大直径嵌岩桩施工勘察孔深的确定
- 格式:docx
- 大小:100.32 KB
- 文档页数:10
高层建筑岩土工程勘察勘探孔布置及深度确定摘要:良好的工程勘察是确保其后续施工方案设计、施工技术应用和施工质量控制的关键。
我国城市高层建筑因层数较多,内部构造形态多种多样,工程荷载状况较为复杂,且多位于道路两旁,形成了城市高层建筑群落,因此对地基勘察及地基处理要求较高。
施工时应充分考虑基坑开挖、地下水位、桩基础、环境噪声、抗震性、地基沉降等因素对相邻建筑物的影响,同时应加强对地基的监测,以消除不良地质、地基承载能力、地基不稳定等问题,防止施工中发生超出地基承载能力的情况。
本文主要对高层建筑岩土工程勘察勘探孔布置及深度确定进行论述,详情如下。
关键词:高层建筑;岩土工程;勘察勘探孔;布置;深度引言勘探孔布置和深度确定是岩土工程勘察中非常重要的一环,也是提高勘察技术工作质量的需要。
在岩土工程勘察阶段,根据规范的要求标准来缩短勘探孔之间的距离,加深勘察点深度的方式来了解现场施工环境是不可取的,既增加了勘探工作量和勘探工作的周期,同时也降低了技术工作布置的科学性。
勘探孔的布置间距和勘探孔深度与场地土层分布特性密切相关,勘探孔的合理布置决定场地土层的完整性,而勘探孔深度的合理确定能够在探明地基土层情况下减少勘察工作量。
因此,勘探孔布置间距和勘探孔深度应共同发挥作用,以查明建设场地的地质情况。
1岩土工程勘察工作内容分解根据工程建设阶段的不同,岩土工程勘察工作的内容不同,可将整个岩土工程勘察分为3个阶段;可行性研究勘察主要在立项阶段,初步勘察和详细勘察主要集中在勘察设计阶段,在工程实施过程中,还可能会涉及施工勘察工作,岩土工程勘察基本涵盖了整个建设过程,涉及了多个专业、多个部门。
面对系统、复杂、精细的工作要求,对岩土工程勘察工作进行分解,有利于实现复杂工作的模块化,可以更加精确地进行质量控制。
工作内容分解主要是遵循全面性、适度性、独特性、唯一性的基本原则;在分解时,需要包含整个工程的所有工作项目、工作阶段、工作内容,避免出现遗漏问题;同时,还要保证分解的合理性,充分平衡管理成本,尽可能在较少的管理成本下降低工作难度。
简述房屋建筑详细勘察中钻孔孔深的确定摘要:在当前房屋建筑工程施工过程中,为了确保建筑地基的稳定性,大部分施工单位都会在工程开展前,结合房屋建筑整体规模对施工现场情况进行详细勘察,以便在此基础上有效确定各个区域的钻孔深度,以此为依据科学制定房屋工程设计施工方案,从而为整个房屋建筑施工的顺利实施提供可靠的参考依据。
本文也会结合当前房屋建筑详细勘察中钻孔孔深的确定标准进行着重分析,并结合钻孔孔深确定过程中遇到的困境问题提出相应的解决策略,以便有关人士参考借鉴。
关键词:房屋建筑;详细勘察;钻孔孔深;确定标准;策略分析现今,做好详细勘察工作已成为保障房屋建筑施工质量的关键所在,尤其是对钻孔孔深的确定必须符合国家强制性标准要求,确保房屋详细勘察质量。
但在实际钻孔孔深确定过程中却很容易受到建筑荷载、形式、岩土体性质等因素所影响,而难以准确确定,这在某种程度上就会降低房屋建筑详细勘察工作的效率和精确性,进而给工程地基基础施工的开展带来较大的阻碍。
因此,要严格按照国家强制性标准来开展房屋建筑详细勘察工作,这样才能精准确定钻孔孔深。
1.房屋建筑基础钻孔孔深的确定标准分析1.1国家强制性标准首先,在对房屋建筑钻孔孔深进行勘探时,应尽量不超出地基主要受力层范围,同时按照相应的规范标准要求,若基础底面宽度小于 5m 时,条基钻孔孔深要尽量大于3B,但若基础底面宽度大于5m时,单独柱基钻孔孔深要尽量大于1.5B。
其次,针对高层建筑以及需要进行变形验算的地基基础,其钻孔深度的确定应结合地基变形计算深度来进行确定,尽可能大于地基变形计算深度,一般可钻进到基底下 0.5B-1B处,并进入稳定地层。
第三,若是高层建筑的裙房和带有地下室的房屋建筑,其基础钻孔深度也要达到基底下 0.5B- 1B处,并进入到稳定地层中,促使建筑抗拔承载力达到最大化。
第四,大型设备基础孔深应尽量大于 2B;最后,桩基础钻孔孔深的确定则要以桩直径作为参考,尽可能达到预计桩长以下 3D - 5D处,且整体钻进深度不低于 3m,若是大直径桩,则钻孔深度应尽量大于5m。
6.2.4 岩石地基详细勘察的勘探深度,应根据建筑物特征和岩石质量等级分别按表6.2.4-1、6.2.4-2、6.2.4-3确定,并满足下列规定:
1 勘探深度应能控制地基主要受力层,对强风化、极破碎岩体尙应控制变形计算深度,对仅有地下室的裙房可控制到1倍基础宽度,且不应少于3米;
2 有外倾结构面需进行地基稳定性验算的斜坡地段,应控制到满足验算的要求深度;
3 控制性勘探孔加深的深度应满足下列规定:
1)破碎岩、断层破碎带、软质岩、极软岩和软硬互层场地一级建筑物和12层(含12层)以上的二级建筑物为5~6m,12层以下的建筑物为
3~5层,三级建筑物为2~3m;
2)较完整以上的坚硬岩、较硬岩和完整的较软岩,一级建筑物和12层(含12层)以上的二级建筑物为3~5m;12层以下的二级建筑物为2~3m,
三级建筑物为1~ 2m。
2在验算深度内遇软质岩、极软岩和破碎岩时应穿透;
3 B-基础宽度,D-桩墩基底直径。
注册结构师、注册造价师、注册监理工程师、房地产评估师、注册建筑师、注册建造师、注册岩土工程师。
嵌岩桩承载力的影响因素分析及嵌岩深度的探究【摘要】嵌岩桩所处的土层岩层复杂、桩身混凝土质量的不稳定和施工工艺的多样,导致嵌岩桩承载性能复杂,因而也使得人们对嵌岩桩的破坏机理和承载性状的认识不能达成共识和统一。
本文就简单从嵌岩桩的桩长、桩径、桩体模量、持力层性状、桩底沉渣、粗糙度等因素对嵌岩桩承载力进行分析,并对嵌岩深度做简单探究,以求对施工方面能起到一定的理论支持作用。
【关键词】嵌岩桩承载力影响因素嵌岩深度【Abstract 】Rock-socketed pile soil strata in the complex, pile body concrete quality stability and the construction technology of diversity, cause rock-socketed pile bearing performance complex, making people of rock-socketed piles of failure mechanism and characters of bearing can be reached consensus know and unity. This paper from the simple rock-socketed pile pile length, pile diameter, the pile modulus, include the character, the pile bottom settlings, roughness and factors of rock-socketed pile bearing capacity is analyzed, and the depth of rock-socketed do simple explore and try to construction can play a certain role of theoretical support.【Key Words 】rock-socketed, pile bearing capacity factors, rock-socketed depth目前在施工方面存在以下误区,即一方面不管嵌岩桩长细比的大小、上覆土层的土性、沉渣厚度等,一律将嵌岩桩视为端承桩进行设计;另一方面盲目增加嵌岩深度不考虑基岩的力学性状而采用扩底,结果延长了工期、增加了施工难度,同时由于嵌岩桩单桩承载力高,造价也较高,因此此造成的浪费是惊人的,简单从嵌岩桩的桩长、桩径、桩体模量、持力层性状、桩底沉渣、粗糙度等因素对嵌岩桩承载力进行分析,并对嵌岩深度做简单探究,以求对施工方面能起到一定的理论支持作用。
大直径嵌岩桩施工要点及其承载力分析摘要:随着经济和各行各业的快速发展,桩基是保障桥梁稳定性的基础结构,在地质条件复杂的环境中,通常采用嵌岩桩。
将基桩嵌入到岩层之中,单桩轴向所能允许的承载力,取决于桩基底处岩石的强度和嵌入岩层的深度,将其外力全部传至桩底岩层。
本文围绕嵌岩桩的灌注成桩施工工艺要点及施工中遇到的问题,进行深入分析。
关键词:嵌岩;新型钻具;施工工艺引言国内外旋挖钻孔灌注桩相关技术已经相当成熟,但是在硬地层如岩石或极硬岩中,嵌岩式的大口径旋挖桩施工技术仍处于不断探索和完善阶段。
本文提供一种大口径旋挖桩嵌岩施工方法,通过施工技术的改变,结合新型钻具的使用,提高了入岩效率,节省了施工时间,有效地降低了施工成本,能够实现桩基的较大嵌岩深度。
1嵌岩桩的特点由于社会经济的推动,交通便利等条件,使道路车流量成倍增加,为了保证道路桥梁的承载能力,避免安全事故的发生,较为有效的解决办法就是将桥梁桩的摩擦力合理增加,保证对于整体承载力在一定程度上能够得到有效帮助。
嵌岩桩主要是将基桩嵌入岩层当中,在桩体受到一定压力的同时,由于混凝土在桩体受压力的发生形变同时使桩侧摩阻力同时产生,由于受到压力的作用,部分土体已经不能保持原有位置,产生一定移动,加大摩擦力,当摩擦力加大到一定程度上时,桥桩开始发生微小移动,在移动的同时,桥桩两端也产生了一定摩擦力,阻止其发生位移。
2桥梁桩基嵌岩桩施工工艺要点2.1嵌岩桩成孔设备的选择嵌岩桩施工采用的成孔设备种类繁多,根据不同的成孔设备,可以打出直孔或直孔和斜孔等。
根据不同的成孔设备,打出不同的孔,按照设备的固定方式可以分为座平台式和座桩式,根据排渣方式可分为正循环,反循环,气举正、反循,风排,泵吸反循环等方法,本工程选择的成孔方式为座平台式的气带反循环排渣方式。
优点便是花费少,机身轻,不需要大型吊车的辅助工作,人员少,排渣效果好。
缺点便是无法打出需要倾斜程度的斜孔,误差相对较大,无法按照设计的准线重合。
关于勘察深度确定方法的探讨华勘院蒲海波【摘要】本文通过规范对勘察深度的规定,通过对不同宽度的常见基础型式的勘察深度,结合工程实例,以不同的方法确定的勘察深度进行对比,提出了自己对勘察深度确定的一点体会,以期与大家共同探讨。
【关键词】勘察深度基础宽度地基变形1 序言在岩土工程勘察中,勘察工作量的设计至关重要,尤其是勘察点的数量与深度的确定。
在目前各种规范日渐成熟的情况下,勘察点的间距和深度在规范中均做了规定。
但在进行勘察设计时,勘察深度往往不容易把握,如果勘察孔设计的过深,将造成建设方资金的浪费,且在目前大多数工程均以招标的形式确定勘察单位的情况下,设计工作量的增加必将提高勘察工程造价,也就降低了中标的可能性,而如果设计的过浅,则又不能满足设计时的各种要求。
因此,对如何较准确地确定勘察深度进行研究是十分必要的。
2 规范对勘察深度的要求《岩土工程勘察规范》(GB50021—2001)对勘察深度做了较为详细的规定,其中对常见的条形基础、筏板基础或箱型基础、桩基的勘察深度的主要规定如下:⑴勘探孔深度应能控制地基主要受力层,当基础底面宽度不大于5m时,勘探孔深度对条形基础不应小于基础底面宽度的3倍,且不应小于5m。
⑵对高层建筑和需作变形计算的地基,控制性勘探孔的深度应超过地基变形计算深度;高层建筑的一般性勘探孔应达到基底下0.5~1.0倍的基础宽度,并深入稳定分布的地层;⑶对于桩基础,一般性勘探孔的深度应达到预计桩长以下3~5倍桩径,且不得小于3m ,对大直径桩,不得小于5m ;控制性勘探孔深度应满足下卧层验算要求,对需验算沉降的桩基,应超过地基变形计算深度。
根据《建筑地基基础设计规范》(GB50007-2002),设计等级为甲级、乙级的建筑物及部分的丙级建筑物,基础设计除应满足承载力计算的有关规定外,还应进行地基变形设计。
地基最终变形量按下式计算:)(1110−−=−=′=∑i i i i ni sis s z z E p s s ααψψ 式1 地基变形计算深度z n 应符合下式要求:∑=′∆≤′∆ni i n s s 1025.0 式2i s ′∆—在计算深度范围内,第i 层土的计算变形值; n s ′∆—在由计算深度向上取厚度为z ∆的土层计算变形值。
大直径硬岩桩基“潜孔钻+旋挖钻+深孔爆破”复合成孔施工工法1前言目前国内大直径硬岩层嵌岩桩成孔适用技术主要有回旋钻、旋挖钻、潜孔锤技术。
回旋钻施工技术在一些含有粗卵石或者岩层,施工进度会有所减慢,甚至会无法进行正常钻孔,需要更换钻机的地盘,或者使用大功率的钻机配置;旋挖钻施工技术主要适用于钻孔直径小于三米,最大钻孔深度为100米,在前期使用时,投入较大,而且设备重量较大,对施工场地有着严格的要求。
孔壁的护臂性较差,需要使用其他器械设备或者材料进行配合使用。
潜孔锤施工技术适用于各类地质,具有较强或者柔软的钻孔能力。
缺点是该技术在进行排渣时主要依靠空压机中的气流量,要想提升排渣能力,就需要更换性能更高的空压机,这就会导致成本大大增加。
而且该技术的排渣方式主要是气举正循环,产生的土渣和岩渣会影响施工的正常进行。
传统的桩基内岩石爆破开挖是直接在桩孔内岩石上钻炮眼,而后装药同时引爆或分段引爆。
而在整板岩石区,运用传统爆破法耗药量大,掘进慢,难以控制成孔桩径,往往炸成一大坑。
爆破强震动使得桩基周边及桩底岩石易被震裂,在桩基密度较大区域严重影响邻桩开挖,甚至导致桩间相互穿孔以及对桩底持力层造成震裂破坏。
通过对岩石爆破原理的分析,引起整板岩石区桩基爆破难以控制的主要原因是由于岩石密度大,桩基内岩石自由面狭小、作业面较深、岩石内部的夹制力过大,难以消减爆破强震动。
本工法受潜孔钻较强的钻孔能力+降低潜孔钻排渣量+岩石爆破原理启发,用潜孔钻在桩径1.5m范围内环向布孔,将岩石化整为零,降低岩石的整体强度,再通过旋挖钻机取芯至桩底形成临空面,再沿桩径 2.8m范围内环向设置炮眼配以毫秒延期雷管深孔微爆破施工,具有掘进速度快、桩基成孔施工质量易于保证、操作方便简单、施工费用低等优点,经总结形成本工法。
2工法特点2.0.1施工速度快、成孔质量易于保障国内首次运用潜孔钻+旋挖钻+深孔爆破完成大直径硬岩嵌岩桩施工。
利用潜孔钻在桩径1.5m 范围内环向布孔,将岩石化整为零,降低岩石的整体强度,再通过旋挖钻机取芯至桩底形成临空面,再沿桩径2.8m范围内环向设置炮眼配以毫秒延期雷管深孔微爆破施工,具有掘进速度快、桩基成孔施工质量易于保证、操作方便简单、成孔费用低等优点,与常规的桩基成孔相比,成孔速度是以往的1.5倍以上,最终桩基工程比原计划提前40天完成施工。
《岩土工程勘察规范》--岩溶勘察4.1. 5 初步勘察的勘探工作应符合下列要求:1 勘探线应垂直地貌单元、地质构造和地层界线布置;2 每个地貌单元均应布置勘探点,在地貌单元交接部位和地层变化较大的地段,勘探点应予加密;3 在地形平坦地区,可按网格布置勘探点;4 对岩质地基,勘探线和勘探点的布置,勘探孔的深度,应根据地质构造、岩体特性、风化情况等,按地方标准或当地经验确定;对土质地基,应符合本节第4.1.6条~第4.1.10条的规定。
4.1. 6 初步勘察勘探线、勘探点间距可按表4.1.6确定,局部异常地段应予加密。
4.1.8 当遇下列情形之一时,应适当增减勘探孔深度:1 当勘探孔的地面标高与预计整平地面标高相差较大时,应按其差值调整勘探孔深度;2 在预定深度内遇基岩时,除控制性勘探孔仍应钻入基岩适当深度外,其他勘探孔达到确认的基岩后即可终止钻进;3 在预定深度内有厚度较大,且分布均匀的坚实土层(如碎石土、密实砂、老沉积土等)时,除控制性勘探孔应达到规定深度外,一般性勘探孔的深度可适当减小;4 当预定深度内有软弱土层时,勘探孔深度应适当增加,部分控制性勘探孔应穿透软弱土层或达到预计控制深度;5 对重型工业建筑应根据结构特点和荷载条件适当增加勘探孔深度。
4.1.9 初步勘察采取土试样和进行原位测试应符合下列要求:1 采取土试样和进行原位测试的勘探点应结合地貌单元、地层结构和土的工程性质布置,其数量可占勘探点总数的l/4~l/2;2 采取土试样的数量和孔内原位测试的竖向间距,应按地层特点和土的均匀程度确定;每层土均应采取土试样或进行原位测试,其数量不宜少于6个。
4.1. 10 初步勘察应进行下列水文地质工作:1 调查含水层的埋藏条件,地下水类型、补给排泄条件,各层地下水位,调查其变化幅度,必要时应设置长期观测孔,监测水位变化;2 当需绘制地下水等水位线图时,应根据地下水的埋藏条件和层位,统一量测地下水位;3 当地下水可能浸湿基础时,应采取水试样进行腐蚀性评价。
6.2.4 岩石地基详细勘察的勘探深度,应根据建筑物特征和岩石质量等级分别按表6.2.4-1、6.2.4-2、6.2.4-3确定,并满足下列规定:
1 勘探深度应能控制地基主要受力层,对强风化、极破碎岩体尙应控制变形计算深度,对仅有地下室的裙房可控制到1倍基础宽度,且不应少于3米;
2 有外倾结构面需进行地基稳定性验算的斜坡地段,应控制到满足验算的要求深度;
3 控制性勘探孔加深的深度应满足下列规定:
1)破碎岩、断层破碎带、软质岩、极软岩和软硬互层场地一级建筑物和12层(含12层)以上的二级建筑物为5~6m,12层以下的建筑物为
3~5层,三级建筑物为2~3m;
2)较完整以上的坚硬岩、较硬岩和完整的较软岩,一级建筑物和12层(含12层)以上的二级建筑物为3~5m;12层以下的二级建筑物为2~3m,
三级建筑物为1~ 2m。
2在验算深度内遇软质岩、极软岩和破碎岩时应穿透;
3 B-基础宽度,D-桩墩基底直径。
注册结构师、注册造价师、注册监理工程师、房地产评估师、注册建筑师、注册建造师、注册岩土工程师。
大直径嵌岩桩旋挖钻机施工工法大直径嵌岩桩旋挖钻机施工工法一、前言大直径嵌岩桩旋挖钻机施工工法是一种在土石嵌岩地层中使用旋挖钻机进行大直径桩施工的工法。
该工法具有高效、快速、安全等特点,适用于岩性地层的桩基施工。
本文将对该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施和经济技术分析进行详细介绍。
二、工法特点1. 高效快速:大直径嵌岩桩旋挖钻机具备高速转动和大扭矩的特点,能够快速钻进岩石地层,提高施工效率。
2. 精准定位:通过专用的定位装置,可以准确控制桩身直径和嵌入深度,达到设计要求。
3. 排土方便:旋挖钻机采用螺旋输送器将岩屑和土方送出,大大降低了土方运输的难度和成本。
4. 可控性强:配合先进的控制系统,能够实现稳定的施工过程,确保质量和安全。
三、适应范围该工法适用于中硬岩到超硬岩等岩性地层,尤其适用于不适宜静压法施工的地层。
其适用范围主要包括高速公路、铁路、桥梁、港口、电力、水利等工程领域。
四、工艺原理大直径嵌岩桩旋挖钻机施工工艺原理是将旋挖钻机安装在合适的基座上,通过旋转和推进杆的作用,将钻杆和钻头向下推进并旋转,以钻石钻头的切削和冲击力来破碎和排除岩石。
旋挖钻机具有强大的转动力和扭矩,能够轻松应对坚硬的岩石地层。
五、施工工艺1. 钻孔准备:确定孔的位置和深度,安装旋挖钻机,连接钻杆和钻头。
2. 钻孔施工:启动旋挖钻机,通过转动和推进杆的作用,将钻杆和钻头向下推进并旋转,破碎和排除岩石。
3. 钻孔完成:达到设计深度后,停止旋挖钻机,取出钻杆和钻头,并进行现场清理。
4. 浇筑灌注:将旋挖孔清空松土,然后注入混凝土,同时进行同步锚固,直至灌注完成。
六、劳动组织大直径嵌岩桩旋挖钻机施工工法需要进行科学合理的劳动组织。
通常需要设立钻机操作人员、现场监工、数据记录员、设备维护人员等职位,并严格遵守施工现场的安全规定和操作规程。
七、机具设备1. 旋挖钻机:具有高速转动和大扭矩的特点,能够应对各种岩石地层。
超大直径嵌岩桩旋挖钻机施工工法超大直径嵌岩桩旋挖钻机施工工法一、前言超大直径嵌岩桩旋挖钻机施工工法是一种利用旋挖钻机进行超大直径嵌岩桩施工的方法。
随着城市建设的不断发展,对于高层建筑、大型桥梁等工程的需求不断增加,超大直径嵌岩桩作为一种重要的地基处理方式得到广泛应用。
本文将以超大直径嵌岩桩旋挖钻机施工工法为主题,详细介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析,并结合实际工程实例进行说明。
二、工法特点超大直径嵌岩桩旋挖钻机施工工法具有以下特点:1. 适用范围广:能够适应各种复杂地质条件下的嵌岩桩施工。
2. 施工效率高:采用旋挖钻机作为施工装备,具有高效、快速、连续作业的特点,能够大幅提高施工效率。
3.工艺灵活:通过选择合适的钻头和调整转速、扭矩等参数,能够满足不同直径和不同土层的需求。
4. 施工质量高:旋挖钻机具有稳定性好、控制精度高的特点,能够保证嵌岩桩的施工质量。
5. 对环境影响小:采用旋挖钻机进行施工时,噪音小、震动小,对周边环境影响较小。
三、适应范围超大直径嵌岩桩旋挖钻机施工工法适用于以下场景:1. 适用于沉降敏感区域:由于旋挖钻机施工过程中震动小、噪音小,适用于沉降敏感的地区。
2. 适用于各种复杂地质条件:旋挖钻机能够适应各种地质条件,包括软弱土层、砂土层、黏土层和岩石层等。
3. 适用于超大直径嵌岩桩施工:该工法能够满足超大直径嵌岩桩的施工需求,适用于高层建筑、大型桥梁等工程。
四、工艺原理超大直径嵌岩桩旋挖钻机施工工法的工艺原理是基于旋挖钻机的工作方式和土层条件的不同,通过选择合适的钻头和调整转速、扭矩等参数,以确保施工过程中的稳定性和有效性。
具体分析和解释如下:1. 选择合适的钻头:根据不同的土层条件选择合适的钻头,如扁铲式、圆筒式、扁筒式等,以确保施工顺利进行。
2. 调整转速、扭矩等参数:根据土层的硬度和抗压强度,调整旋挖钻机的转速、扭矩等参数,以确保施工过程中旋挖钻机可以稳定地工作,并保证嵌岩桩的质量。
嵌岩桩施工方案嵌岩桩施工方案一、工程概述本工程为某建筑项目,需要进行嵌岩桩施工工作。
工程共涉及700根嵌岩桩,桩身直径为1米,桩长为10米。
施工目标是确保嵌岩桩的垂直度和承载力。
二、施工工艺流程1. 基坑开挖:根据设计要求开挖基坑,确保基坑底部平整。
2. 定位测量:在基坑底部按照设计标高进行嵌岩桩的定位测量。
3. 钻孔:用直径为1.2米的顶管钻机,按照设计要求进行嵌岩桩的钻孔。
每根桩钻孔深度为12米,使用水泥灌注孔壁。
4. 灌注桩身:在钻孔完成后,使用混凝土泵将约120立方米的混凝土灌注到桩孔中,同时使用振捣器进行振捣,保证混凝土的密实度。
5. 桩顶处理:在灌注混凝土2小时后,使用尺规和差值仪进行桩顶的整平和精确校核。
6. 后续施工:完成嵌岩桩施工后,根据需要进行桩顶处理,进一步加固与桩顶接触的结构。
三、施工方案的关键要点1. 设备选择:为保证施工的质量和进度,选择质量可靠的直径1.2米的顶管钻机和混凝土泵。
2. 定位测量:在嵌岩桩施工前,对基坑底部进行准确的定位测量,确保嵌岩桩的位置和数量准确无误。
3. 钻孔施工:采用顶管钻机进行嵌岩桩的钻孔,桩眼孔壁用水泥灌注,确保桩身的强固性和稳定性。
4. 混凝土灌注与振捣:使用混凝土泵将混凝土灌注到桩孔中,同时使用振捣器进行振捣,保证混凝土的密实度和均匀性。
5. 桩顶整平和精确校核:在灌注混凝土2小时后,使用尺规和差值仪进行桩顶的整平和精确校核,确保桩顶的垂直度和水平度。
四、安全措施1. 施工现场要设置明显的警示标志,建立健全的安全管理制度。
2. 施工人员必须经过岗前培训,熟悉作业规程和安全操作流程。
3. 施工人员必须佩戴相应的安全防护装备,并严格遵守施工现场的安全操作规定。
4. 定期检查和维护施工设备,确保设备的正常运行和安全使用。
5. 施工期间严禁私自调整和修改施工方案,任何问题必须及时上报和解决。
6. 高空作业必须严格遵守操作规程,确保施工人员的人身安全。
特大桥2。
5米大直径嵌岩桩施工技术方案本文为2.5米大直径嵌岩桩施工技术方案,针对工程重点编制详细有深度,附图丰富,值得参考!资料目录1.工程概况2。
施工准备3。
施工工艺4。
质量保证措施5。
施工总体部署6.安全保证措施•7。
环境保护措施内容简介【工程概况】结构形式为23×30+9×40+88+4×165+88+69+4×130+69+76+4×140+76+3×43+50m连续刚构,采用先整体后分离式断面,双幅布设,桥面宽度15.9m,采用单箱单室箱形截面,直腹板形式,并且全桥箱梁采用三向预应力体系,梁体采用C55号砼,主墩采用单薄壁空心墩,截面形式4。
5×7.9m,墩高最高达76。
2m。
,基础采用钻孔灌注桩基础,54#左幅桥台采用柱式台、桩基础,54#右幅桥台U型桥台、扩大基础。
工程地质:地层上部为全新统、上更新统冲洪积层的砂土、砂粘土及砂砾土,下部为三叠统的粉砂岩及砂岩。
【重点施工方案】一冲击钻成孔1、测量放样;2、护筒制作和埋设护筒;3、成孔工艺;4、泥浆与清孔;5、钢筋笼制作及安装;6、灌注;施工过程中可能出现的情况以及处理措施(砼堵管的原因及处理;钢筋笼上浮处理措施)二人工挖孔桩施工1、测量放样及定桩位;2、孔口护圈浇筑或砌筑;3、开挖桩孔土方;4、桩基中心位置检测;5、放置附加钢筋、支护壁模板;6、浇筑第一节护壁混凝土;7、安装垂直运输架;8、安装卷扬机;9、安装活底吊桶、活动盖板、照明、水泵及通风机;10、开挖、吊运第二节段桩孔土方;11、放置附加钢筋、支护壁模板;12、浇筑第二节护壁混凝土;13、依次往下循环作业;14、检查验收;15、钢筋制作、安装;16、安装串筒或导管;17、灌注水下或普通混凝土;18、桩成品检测、验收;19、挖孔爆破施工;20、季节性施工施工过程中可能出现的情况以及处理措施(塌孔处理;流砂、涌水洞的处理;堵管的原因及处理;钢筋笼上浮处理措施)含:施工进度计划横道图、工艺流程图等相关图表五瓣式冲击钻头内风管吸泥法示意图泥浆泵清孔示意图桩基砼灌注胎架示意图。
大直径嵌岩桩施工勘察孔深的确定
标准化管理部编码-[99968T-6889628-J68568-1689N] 大直径嵌岩桩施工勘察孔深的确定 一、概述 近几年随着经济的高速发展,城市内土地资源的稀缺,越来越多的建构筑物需要在各类基岩裸露或埋藏较浅的地区进行开发建设,而在此地区内,大直径嵌岩桩基础有较广泛的应用。我国幅员辽阔,地质地貌类型多样,对于一些特殊基岩埋藏区,如岩溶、孤石发育区,桩基开挖前需要进行施工勘察,以查明桩底的详细地质情况。 根据统计资料,我国碳酸盐岩裸露分布区面积约130km2,埋藏分布区面积约70km2,花岗岩类岩石出露面积约86km2,连同埋藏分布区面积也在100km2以上,二者分布面积合计达我国疆域面积的1/3。因此,在这些地区进行的大直径嵌岩桩施工勘察工作有着广阔的前景。 二、嵌岩桩施工勘察孔深确定的一般性原则 施工勘察的中心问题,就是对勘察钻孔深度的确定。一般来说,钻孔深度d由岩面深度d0、嵌岩深度h、桩底稳定层厚度d1、抗冲切/倾覆调整深度d2及桩顶预留浮动深度d3加和而成,即: d=d0+h+d1+d2+d3
(1)岩面深度d0一般为中~微风化基岩的稳定岩面,随钻孔实际情况确
定;孤石、溶洞、互层发育的地区,d0应为穿过上述不稳定体的稳定岩层顶面。对于一桩多孔的施工勘察,d0应取各孔稳定岩面深度的最大值,并应考虑孔口高程的起伏影响。 (2)嵌岩深度h可按《建筑桩基技术规范》第第二条规定:“对于嵌岩桩,嵌岩深度应综合荷载、上覆土层、基岩、桩径、桩长诸因素确定;对于嵌入倾斜的完整和较完整岩的全断面深度不宜小于 且不小于,倾斜度大于30%的中风化岩,宜根据倾斜度及岩石完整性适当加大嵌岩深度;对于嵌入平整、完整的坚硬岩和较硬岩的深度不宜小于,且不应小于。” (3)桩底稳定层厚度d1按《岩土工程勘察规范》条规定:“勘探孔的深度应符合下列规定:……对大直径桩,不得小于5m……对嵌岩桩,应钻入预计嵌岩面以下3~5d,并穿过溶洞、破碎带,到达稳定地层。”但该规范描述略 有模糊,后附条文说明亦未予以说明。《高程建筑岩土工程勘察规范》条的2到5款对一般性基岩、花岗岩、岩溶及互层岩石均分条予以规定,具有较好的参考价值: “对一般岩质地基的嵌岩桩,勘探孔深度应钻入预计嵌岩面以下1d~3d,对控制性勘探孔应钻入预计嵌岩面以下3d~5d,对质量等级为Ⅲ级以上的岩体,可适当放宽;” “对花岗岩地区的嵌岩桩,一般性勘探孔深度应进入微风化岩3~5m,控制性勘探孔应进入微风化岩5~8m。” “对于岩溶、断层破碎带地区,勘探孔应穿过溶洞、或断层破碎带进入稳定地层,进入深度应满足3d,并不小于5m;” “具多韵律薄层状的沉积岩或变质岩,当基岩中强风化、中等风化、微风化岩层呈互层出现时,对拟以微风化岩作为持力层的嵌岩桩,勘探孔进入微风化岩深度不应小于5m。” 实际工作完全可参照此条目进行,但对于岩溶地区的嵌岩桩勘察,为更准确估计顶板安全厚度,后文将进行更精确的估算,为实际勘察提供有价值的参考。 (4)根据实际勘察经验,由于表层岩溶发育或差异风化强烈的导致基岩面起伏较大的场地,钻孔深度应根据邻近孔位或地区起伏度,适当予以加深。《建筑地基基础设计规范》的第六条规定:“当基础附近有临空面时,应验算向临空面倾覆和滑移稳定性。存在不稳定的临空面时,应将基础埋深加大至下伏稳定基岩;亦可在基础底部设置锚杆,锚杆应进入下伏稳定岩体,并满足抗倾覆和抗滑移要求。同一基础的地基可以放阶处理,但应满足抗倾覆和抗滑移要求”。 该条条文说明还提到:“基岩面起伏剧烈,高差较大并形成临空面是岩石地基的常见情况,为确保建筑物的安全,应重视临空面对地基稳定性的影响。”详细加深的尺度,后文将予以详细计算说明。 (5)由于钻探孔径相比桩径过小,在桩径范围内,基岩面会有一定量的起伏;而施工机具的限制使得实际桩基开挖施工中,桩顶总会有或多或少的超挖现象。因此,如经业主同意,实际钻探中应预留一定的浮动深度,防止超挖导致桩底剩余量不满足稳定层需要。在非岩溶发育地段,桩顶预留浮动深度d3一 般可取为;而在岩溶发育地段,此项深度可根据岩溶发育程度及桩径大小综合取值,如中等岩溶发育区、桩径左右可取为1m。 以上五条即为确定桩基施工勘察钻孔深度所应注意的事项,其中嵌岩深度h和桩顶预留深度d3较容易确定;而对于孤石、岩溶发育地区,岩面深度d0需根据实际钻探及区域地质情况综合确定;串珠型或顶板厚度较大岩溶地段,桩底稳定层厚度d1也需要一定的精确计算,以提供准确参考;抗冲切/倾覆调整深度d2也将在后文予以计算说明。 三、对嵌岩桩施工勘察中特殊问题的说明 花岗岩地区孤石发育的特点及岩面深度确定方法 孤石发育的特点 在花岗岩风化壳较厚的东部、南部地区,其全风化~强风化花岗岩层中,由于球状风化产生了大小各异的孤石。根据以往勘察经验,孤石发育一般具有以下特点,参见下图: 图 花岗岩地区孤石分布剖面示意图 (1)孤石多分布于强风化岩层中,其次为全风化及残积土中。 (2)孤石多发育于基岩面起伏较大的地段。如图中,②~③情况的孤石最常见,因为此处是基岩面起伏转折的地段,节理裂隙发育,岩体较破碎,易发育孤石。④~⑤情况的孤石厚度多较小,一般不大于1m,其分布的最高高度与区域微风化岩面最高处基本相当。 (3)孤石的揭示厚度一般较小,小于的孤石数量约占总数的80%以上。 (4)孤石一般仅发育一到二层,多层的极为少见。 (5)孤石中多为微风化岩石,少量中风化。一般较完整,岩芯呈圆柱状,裂隙发育少,成分以抗风化能力较强的粗~伟晶石英质为主。孤石的风化程度与周围岩土相比,常常会有较大的突变。 孤石与中~微风化基岩的区分 在有超前钻孔的桩位,钻孔穿过孤石后岩石的风化程度会增加,如由微风化变为强风化,则上部穿过的中~微风化地层就是孤石。实际冲孔施工中,即可根据超前钻孔数据穿越孤石。 若孤石厚度(直径)较大,钻孔在控制的深度内未穿过孤石,通过与区域剖面资料对比本孔中~微风化面也在合理范围内,若不考虑偏心作用,在保证桩底完整的情况下,该孤石上嵌岩桩的单桩承载力亦可以达到正常嵌岩桩的40%~80%。 对于未进行超前钻的桩位,根据孤石发育特点,孤石的判别将依赖于邻近地质资料与实际冲孔钻进感觉、取芯鉴别等综合的办法。详述如下: (1)邻近地质资料。根据超前钻及前期勘察资料,分析冲孔桩钻孔附近的微风化岩面埋深、起伏情况、岩脉发育及孤石特征,对孤石可能的分布情况有一个基本的理解。 (2)冲孔钻进情况。对于直径或厚度较小的孤石,冲孔施工基本可将小孤石砸碎、穿过或冲挤到桩外。对于稍大的孤石,其冲孔时钻进感觉与中~微风化基岩也有一定的区别,实际施工可进行相应加深。而对于较大的孤石,钻进感觉不明显时,可考虑其他综合鉴别办法。 (3)取芯鉴别。冲孔施工中对桩底岩芯的鉴定,分析其与已钻桩位岩芯的区别,结合前节所述孤石特点,尤其是风化程度突变的情况,应引起足够的注意。 上述对孤石的鉴别区分办法,对于大部分情况下是有效的、可行的,当然这也不能保证绝对的准确率。 超前钻勘察对孤石发育的应对措施 在超前钻勘察中应根据孤石发育特点,应有针对性的进行钻探。如果钻探中能按处理岩面起伏的情况加深钻孔,就可以避免对部分孤石的误判;同时在岩面起伏较大或孤石发育较多的区域,适当的增加入岩深度,就可以穿过大部分厚度较小的孤石。 实际勘察时,应特别注意孔底进入强风化层时的进尺快慢变化。如碰触较硬岩块时,应及时记录起止深度;进入中~微风化后,也应时刻注意进尺速度变化,若进尺突然加快,就应及时记录其深度,再综合岩芯、区域地层情况判断上部进尺慢速区是否为孤石。 若某地段已有钻孔揭示的孤石较多,就应考虑于此区域加密钻孔甚至进行一桩一探。 、溶洞(槽)或溶蚀破碎带对桩基施工的影响 岩溶发育区岩面深度d0的确定 在岩溶发育地区,岩面深度d0应为穿越溶洞(槽)或溶蚀破碎带后进入稳定中~微风化岩层的深度,详细情况如下: (1)溶洞:所需穿越溶洞一般为顶板厚度小于安全厚度的溶洞,在无经验时,此安全厚度可取为3倍桩径且不小于5m,后文亦将进行更精确计算。 (2)溶槽一般为基岩面附近的浅层溶洞,其在钻孔线坐标显示为溶洞,而在空间上实际为深凹的溶沟、溶穴。溶槽一般需在剖面图上确认,其上岩层一般不能作为桩基持力层。 (3)溶蚀破碎带是钻进中进尺快、取芯率低且响声大的层段,实际形态一般为溶隙、溶洞(槽)侧壁或石芽发育区,也可能是断层经过的地段。连续的溶蚀破碎带常与串珠型溶洞相间伴生分布。在剖面图上,基岩面附近连续的厚层溶蚀破碎带往往是石芽发育区,该地段桩位破碎带厚度无论大小一般均应按最厚层考虑。 岩溶发育区桩底稳定层厚度d1的确定 此项安全厚度不仅应用于确定串珠型溶洞区持力层的层位,对于未见溶洞钻孔,也应按孔底即将出现溶洞来考虑终孔条件,二者的区别仅是对计算溶洞跨度的确定。 一般所需评价的溶洞顶板和支座岩层均比较完整,厚度较大,强度较高,可按单跨梁评价其稳定性。 按照抗弯强度验算,其安全厚度H需满足下列关系式: 式中,σ为岩体的允许抗弯强度,灰岩一般为其允许抗压强度的倍;b为梁宽度,取为单位宽度;K为岩体稳定性计算安全系数,一般取。 弯矩M的计算分以下几种情况:当顶板跨中有裂隙,两支座处岩石坚固时,按悬臂梁计算端部所受弯矩,即M=1/2PL2;当顶板较完整,但两端支座处岩层有裂隙与洞壁不成整体,可按简支梁计算弯矩,即M=1/8PL2;当顶板和洞壁岩层均较完整且成一体,可按两端固定梁计算弯矩,即M=1/12PL2 。(P为顶板所受总荷重,包括顶板厚为H的岩体自重、顶板上部所留土层的重量、顶板上附加荷载;L为按支座间或支座至跨中裂隙的距离。)