量子力学第2章 周世勋
- 格式:ppt
- 大小:2.87 MB
- 文档页数:94
量子力学课后习题详细解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dvλλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
第二章 波函数和薛定谔方程2.1. 证明在定态中,几率流密度与时间无关. 解: 几率流密度公式为()**2J iψψψψμ=∇-∇ 而定态波函数的一般形式为()(),iEtt eψψ-=r r将上式代入前式中得:()()()()**2J r r r r i ψψψψμ⎡⎤=∇-∇⎣⎦ 显然是这个J 与时间无关.2.2. 由下列两定态波函数计算几率流密度;(1) ,e r ikr 11=ψ (2) ikr e r-=12ψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点)传播的球面波.解: 在球坐标中,梯度算符为1ψ和2ψ只是r 的函数,与ϕθ,无关,所以,()**11211e e e ikr r r r e r ik ik r r r r ψψψ-∂⎛⎫⎛⎫∇==-+=-+ ⎪ ⎪∂⎝⎭⎝⎭()*222111e e e ikr r r r e r ik ik r r r r ψψψψ-∂⎛⎫⎛⎫∇==-+=-+=∇ ⎪ ⎪∂⎝⎭⎝⎭()()**221111ikr r r r e r ik ik r r r r r ψψψψ∂⎛⎫⎛⎫∇==-=-=∇ ⎪ ⎪∂⎝⎭⎝⎭e e e将以上四式代入 ()()()()**2J r r r r i ψψψψμ⎡⎤=∇-∇⎣⎦ (1) 对于ikre r11=ψ12222111122r r r i k p ik r r r r μμμμ⎡⎤=-===⎢⎥⎣⎦p J e e e (2) 对于ikre r-=12ψ212222111122r r r i k p ik r r r r μμμμ⎡⎤==-=-=-=-⎢⎥⎣⎦p J e e e J 计算的结果已经很清楚ikre r11=ψ这样的球面波,是沿r e 方向传播的波, 121p J e rr μ=.而球面 波ikre r-=12ψ传播方向与1ψ相反,即21J J =- 2.3. 一粒子在一维势场()⎪⎩⎪⎨⎧>∞≤≤<∞=ax a x x x U 00中运动,求粒子的能级和对应的波函数.解: 从定态薛定谔方程 02222=+ψμψE dx d 即 02=+''ψψk ()20k E =>可知,其解为ikx ikx Be Ae -+=ψ在0≤x 和a x ≥处,波函数为 0)(=x ψ,在a x ≤≤0处, 波函数为 ikxikx Be Ae -+=ψ 从()00=ψ得 0=+B A 即 B A -=因此有 ()2sin sin ikx ikx A e e iA kx C kx ψ-=-== 从()0=a ψ得 sin 0ka = 即要求 321,,n n ka ==π所以 sin1,2,3n n C x n aπψ==22222an E n μπ = 归一化条件1*=⎰dx ψψ可得aC 2=()()222211sin 1cos 2,cos 1cos 222αααα⎡⎤=-=+⎢⎥⎣⎦ 所以 1,2,30n nx n x a aπψ==≤≤ 综合得: 000n n x x a ax x aπψ≤≤=<>⎩或2.4. 证明()sin20n n A x a x a ax aπψ⎧'+<⎪=⎨⎪≥⎩式中的归一化常数是a A 1='解: 这是宽度为a 2,将坐标原点选在势阱中心而表示的一维无限深势阱的波函数,利用归一化条件得()222220222201sin sin 2222sin 2a aa n n n A x a dx A ydya a a a n A zdz A A a n n ππππππ+-''=+='''==⋅⋅=⎰⎰⎰所以 aeA i 1δ=' 取 0=δ 得2.5. 求一维谐振子处在第一激发态时几率最大的位置. 解: 一维谐振子第一激发态的波函数为 ()()x xex *x 1212112222ψαπαψα=⋅=- 其中几率密度()()22223323222210x x dw x x e x x e dx ααααππ--=-=-= 极值点有 00,,x x =±±∞ 使:()2223224421520x d w x x e dx αααπ-=-+< 只有μω±=±=0x x两个值,所以和μω-=x 处第一激发态粒子出现的几率最大.2.6. 在一维势场中运动的粒子,势能对原点对称:()()x U x U =-,证明粒子定态的波函数具有确定的宇称.解: 定态的波函数满足的薛定谔方程为()()()x E x x H ˆψψ=哈密顿算符 ()()x U dxd x H ˆ+-=222μ 于是当x x -→时,而拉普拉斯算符 ()222222222222dxd x d d dx d μμμ -=--→- 题2.5图 图中取1μω=即在坐标反射下,哈密顿算符不变,即()()x H ˆx Hˆ=- 写出坐标反射后的薛定谔方程()()()x E x x H ˆ-=--ψψ考虑到()()x H ˆx Hˆ=-有 ()()()x E x x H ˆ-=-ψψ 比较 ()()()()()()ˆˆH x x E x H x x E x ψψψψ⎧=⎪⎨-=-⎪⎩ 如果属于能量E 的本征值是非简併的,反射变换前后,状态函数有如下关系()()x x λψψ=-,()()()x x x ψλλψψ2=-=,1±=λ.即()()x x ψψ±=-可见,粒子的定态波函数具有确定的宇称,奇宇称或偶宇称. 当()()x x ψψ-=时,称该波函数为偶宇称. 当时,称该波函数为奇宇称.但是如果属于能量E 的本征值是简併的,特别是()()x x ψλψ-≠这时可以构造两个与之相关的波函数()()()()()(),.f x x xg x x x ψψψψ-=+--=--据此,可知()(),f x f x -=因而具有偶宇称;()().g x g x -=-因而具有奇宇称.以上结果本质上是根据哈密顿的对称性去推知它的本征函数的对称性.一般地,如果属于某一能量的本征态是非简併的, 那么, 能量本征态会携带哈密顿算符的对称性.但是, 如果属于某一能量的本征态是简併的,那么并不是其中的每一个本征态都会携带哈密顿算符的对称性.但总可以通过它们的某种组合使之携带哈密顿算符的对称性.2.7. 一粒子在一维势阱()⎩⎨⎧<>>=ax ax U x U 000 中运动,求束缚态()00U E <<的能级所满足的方程.解: 粒子所满足的方程()()222222d x E x a x a dx ψψμ-=-<<()()()a x x E x U x dxd >=+-33032222ψψψμ令 22 Eμα= ()202 E U -=μβ方程变为()()()()()()⎪⎩⎪⎨⎧>=-''<<-=+''-<=-''ax x x a x a x x ax x x 000323222121ψβψψαψψβψ它们的解分别是:()112212312sin cos sin x xx xA e A e x aB x B x B x a x aC e C e x aββββψψαααδψ--=+<-=+=+-<<=+> 由波函数的有限性条件限制,必须要求120A C ==()12231sin xxA e x aB x a x aC e x aββψψαδψ-=<-=+-<<=> (1)根据波函数在边界上连续及导数连续的条件, 确定常数.(1) 波函数ψ连续1232x a x ax a x a x a x a ψψψψ=-=-==⎧=-=⎪⎨==⎪⎩得 ()()21sin sin aaA eB aC eB a ββαδαδ--⎧=-+⎪⎨=+⎪⎩ (2) (2) 波函数导数ψ'连续[][][][]⎩⎨⎧'='='='-===-=-=a x a x a x a x a x a x 22332211ψψψψψψψψ 得 ()()ctg ctg a a βααδβααδ=-+⎧⎪⎨-=+⎪⎩ (3) 由此明显看出:由(2)可以用消去两个待定系数2A 和1C ;由(3)可以确定δ和能量E .由(3)得 ()()()ctg ctg ctg a a a αδαδαδ+=--+=-所以 ()();0,1,2a k a k αδπαδ+=+-=±±,由此得πδk 21=,由于余切以π为周期, 故只有两个独立解:20πδ,=,把0=δ和2π分别代入(3)式得到确定能量的方程为:0ctg 2tg a a δααβδπααβ==-==将上面的式子同乘以势垒宽度a0ctg 2tg a a aa a aδααβδπααβ==-==再考虑到:()20202222()U E U a a a a μμβα-==-令 22022U a n μ=z a α=22ctg z z n z =--令 221()ctg f z z z n z =+- 同理由第二组解得: 222()tg f z z z n z =--当1,2,3,4n =, 由1()f z 和2()f z 做出图2.7-1, 图2.7-2, 图2.7-3, 图2.7-4.由图2.7-1可以看出:当1n =时()01z <<只有一虚线通过横轴,也就说只存在一个解.对应的是第二组的解.由数值计算可知,此时0.7391z =,由此可算出对应的能级. 由图2.7-2可以看出:当2n =时()02z <<存在两个解.分别对应的是第一组和第二组的解.由数值计算可知,此时对应第一组的解为 1.8955z =,对应第二组的解为,由此可算出对应的能级. 由图2.7-3可以看出:当3n =时()03z <<存在两个解.分别对应的是第一组和第二组的解.由数值计算可知,此时对应第一组的解为 2.2789z =,对应第二组的解为 1.1701z =,由此可算出对应的能级. 由图2.7-4可以看出:当4n =(实际上只要 3.5n >即存在三个解)时()04z <<存在三个解.其中第一组一个解和第二组的两个解.由数值计算可知,此时对应第一组的解为,对应第二组的两个解为别为1.2524,3.5953z =,由此可算出对应的能级.第一组解0δ=由()()21sin sin aaA eB aC e B a ββαδαδ--⎧=-+⎪⎨=+⎪⎩得:()()()123sin sin sin a x a xe B a e x a B x a x a e B a e x aββββψαψαψα-=-<-=-<<=>图2.7-1 图2.7-2图2.7-3 图2.7-4由归一化条件得1sin a xe a e a x ββαψ=-<2sin x a x a αψ=-<<3sin a xe a e x a ββαψ-=>对于第一组解的第一个能级,有:1.8955a α=,20.626019a aβ===取1a =得 1.8955α=,0.626019β=0.6260190.626019120.6260190.6260193sin 1.8955sin 1.8955sin 1.8955x xe e x ax a x a e e ψψψ-=<-=-<<=x a>由上述波函数可绘出图2.7-5第二组解2πδ=由21sin 2sin 2a a A e B a C e B a ββπαπα--⎧⎛⎫=-+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩得()()()123cos cos cos a x a xe B a e a x B x a x a e B a e x aββββψαψαψα-=-<=-<<=> 由归一化条件得()()()()()(){}()22211122222222222221cos sin cos cos sin cos cos sin 22aaaaaa a x a x aaaaaxax aadx dx dxe B a e dx B x dx e B a e dxBea edx x dx ea e dxa a B a ββββββββψψψααααααααβα∞-∞-∞--∞-∞--∞-=++=++=++⎧⎫⎪⎪=+-⎨⎬⎪⎪⎩⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰123cos cos cos a xa xe a e a xx a x a e a e x aββββαψαψαψ-=-<=-<<=>对于第二组解的第一个能级,有:0.7391a α=20.673596a a β===令1a =得0.7391α=,0.673596β=0.6735960.673596120.6735960.6735963cos 0.7391cos 0.7391cos 0.7391x x e e x ax a x a e e ψψψ-=<-=-<<=x a>由上述波函数可绘出图2.7-6. 照此方法可绘出其它能级对应的波函数.2.8. 分子间的范德瓦尔斯力所产生的势能可以近似地表示为()⎪⎩⎪⎨⎧>≤≤-<≤<∞=bx bx a U ax Ux x U 00010求束缚态的能级所满足的方程.解: 束缚态,即要求01<<-E U .分区域写出薛定谔方程:()()()()()()()()1220222231332244200222x d x U x E x x a dx d x U x E x a x bdxd x E x x bdx ψψψψμψψψμψψμ=<-+=≤≤--=≤≤-=>其中()0222U E k μ-= 则 ()()22220x k x ψψ''-= 其中()1322E U k μ+= 则 ()()23330x k x ψψ''+=其中 422Ek μ-= 则 ()()24440x k x ψψ''-=以上三方程的解分别为:()()()()22442334sin k x kxkxk xx Ae A e x B k x x Ce C e ψψδψ--'=+=+'=+在0x =处, ()200ψ=,得0A A '+=.令A A '=-;对于()4x ψ,当∞→x 应有限,故0C '=, 则波函数可写为图2.7-6图2.7-5()()()()()2242334sin k x kxkxx A e e x B k x x Ce ψψδψ--=-=+= 由波函数导数的连续性得[][]()()[][]()322333223334434tan th tan x a x a x b x b k x a k a k a k k x b k b k ψψψψδψψψψδ====⎧''==+=⎪⎪⎨⎪''==+=-⎪⎩即()113332324tan th ,tan k k k a k a k b k k δδ--⎡⎤⎛⎫+=+=- ⎪⎢⎥⎣⎦⎝⎭由上两式消去δ,得()()11333224tan th tan k k k a b k a k k --⎡⎤⎛⎫-=-- ⎪⎢⎥⎣⎦⎝⎭用到公式111tan tan tan 1x yx y xy---±±= 上式成为 ()()()()()332342232433324332242th th tan th 1th k k k a k k k a k k k k k a b k k k k k k k a k a k k ++-==⎡⎤⎣⎦--。
§2.1 波函数的统计解释一.波动-粒子二重性矛盾的分析 物质粒子既然是波,为什么长期把它看成经典粒子,没犯错误? 实物粒子波长很短,一般宏观条件下,波动性不会表现出来。
到了原子世界(原子大小约1A),物质波的波长与原子尺寸可比,物质微粒的波动性就明显的表现出来。
传统对波粒二象性的理解: (1)物质波包会扩散,电子衍射,波包说夸大了波动性一面。
(2)大量电子分布于空间形成的疏密波。
电子双缝衍射表明,单个粒子也有波动性。
疏密波说夸大了粒子性一面。
对波粒二象性的辨正认识:微观粒子既是粒子,也是波,它是粒子和波动两重性矛盾的统一,这个波不再是经典概念下的波,粒子也不再是经典概念下的粒子。
在经典概念下,粒子和波很难统一到一个客体上。
二.波函数的统计解释 1926年玻恩提出了几率波的概念: 在数学上,用一函数表示描写粒子的波,这个函数叫波函数。
波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
既描写粒子的波叫几率波。
描写粒子波动性的几率波是一种统计结果,即许多电子同一实验或一个电子在多次相同实验中的统计结果。
几率波的概念将微观粒子的波动性和粒子性统一起来。
微观客体的粒子性反映微观客体具有质量,电荷等属性。
而微观客体的波动性,也只反映了波动性最本质的东西:波的叠加性(相干性)。
描述经典粒子:坐标、动量,其他力学量随之确定; 描述微观粒子:波函数,各力学的可能值以一定几率出现。
设波函数描写粒子的状态,波的强度,则在时刻t、在坐标x到x+dx、y 到y+dy、z到z+dz的无穷小区域内找到粒子的几率表示为,应正比于体积和强度 归一化条件:在整个空间找到粒子的几率为1。
归一化常数可由归一化条件确定 重新定义波函数, 叫归一化的波函数。
在时刻t、在坐标 (x,y,z)点附近单位体积内找到粒子的几率称为几率密度,用表示,则 归一化的波函数还有一不确定的相因子; 只有有限时才能归一化为1。