)x (x+2)+(2x+1)(2x -1)=5(x 2+3) x (9x -5)-(3x -1)(3x +1)=5
7、(a -2b +3c )2-(a +2b -3c )2 [ab (3-b )-2a (b -2
1b 2)]
8、(-3a 2b 3);-2100×0.5100×(-1)2005÷(-1)-5 [(x +2y )(x -2y )+4(x -y )2-6x ]÷6x
四、综合应用
1、请写出一个平方差公式,使其中含有字母m ,n 和数字4:
2、试说明不论x,y 取何值,代数式22
6415x y x y ++-+的值总是正数。
3、已知三角形 ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?
4、广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?
5、(2+1)(22+1)(24
+1) =(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)
=(24-1)(24+1)=(28-1).
根据上式的计算方法,请计算
364
(3+1)(32+1)(34+1)…(332+1)-
的值等于
2。