量子力学 周世勋(全套ppt课件)
- 格式:ppt
- 大小:16.02 MB
- 文档页数:566
研究算符之间的关系以及它们代表的物理量之间的关系。
一、算符的对易关系:[]⎪⎩⎪⎨⎧……≠……=−=不对易对易G ˆ,F ˆ0G ˆ,F ˆ0G ˆF ˆF ˆG ˆF ˆ,G ˆ1.坐标算符x ˆ和动量算符x pˆ的对易关系[]?p ˆ,x x = 将[]x p ˆ,x x p ˆpˆx x x −=作用在任意波函数上,即: (x p ˆp ˆx x x −))x (Ψx )i (x ∂∂−=h )(x Ψi h −))x (x (xΨ∂∂ i h =)x (x x Ψ∂∂i h −)(x x x Ψ∂∂ih −)(x Ψ )x (i Ψ=h 而)x (Ψ是任意的所以:[]x pˆ,x =h i ①该式称为x 和x pˆ的对易关系,等式右边不等于0,即x 和 x p ˆ不对易。
同样可得:[]y p ˆ,y ˆ=h i ② []z pˆ,z ˆ=h i ③ []=y p ˆ,x []0p ˆ,x z =; []z p ˆ,y ˆ=[]0p ˆ,y ˆx =; []=y p ˆ,z ˆ[]0pˆ,z ˆx =; []y x p ˆ,p ˆ=[]z x p ˆ,p ˆ=[]z y p ˆ,p ˆ=0以上可总结为基本对易关系:[][][]⎪⎩⎪⎨⎧==δ=0p ,p 0x ,x i p ,x ji j i ij j i h 3,2,1j ,i =即动量分量和它所对应的坐标分量是不对易的,而和不对应的坐标分量是对易的;动量各分量和坐标各分量是对易的。
说明:a .[]G ˆF ˆF ˆG ˆF ˆ,Gˆ−=叫G ˆ与F ˆ的对易关系,等于0叫二算符对易;否则叫二算符不对易 。
b .以上i x 和j p ˆ的对易关系是量子力学算符的基本对易关系,由它们可以推出其他的一些算符(有经典对应的)对易关系。
2.角动量算符的对易关系:[]=y x L ˆ,L ˆxy y x L ˆL ˆL ˆL ˆ− =)p ˆz ˆp ˆy ˆ(y z −)pˆx ˆp ˆz ˆ(z x −)p ˆx ˆp ˆz ˆ(z x −−)p ˆz ˆp ˆy ˆ(y z − =−x z p ˆz ˆp ˆy ˆ−z z pˆx ˆp ˆy ˆx y p ˆz ˆp ˆz ˆ+z y p ˆx ˆp ˆz ˆ +−z x p ˆy ˆp ˆz ˆy x p ˆz ˆp ˆz ˆ+−z z p ˆy ˆp ˆx ˆy z p ˆz ˆp ˆx ˆ=−x z pˆz ˆp ˆy ˆx z p ˆp ˆz ˆy ˆ+−x ˆp ˆz ˆp ˆz y x ˆz ˆp ˆp ˆz y =x pˆy ˆi h −+x ˆp ˆi y h =zL ˆi h 即:[]=y x L ˆ,L ˆzL ˆi h 同理可证: []=z y L ˆ,L ˆx L ˆi h ;[]=xz L ˆ,L ˆy L ˆi h 说明:a .[]=y x L ˆ,L ˆz L ˆi h ;[]=z y L ˆ,L ˆx L ˆi h ;[]=xz L ˆ,L ˆy L ˆi h 可合并写为:L i L L r h r r =× (矢量式),即角动量算符的定义式。