以二羧酸为载体水基润滑添加剂的合成与性能研究
- 格式:pdf
- 大小:545.05 KB
- 文档页数:5
理论探讨第41卷第2期皮革与化工Vol.41No.22024年4月LEATHER AND CHEMICALSApr.2024收稿日期:2024-03-16作者简介:陈华(1967-),男,汉族,毕业于成都科技大学,从事皮革化学品的研发工作30余年。
闵峰(1977-),男,汉族,巴克曼实验室化工(上海)有限公司皮革技术部技术经理,研究方向:皮革前段及复鞣材料应用。
高固含量聚丙烯酸乳液的合成与应用陈华,闵峰(巴克曼实验室化工(上海)有限公司,上海201707)摘要:探索合成固含量在50%以上的丙烯酸酯乳液,以甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸、苯乙烯、丙烯腈,丙烯酸丁酯、丙烯酸异辛酯等为混合单体,以K 12和S-90作为复合乳化剂,以过硫酸铵为引发剂制取聚丙烯酸酯乳液。
通过改变预乳化的水量及控制条件、引发剂的用量、固含量的高低等条件进行多组实验,以探索各影响因素对乳液性能的影响,并筛选其最佳合成条件。
实验还通过在乳液聚合完成之后,通过加入氧化还原体系引发剂,来处理乳液中的残留单体,筛选出各体系下氧化剂和还原剂的最佳用量比。
实验发现采用还原剂FF6M 和70%叔丁基过氧化氢氧化还原体系,当FF6M 占乳液质量的比值约为0.2%,70%叔丁基过氧化氢占乳液质量的比值约为0.2%时,效果最佳。
关键词:乳液聚合;聚丙烯酸酯乳液;氧化还原中图分类号:TQ433.4+36文献标识码:A文章编号:1674-0939(2024)02-0022-04The Synthesis of the Polyacrylic Emulsionwith High Solid ContentCHEN Hua,MIN Feng(Buckman Laboratories (Shanghai)Chemicals Co.,Ltd.,Shanghai 201707,China )Abstract:Acrylic adhesive with solid content over 50%was synthesized by using MMA,EA,AA,ST,AN,BA,2-Ethylhexyl acrylate as mixed monomers,K 12and S-90as complex emulsifier,ammonium persulfate as initiator.By changing the amount of water and control conditions of pre-emulsification,the amount of initiator,the level of solid content and other conditions,the paper explored the influence of various factors on the properties of emulsion,and screened the best synthesis conditions.After the emulsion polymerization,the experiment also added redox system initiator to deal with the residual monomer of the acrylic emulsion,and screened out the best use ratio of oxidizing and reducing agents in the various systems.Taking FF6M and TBHP-70oxidation and reduction system,the best results were obtained when the ratio of FF6M to the emulsion mass was about 0.2%and that of 70%tert-butylhydrogen peroxide was about 0.2%.Key words:polymerization;acrylic emulsion;oxidation and reduction 高固含量低黏度(300~1000mPa ·s)聚合物乳液与固含量40%~50%以下通常的乳液相比,具有生产效率高、运输成本低、成膜干燥快、运输及储存成本低以及对环境污染小等优点,因此高固含量丙烯酸乳液广泛应用于工业领域,如压敏胶黏合剂、纸张复合胶黏剂、塑木复合胶黏剂、木材胶黏剂、建筑胶黏剂、纺织及皮革胶黏剂、汽车胶黏剂等,具有广阔的发展前景[1,2]。
《精细化工实验》指导书辽宁石油化工大学化学化工与环境学部石油化工实验教学中心2017年3月目录实验一雪花膏的制备 (1)实验二阿司匹林的制备 (3)实验三氧化铁红的制备 (5)实验四浴用香波的制备 (7)实验五从植物中提取天然香料 (9)实验六香料苯甲醇的合成 (11)实验七N,N-二甲基十二烷胺的合成 (13)实验八增塑剂邻苯二甲酸二丁酯的合成 (15)实验九聚醋酸乙烯酯的乳液聚合 (17)实验十醋酸乙烯涂料的配制 (19)实验十一食品抗氧剂TBHQ的合成 (21)实验十二天然皂的制备 (23)实验十三苯乙酮的合成 (25)实验十四十二烷基二甲基苄基氯化铵的合成 (26)实验十五间硝基苯胺的合成 (27)实验十六对硝基苯甲酸的合成 (29)实验十七间二硝基苯的合成 (30)实验十八椰子油烷基二乙醇酰胺的制备 (32)附录:常用仪器设备的使用方法 (34)实验一雪花膏的制备一、实验目的1. 了解乳化原理;2. 掌握配方原理和配方中各原料的作用。
二、实验原理一般雪花膏是以硬脂酸和碱化合成硬脂酸盐作为乳化剂,加上其它的原料配制而成。
它属于阴离子型乳化剂,为基础的油/水乳化体系,是一种非油腻性护肤用品,敷在皮肤上,水分蒸发后就留下一层硬脂酸、硬脂酸皂和保湿剂所组成的薄膜,于是皮肤与外界干燥空气隔离,控制皮肤表皮水分的过量挥发,使反肤不致干燥、粗糙或开裂,起到保护皮肤的作用。
也可以在配方中加入一些可被皮肤吸收的营养物质。
雪花膏中含有的保湿剂可制止皮肤水分的过快蒸发从而调节和保持角质层适当的含水量,起到使皮肤表皮柔软的作用。
我国轻工业部雪花膏的理化指标要求包括:膏体耐热,耐寒稳定性,微碱性小于等于8.5,微酸性pH为4-7;感官要求包括:色泽,香气和膏体结构(细腻,擦在皮肤上应润滑,无面条状,无刺激)。
三、实验主要仪器设备和试剂电动搅拌器、加热套、电子天平、烧杯、温度计。
三压硬脂酸、单硬脂酸甘油酯、十六醇、甘油、氢氧化钾、香精、防腐剂、pH试纸。
第 4 期第 183-191 页材料工程Vol.52Apr. 2024Journal of Materials EngineeringNo.4pp.183-191第 52 卷2024 年 4 月两性离子-阴离子双交联P(AAm-co-AAc-co-SBMA-co-AMPS)/Fe3+水凝胶的摩擦学性能研究Tribological properties of zwitterionic-anionicdual-crosslinked P(AAm-co-AAc-co-SBMA-co-AMPS)/Fe3+ hydrogel李子恒1,王斌斌1,尤德强1,李卫1,王小健1,2*(1 暨南大学先进耐磨蚀及功能材料研究院,广州 510632;2 暨南大学韶关研究院,广东韶关 512029)LI Ziheng1,WANG Binbin1,YOU Deqiang1,LI Wei1,WANG Xiaojian1,2*(1 Advanced Wear & Corrosion Resistant and Functional Materials,Jinan University,Guangzhou 510632,China;2 Shaoguan ResearchInstitute of Jinan University,Shaoguan 512029,Guangdong,China)摘要:水凝胶是一种理想的软骨修复材料,但目前很难有人工材料能实现软骨的超低摩擦因数。
使用两性离子单体[2-(甲基丙烯酰氧基)乙基]二甲基-(3-磺丙基)(SBMA)和阴离子单体2-丙烯酰氨基-2-甲基丙磺酸(AMPS)合成一种两性离子-阴离子双交联P(AAm-co-AAc-co-SBMA-co-AMPS)/Fe3+水凝胶。
在水和PBS中进行摩擦学测试,以评估两性离子和阴离子基团对摩擦因数(CoF)的影响。
结果表明:SBMA和AMPS引入的物理交联点可以提高水凝胶的抗压强度,在水中实现了较低CoF(0.04);此外,在PBS中观察到CoF进一步降低至0.015,CoF的降低是由于水凝胶在PBS中浸泡产生的高度水合上层所造成的。
1绪论Q1.总结高分子材料(塑料和橡胶)在发展过程中的标志性事件:(1)最早被应用的塑料(2)第一种人工合成树脂(3)是谁最早提出了高分子的概念(4)HDPE和PP的合成方法是谁发明的(5)是什么发现导致了近现代意义橡胶工业的诞生?1.(1)19世纪中叶,以天然纤维素为原料,经硝酸硝化樟脑丸增塑,制得了赛璐珞塑料,被用来制作台球。
(2)1907年比利时人雷奥·比克兰德应用苯酚和甲醛制备了第一种人工合成树脂—酚醛树脂(PF),俗称电木。
(3)1920年,德国化学家Dr.Herman.Staudinger首先提出了高分子的概念(4)1953年,德国K.Ziegler以TiCl4-Al(C2H5)3做引发剂,在60~90℃,0.2~1.5MPa条件下,合成了HDPE;1954年,意大利G.Natta以TiCl3-AlEt3做引发剂,合成了等规聚丙烯。
两人因此获得了诺贝尔奖。
(5)1839年美国人Goodyear发明了橡胶的硫化,1826年英国人汉考克发明了双辊开炼机,这两项发明使橡胶的应用得到了突破性的进展,奠定了现代橡胶加工业的基础。
Q2.树脂、通用塑料、工程塑料的定义。
化工辞典中的树脂定义: 为半固态、固态或假固态的不定型有机物质, 一般是高分子物质, 透明或不透明。
无固定熔点, 有软化点和熔融范围, 在应力作用下有流动趋向。
受热、变软并渐渐熔化, 熔化时发粘, 不导电, 大多不溶于水, 可溶于有机溶剂如乙醇、乙醚等, 根据来源可分成天然树脂、合成树脂、人造树脂, 根据受热后的饿性能变化可分成热定型树脂、热固性树脂, 此外还可根据溶解度分成水溶性树脂、醇溶性树脂、油溶性树脂。
通用塑料: 按塑料的使用范围和用途分类, 具有产量大、用途广、价格低、性能一般的特点, 主要用于非结构材料。
常见的有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)。
工程塑料:具有较高的力学性能, 能够经受较宽的温度变化范围和较苛刻的环境条件, 并在此条件下长时间使用的塑料, 可作为结构材料。
摘要由于工业用水循环使用过程中的不断浓缩造成水中矿物质含量增加,给管道和设备带来了腐蚀问题,需要投加缓蚀剂以保证循环水系统的正常运行。
聚合物缓蚀剂是缓蚀剂中最重要的一种。
然而,目前应用于工业中的缓蚀剂,大多数是生产过程有毒的环境非友好型的化学品,这与提出的“绿色化学”的理念相悖。
因此,研制生产过程清洁,对环境无毒无害的缓蚀剂是当前国内外研究开发的重点。
水解聚马来酸酐过去一直采用有机溶剂法制备,其工艺存在反应周期长,需要大量的溶剂和昂贵的引发剂,产品成本高,溶剂回收困难,对环境有污染等缺点。
本文针对水解聚马来酸酐传统生产工艺的缺点,以水为溶剂,过氧化氢为引发剂,硫酸亚铁为催化剂的作用下,合成了水解聚马来酸酐。
同时通过设计正交实验对HPMA合成条件进行了优化,得到了最佳合成条件:聚合反应温度为120℃,马来酸酐用量为40g,蒸馏水用量为30ml,催化剂用量为0.0300g,引发剂用量为30ml。
在此条件下合成产品的固体含量为最大。
利用红外光谱对所合成的产品进行了表征,发现谱图上具有HPMA的特征基团的波长。
利用静止挂片失重法研究HPMA在标准腐蚀实验水中对A3钢和黄铜均有较好的缓蚀作用,基本上可以作为工业循环水中的缓蚀剂使用;同时采用极化曲线对HPMA的缓蚀性能和机理进行了研究,从实验数据分析出:HPMA对A3钢和黄铜均有较好的耐点蚀作用,而HPMA对A3钢和黄铜有阴极缓蚀作用。
关键词绿色化学缓蚀剂水解聚马来酸酐AbstractThe corrosion of equipments and pipelines is caused by the mineral content increased in the industrial circulating water, which has been circulated to use and concentrated. For evenly normal operation, corrosion inhibitors should be applied in the circulating water system. Polymer corrosion inhibitors are a most important kind in all corrosion inhibitors. Then, the most corrosion inhibitors applied in the industry are the chemical substances, which contain poisonous in the production process and non-environmental-protection chemicals at present. The phenomenon is contrary to the view of green chemistry put forward recently. So it is current orientation to research and develop the corrosion inhibitors, which are yielded clearly and Environmental protection corrosion inhibitors at homed and aboard.Hydrolyzed poly maleic anhydride(HPMA)was produced in an organic solvent in the presence of an oil-soluble polymerization initiator at industrial scale. However, this process had disadvantages as following: it needed long period time, high production cost because it needed a great deal of organic solvent and expensive oil-soluble initiating agent and causing severely environmental pollution and having potential fire dangers and so on. To overcome these problems, HPMA was Synthesized in water as the only polymerization medium in the presence of iron (Ⅱ)sulfate as catalyst, by the aid of hydrogen peroxide as the polymerization initiator. At the same time, orthogonal experiment was adopted to optimize the technical conditions of synthesis process. The optimal synthesis condition are as followings: polymeric reaction temperature 120℃, the dosage of maleic anhydride 40g,the dosage of distilled water30ml,the dosage of catalyst 0.0300g, the dosage of initiating agent 30ml. In this condition, solid content of synthesis product was the largest one. Synthesis product was analyzed by infrared spectrum, and the result states that the product has characteristics with HPMA group of wavelengths.HPMA has certain corrosion inhibition performance to the A3 steel and brass in the standard experimental water by static coupon test. So it would be applied in the industrial circulating water. At the same time, the mechanism and corrosion inhibit- tors performance are researched with polarization curve. From theexperimental data, we can draw the conclusion that HPMA has the pitting resistance effect on A3 steel and brass, and cathode inhibition influence on A3 and brass.Key words green chemistry corrosion-inhibitorhydrolyzed poly maleic anhydride目录摘要 (I)Abstract (II)第1章绪论 (1)1.1课题背景 (1)1.2工业循环水中缓蚀剂的简介 (3)1.2.1缓蚀剂的定义和特点 (3)1.2.2缓蚀剂的分类 (3)1.2.3缓蚀剂的作用机理 (6)1.2.4缓蚀剂的研究方法 (8)1.2.5缓蚀剂的开发方向 (9)1.3水解聚马来酸酐的合成及应用简介 (10)1.3.1水解聚马来酸酐的性能 (10)1.3.2水解聚马来酸酐的合成方法 (11)1.3.3水解聚马来酸酐的应用 (13)1.3.4水解聚马来酸酐的发展前景 (15)1.4论文的主要工作 (15)第2章水解聚马来酸酐的合成 (16)2.1实验目的 (16)2.2实验药品及仪器 (16)2.2.1实验药品 (16)2.2.2实验仪器 (16)2.3实验原理 (17)2.4实验步骤 (17)2.5正交实验设计 (17)2.6产品固体含量的测定 (19)2.6.1实验目的 (19)2.6.2实验原理 (19)2.6.3实验仪器 (19)2.6.4实验方法 (19)2.7实验结果及分析 (20)2.7.1合成实验现象总结 (20)2.7.2固体含量测定结果分析 (20)第3章水解聚马来酸酐的红外光谱 (24)3.1实验目的 (24)3.2实验原理 (24)3.3实验仪器 (24)3.4实验步骤 (24)3.5实验结果及分析 (24)第4章水解聚马来酸酐缓蚀性能的研究 (26)4.1静止挂片失重法研究水解聚马来酸酐缓蚀性能 (26)4.1.1实验目的 (26)4.1.2实验原理 (26)4.1.3实验药品及仪器 (27)4.1.4实验条件 (27)4.1.5实验步骤 (28)4.1.5实验结果及分析 (29)4.2极化曲线法研究水解聚马来酸酐的缓蚀性能 (30)4.2.1实验目的 (30)4.2.2实验原理 (30)4.2.3实验仪器和实验条件 (31)4.2.4实验步骤 (32)4.2.5实验结果及分析 (32)结论 (43)致谢 (44)参考文献 (45)附录1中文译文 (47)附录2外文文献 (55)第1章绪论1.1课题背景水是人类赖以生存的基本条件,近年来随着人口的迅速增加和现代工业的高速发展,造成了世界水危机的加剧,因此必须保护水体环境,合理节约用水,提高工业用水的重复利用率。
各种耐油橡胶介绍耐油性通常指耐非极性油类:燃油,矿物油和合成润滑油。
<br>橡胶按照耐油性分类(极性橡胶):CR,NBR,HNBR,ACM,AEM,CSM,FKM,FMVQ,CO,PUR。
不耐油性橡胶分类(非极性橡胶):NR,IR,BR,SBR,IIR,EPR,EPDM。
耐燃油性:氟橡胶FKM 和氟硅橡胶FMVQ对燃料油的抗耐性最好。
而氯丁橡胶和氯化聚乙烯橡胶CPE 耐燃油性最差。
丁晴橡胶的耐燃油性随丙烯晴含量增加而提高。
氯醇橡胶的耐燃油性比丁晴橡胶好。
耐混合燃油性:氟硅橡胶FMVQ和氟橡胶FKM 对混合燃料油的抗耐性最好。
丙烯酸酯橡胶耐耐混合燃油性最差。
丁晴橡胶的耐混合燃油性随丙烯晴含量增加而提高。
含氟量高的氟橡胶对混合燃油的稳定性较好。
耐酸性氧化燃油性:对酸性氧化燃油来说,酸性氧化燃油中的氢过氧化物可使硫化胶的性能恶化,所以在燃油系统中常用的丁晴橡胶,氯醇橡胶难以满足长期使用的要求。
只有含氟弹性体如氟橡胶FKM ,氟硅橡胶FMVQ,氟化磷晴和氢化丁晴橡胶性能较好。
普通的丁晴橡胶胶料,不能在125度的酸性汽油中长时间工作。
只有采用氧化镉活化的低硫-给硫体以及白碳黑为主要原料的丁晴橡胶,才能较好的耐酸性汽油。
增加丙烯晴的含量,可使酸性汽油的渗透性降低。
耐矿物油性:丁晴橡胶是常用的耐矿物油橡胶。
丁晴橡胶的耐矿物油性随丙烯晴含量增加而提高。
但高丙烯晴含量的丁晴橡胶耐热性有限。
当油温达到150度时,应该采用氢化丁晴橡胶,氟橡胶FKM,氟硅橡胶FMVQ和丙烯酸酯橡胶。
油温达到150度时,氟橡胶FKM,氟硅橡胶FMVQ效果最好。
但成本高,为降低成本,可以在氟橡胶FKM中并入50%以下的丙烯酸酯橡胶,并用后的硫化胶性能下降不大于20%。
丙烯酸酯橡胶耐矿物油性好于丁晴橡胶.丙烯酸乙酯型的橡胶丙烯酸酯橡胶的耐热油性,比丙烯酸丁酯型的橡胶好。
耐合成润滑油性:相似相溶原则:极性聚合物溶于极性溶剂,非极性聚合物溶于非极性溶剂三元乙丙橡胶属于氢类橡胶,在氢类油中极度膨胀,硅橡胶在硅油中,氟橡胶在全氟带氢液体中,都出现很大的体积膨胀。
常用润滑油添加剂的代号与名称对照常用润滑油添加剂的代号与名称对照:T101 101 清净剂低碱值石油磺酸钙T102 102 清净剂中碱值石油磺酸钙T103 103 清净剂高碱值石油磺酸钙T104 104 清净剂低碱值合成磺酸钙T105 105 清净剂中碱值合成磺酸钙T106 106 清净剂高碱值合成磺酸钙T106A 106A 清净剂高碱值合成磺钙T107 107 清净剂超碱值合成磺酸镁T108 108 清净剂硫磷化聚异丁烯钡盐T108A 108A 清净剂硫磷化聚异丁烯钡盐T109 109 清净剂烷基水杨酸钙T111 111 清净剂环烷酸镁T114 114 清净剂高三值环烷酸钙T121 121 清净剂中碱值硫化烷基酚钙T122 122 清净剂高三值硫化烷基酚钙T151 151 分散剂单烯基丁二酰亚胺T152 152 分散剂双烯基丁二酰亚胺T153 153 分散剂多烯基丁二酰亚胺T154 154 分散剂聚异丁烯丁二酰亚胺(高氮)T155 155 分散剂聚异丁烯丁二酰亚胺(低氮)T201 201 抗氧抗腐剂硫磷烷基酚锌盐T202 202 抗氧抗腐剂硫磷丁辛基锌盐T203 203 抗氧抗腐剂硫磷双辛基碱性锌盐T203A 203A 抗氧抗腐剂硫磷双辛基碱性锌盐T204 204 抗氧抗腐剂硫磷二烷基锌盐T205 205 抗氧抗腐剂硫磷二烷基锌盐T301 301 极压抗磨剂氯化石蜡T304 304 极压抗磨剂酸性亚磷酸二丁酯T305 305 极压抗磨剂硫磷酸含氮衍生物T306 306 极压抗磨剂磷酸三甲酚酯T307 307 极压抗磨剂硫代磷酸胺盐T308 308 极压抗磨剂异辛基酸性磷酸酯十八胺盐T309 309 极压抗磨剂硫代磷酸三茜酸T321 321 极压抗磨剂硫化异丁烯T322 322 极压抗磨剂二苄基二硫化物T323 323 极压抗磨剂氨基硫代酯T341 341 极压抗磨剂环烷酸铅T351 351 极压抗磨剂二丁基二硫代氨基甲酸钼T352 352极压抗磨剂二丁基二硫代氨基甲酸锑T353 353极压抗磨剂二丁基二硫代氨基甲酸铅T361 361极压抗磨剂硼酸盐极压抗磨剂硼化油酰胺极压抗磨剂A-型有机铜化合物极压抗磨剂磷酸三(2,3-二氯丙烷)酯WH-E 有机硫化物T401 401 油性剂硫化鲸鱼油T402 402 油性剂二聚酸T403 403 油性剂油酸乙二醇酯T403A 403A 油性剂油酸乙二醇酯T404 404 油性剂硫化棉籽油T405 405 油性剂硫化烯烃棉籽油-1T405A 405A 油性剂硫化烯烃棉籽油-2T406 406 油性剂苯骈三氮唑脂肪酸胺盐油性剂亚磷酸三苯脂油性剂磷酸三乙酯油性剂油酸丁酯油性剂硬脂酸丁脂油性剂苯二甲酸二辛酯油性剂风吹菜油油性剂油酸油性剂SOS 油性剂油性剂SOAE 油性剂T451 451 摩擦改进剂磷酸酯T461 461 摩擦改进剂硫磷酸钼摩擦改进剂油酸环氧酯减摩剂FJM-1型节能材料减摩剂异氰尿酸三聚氰铵减摩剂TRIWON节能减摩剂减摩剂有机钼节能减摩剂减摩剂有机硼节能减摩剂减摩剂GRT 节能减摩剂减摩剂YGC 节能减摩剂减摩剂SAI 同T501 501 抗氧剂2,6 二叔丁基对甲酚T502 502 抗氧剂2,6- 二叔丁基混合酯T511 511 抗氧剂4,4- 亚甲基双(2,6- 二叔丁基酚)T521 521 抗氧剂2,6- 二叔丁基-α二甲氨基对甲酚T531 531 抗氧剂N- 苯基-α萘胺T532 532 含苯三唑衍生物复合剂抗氧剂四[β(3,5-二叔丁基-4-羟基苯基丙)酸]季戊四醇酯抗氧剂β- (3,5-叔丁基-4-m羟基苯基丙)酸十八碳醇酯抗氧剂硫化氨基甲酸锌抗氧剂二酚基丙烷T551 551 金属减活剂噻二唑衍生物T561 561 金属减活剂噻二唑衍生物T601 601 粘度指数改进剂聚乙烯基正丁基醚T602 602 粘度指数改进剂聚甲基丙烯酸酯T603 603 粘度指数改进剂聚异丁烯T603A 603A 粘度指数改进剂聚异丁烯T603B 603B 粘度指数改进剂聚异丁烯T603C 603C 粘度指数改进剂聚异丁烯T603D 603D 粘度指数改进剂聚异丁烯T611 611 粘度指数改进剂乙丙共聚物T612 612 粘度指数改进剂乙丙共聚物(6.5%)T612A 612A 粘度指数改进剂乙丙共聚物(8.5%)T613 613 粘度指数改进剂乙丙共聚物(11.5%)T614 614 粘度指数改进剂乙丙共聚物(13.5%)T631 631 粘度指数改进剂聚丙烯酸酯粘度指数改进剂丁二酰亚胺乙丙共聚物粘度指数改进剂分散型乙丙共聚物粘度指数改进剂苯乙烯-双烯共聚物T621/622 粘度指数改进剂分散型乙丙共聚物(高/低氮)粘度指数改进剂顺丁橡胶粘度指数改进剂无规聚丙烯粘度指数改进剂聚异丁烯T701 701 防锈剂石油磺酸钡T701B 防锈剂合成磺酸钡防锈剂重烷基苯磺酸钡T702 702 防锈剂石油磺酸钠T702A 防锈剂合成磺酸钠防锈剂重烷基苯磺酸钠T703 703 防锈剂十七烯基咪唑啉烯基丁二酸盐T704 704 防锈剂环烷酸锌T705 705 防锈剂二壬基萘磺酸钡盐T706 706 防锈剂苯骈三氮唑T707 707 防锈剂合成磺酸镁T708 708 防锈剂烷基磷酸咪唑啉盐T743 743 防锈剂氧化石油脂钡皂T746 746 防锈剂烯基丁二酸酯防锈剂烯基丁二酸酯防锈剂羊毛脂镁皂防锈剂失水山梨糖醇单油酸酯防锈剂油酸三乙醇胺酯防锈剂磺化蓖麻油防锈剂蓖麻酯钾防锈剂三古丁胺防锈剂羊毛脂防锈剂T8-MC防锈润滑剂防锈剂CY-11水溶性防锈剂T801 801 降凝剂烷基萘T803 803 降凝剂聚α烯烃T803A 803A 降凝剂聚α烯烃-1T803B 803B 降凝剂聚α烯烃-2T805 805 降凝剂聚α烯烃-3T806 806 降凝剂α- 烯烃4T814 814 降凝剂聚丙烯酸酯T901 901 抗泡剂甲基硅油T911 911 抗泡剂丙烯酸与醚共聚物T912 912 抗泡剂丙烯酸与醚共聚物EL 系列抗泡剂蓖麻油聚氧乙烯醚T1001 1001 抗乳化剂胺与环氧化物缩合物T1002 1002 抗乳化剂环氧乙烷、丙烷嵌段聚醚抗乳化剂聚环氧乙烷-环氧丙烷醚平平加乳化剂脂肪醇聚氧乙烯醚OP 系列乳化剂烷基酚聚氧乙烯醚NP 系列乳化剂壬基酚聚氧乙烯醚乳化剂磺化油DIH乳化剂磺化油乳化剂山梨糖醇酐单油酸酯T代表:添加剂T1XX: 代表清净剂,指磺酸盐系列产品,包括:石油磺酸盐(T101,T103);合成磺酸盐(T104等)T11X: 代表酚盐系列添加剂T15X--T16X: 代表分散剂T3XX: 代表挤压抗磨剂,例如:T301, T307, T321T20X: 代表抗氧抗磨,抗腐剂:例如:T202T40X: 代表摩擦改进剂,油性剂;例如:T405,T406T5XX: 代表抗氧剂T6XX: 代表粘度指数改进剂;例如:T601,T602,T603,T611,T615,T618T7XX: 代表防锈剂T8XX: 代表降凝剂T9XX: 代表抗泡剂T12XX: 代表金属钝化剂1.值得提出的是添加剂也不是万能的,它不能使劣质油品变成优质油品,添加剂只是提高油品质量的主要因素之一。
超高碱值润滑油磺酸钙清净剂的一步法合成工艺洪新;曹宇;丁世洪;赵欢;唐克【摘要】以国内和国外混合的重烷基苯磺酸、基础油、氢氧化钙、氧化钙为原料,甲苯为溶剂,甲醇为主促进剂及几种助促进剂,采用一步法工艺成功合成了超高碱值润滑油磺酸钙清净剂,考察了原料的加入量、促进剂种类、二氧化碳通入量以及通入速率等因素对产品各技术指标的影响.结果表明,较佳工艺条件为:基础油120g、氢氧化钙100 g、甲醇26 g、促进剂T、二氧化碳通入速率250 mL/min、通入量27 L.【期刊名称】《精细石油化工》【年(卷),期】2015(032)006【总页数】5页(P59-63)【关键词】一步法;超高碱值;磺酸钙;清净剂【作者】洪新;曹宇;丁世洪;赵欢;唐克【作者单位】辽宁工业大学化学与环境工程学院,辽宁锦州121001;锦州康泰润滑油添加剂股份有限公司,辽宁锦州,121001;潍坊医学院药学院,山东潍坊261053;辽宁工业大学化学与环境工程学院,辽宁锦州121001;辽宁工业大学化学与环境工程学院,辽宁锦州121001【正文语种】中文【中图分类】TE624.8+2润滑油被喻为“维持机械正常运转的血液”[1]。
润滑油中对其理化性能指标起主要作用的是添加剂,包括抗磨剂、抗氧剂、清洁剂、分散剂、极压剂等多种添加剂,其中清净剂占据主导地位,它的作用是可以使润滑油在低温条件下快速分散,在高温条件下增加其清净性能[2]。
随着新环保法规的出台,为了降低氮氧化合物的排放,重负荷的柴油机采用了废气再循环(EGR)系统,使得油缸中产生了更多的烟炱和大量的酸性物质,这就对清净剂的总碱值(TBN)提出了更高的要求[3]。
超高碱值润滑油磺酸钙盐清净剂以其大于400mg/g的总碱值(KOH)、稳定的结构、低廉的价格越来越受到广大用户的青睐。
开发生产设备简单、产品性能优良、反应周期短的磺酸钙生产工艺是很有必要的。
笔者在前期工作中,成功的通过两步法合成了超高碱值润滑油磺酸钙清净剂,并详细考察了磺酸原料及配比对合成高碱值磺酸钙的影响[4-5]。
氯丙烯及其衍生物的制备和应用①梅群波,杜乃婴,吕满庚(中国科学院广州化学研究所广东省电子有机聚合物材料重点实验室,广东广州510650)摘 要:烯丙基氯是一类重要的化学原料,具有广泛的应用价值。
评述了烯丙基氯及其衍生物的合成方法和应用情况。
关键词:氯丙烯;衍生物;制备;应用中图分类号:TQ222.4+25 文献标识码:A 文章编号:1009-9212(2004)04-0001-07Preparation and Application of Allyl Chloride and its DerivatesM EI,Q un2bo,DU N ai2yi ng,L U M an2geng(Guangdong Key Laboratory of Polymer Materials for Electronics,Guangzhou Institute of Chemistry,Chinese Academy of Sciences,Guangzhou510650,China)Abstract:Allyl chloride is an important chemical material,having high potential for practical applications. The purpose of this article is to provide a comprehensive and critical review to the properties,preparation and application of allyl chloride and its derivates.K ey w ords:allyl chloride,derivate,preparation,application1 前言氯丙烯(Allyl chloride)又名烯丙基氯,32氯丙烯,为不饱和脂肪族氯代烃类化合物。
山苍籽核仁油的应用研究进展(Ⅱ)张敏【摘要】本文进一步综述了山苍籽核仁油的应用研究进展,如用山苍籽核仁油制生物柴油、脂肪酸、月桂酸甲酯、萤石浮选的捕收剂、N-月桂酰基乙二胺三乙酸等以及山苍籽核仁油在其他方面的一些应用.【期刊名称】《湖南科技学院学报》【年(卷),期】2010(031)012【总页数】4页(P45-48)【关键词】山苍籽核仁油;生物柴油;脂肪酸;N-月桂酰基乙二胺三乙酸【作者】张敏【作者单位】湖南科技学院,化学与生物工程系,湖南,永州,425100【正文语种】中文【中图分类】O621.3山苍籽树属于樟科木姜子属,其英文名为 Litsea cubeba 。
山苍籽树的别名有山鸡椒、山苍子、赛樟树、木姜子等。
山苍籽树为小乔木,果近球形,径约5毫米,成熟时黑色,花期2-3月,果期7-8月。
山苍籽主产于湖南、广西、福建、江西等地。
山苍籽为我国特有的香料植物资源之一,我国山苍籽油年产量达 5000余吨, 为世界上最大的生产国和出口国,年出口量达3500吨左右, 产品远销美、日、英、法、德、瑞士、荷兰等国,享誉国内外[1~7]。
长期以来,山苍籽的主要用途是提取其表皮精油,而核仁油合理利用较少。
山苍籽的核仁含有丰富的核仁油,干核仁含油在 18~25% 之间。
山苍籽核仁油由山苍籽果仁经压榨、浸取或蒸馏等方法得到,其主要成份是中碳脂肪酸甘油酯,占90%以上[8]。
由于山苍籽核仁油色泽很深,加上时有难闻气味,不利于它的进一步开发利用,大多数山苍籽在蒸出表皮油后都作为废物丢弃,既浪费了资源又污染了环境。
近年来国际市场上对椰子油的需求量急剧增大,价格极高,我国每年都要大量进口。
山苍籽核仁油主要成份与椰子油很相似,我国年产山苍籽约40万吨,可产山苍籽核仁油约10余万吨,开发利用山苍籽核仁油对山苍籽资源的综合利用和农民增收有着十分重要的意义。
前文[9]己对山苍籽核仁油的组成、山苍籽核仁油的脱色、山苍籽核仁油中提取月桂酸、山苍籽核仁油合成烷醇酰胺、山苍籽核仁油制牙膏发泡剂作了介绍,本文继续介绍山苍籽核仁油的其他用途。
一、概述多巴胺和邻苯二胺作为两种重要的有机化合物,在化学界有着广泛的应用。
在过去的几年中,它们被用于水热合成聚合物碳点的研究中备受关注。
聚合物碳点具有许多优异的性能,如荧光性能好、化学稳定性高、表面活性少等。
本文旨在对多巴胺和邻苯二胺水热合成聚合物碳点进行综述,以期为相关研究提供参考。
二、多巴胺和邻苯二胺的性质介绍1. 多巴胺多巴胺是一种氨基酸衍生物,其化学式为C8H11NO2,具有亲水性和亲油性,是一种重要的生物活性分子。
在水热合成聚合物碳点中,多巴胺通常作为还原剂和表面修饰剂使用。
2. 邻苯二胺邻苯二胺是一种重要的有机化合物,化学式为C6H4(NH2)2,具有良好的电子传输性能和氧化还原活性,是一种理想的合成碳点的前体物质。
三、多巴胺和邻苯二胺水热合成聚合物碳点的研究现状1. 合成方法多巴胺和邻苯二胺的水热合成聚合物碳点主要包括两种方法:一是在水溶液中加入适量的多巴胺和邻苯二胺,通过水热反应形成聚合物碳点;二是将多巴胺和邻苯二胺溶解在溶剂中,然后进行水热处理得到聚合物碳点。
2. 形貌结构多巴胺和邻苯二胺水热合成聚合物碳点的形貌结构通常表现为纳米球状或片状结构,具有均匀的粒径和较高的比表面积。
3. 荧光性能研究表明,多巴胺和邻苯二胺水热合成的聚合物碳点具有良好的荧光性能,其发射光谱范围广,荧光强度高,可以应用于生物标记、成像等领域。
四、多巴胺和邻苯二胺水热合成聚合物碳点的应用展望多巴胺和邻苯二胺水热合成聚合物碳点作为一种新型的碳点材料,已经在许多领域展现了巨大的应用潜力。
未来,随着相关研究的深入,相信其在生物医学、能源存储、驱动器等领域的应用将会更加广泛。
五、结论本文综述了多巴胺和邻苯二胺水热合成聚合物碳点的研究现状和应用展望,并指出了其在碳点材料领域的重要性。
相信在不久的将来,这种新型的碳点材料将为许多领域带来新的发展机遇。
六、致谢感谢所有曾经支持和帮助过我们的人员和单位,在研究过程中给予了重要的指导和支持。
摘要:酞酸酯类化合物是一种应用广泛的增塑剂,但近年来其毒性引起了人们的重视。
本文回顾了中外文县有关酞酸酯毒性的研究现况,详细了描述其在空气、土壤、水和食品中的污染状况,对植物、动物的生态毒性和人体毒性,并对其污染的防治提出了意见和建议,为全面评价酞酸酯的安全性、制定酞酸酯在各种食品及生物材料中的卫生标准提供依据。
关键词:酞酸酯;污染状况;毒性;邻苯二甲酸酯类化合物(Phthalates),又称酞酸酯类,缩写PAEs,属于芳香族二羧酸酯,一般指的是邻苯二甲酸与1~15个碳的醇形成的酯。
PAEs多为高沸点、低蒸气压液体,对塑料的稳定性起着重要作用[1],是使用最广泛、品种最多、产量最大的增塑剂。
最常用的PAEs主要有以下几种:邻苯二甲酸(2-乙基己基)酯(Bis (2-ethylhexyl) phthalate,DEHP)、邻苯二甲酸二丁酯(Dibutyl phthalate, DBP)、邻苯二甲酸丁基苄基酯(Butyl benzylphthalate,BBP)、邻苯二甲酸二乙酯(Diethyl phthalate,DEP)、邻苯二甲酸二甲酯(Dimethyl phthalate,DMP)。
分子结构通式为:,式中R1和R2为相同或不相同的醇类残基(饱和或不饱和的烃基)。
其中最常见的是DEHP和DBP。
PAEs主要被用作塑料,尤其是聚氯乙烯塑料(PVC)的增塑剂和软化剂,约占增塑剂消耗量的80%,其余20%主要用作驱虫剂、杀虫剂的载体,化妆品、合成橡胶、润滑油等的添加剂[2]。
PAEs普遍存在于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品(如指甲油、头发喷雾剂、香皂和洗发液)等数百种产品中。
1污染状况1.1 空气空气中的PAEs呈气溶胶状态,或吸附在颗粒物表面。
喷涂涂料、焚烧塑料垃圾、农用薄膜中增塑剂的挥发等是PAEs进入空气的主要途径。
在玻利维亚拉巴斯地方空旷无人的山区,测得空气中的DBP的浓度为19~36mg/m3,DEHP的浓度为17~20mg/m3,可以认为是空气中酞酸酯的本底值。