当前位置:文档之家› 混合制冷剂及其优点、应用领域和问题

混合制冷剂及其优点、应用领域和问题

混合制冷剂及其优点、应用领域和问题
混合制冷剂及其优点、应用领域和问题

混合制冷剂及其优点、应用领域和问题

混合制冷剂:由两种或两种以上单组分制冷剂混合而成的多元混合物。由于构成混合制冷剂的各组分制冷剂的沸点等物理化学性质不同,所以当混合制冷剂处于气液平衡状态时,各组分在气相中的浓度与其在液相中的浓度在一般情况下是不同的;但作为特殊情况也可能相同。前者被称为非共沸混合制冷剂;后者为共沸混合制冷剂。与单组分制冷剂相比, 混合制冷剂在蒸汽压缩式制冷循环中具有独特的性能,利用这些独特的性能,可以使制冷系统更为经济地运行。

共沸制冷剂:现在常用的有R500、R502、R503等。R12/R31用在小型制冷机中代替R12,当蒸发压力相同时,它有较高的容积制冷量与换热流动特性,适用于陈列柜、冷藏车、轿车空调器等。另外,美国凯利亚公司应用R500当制冷机由60Hz 转到50Hz 运转时,已测得制冷量不变。同样R502及R503也有较高的单位容积制冷量。由RC318/R12组成的共沸制冷剂,Ke 值比R12高5-12%,排温低,是最安全的制冷剂。在一系列条件下,用R501代替R22,可以降低压缩机的热应力以及改善系统中油的循环条件。R502是六十年代出现的一种共沸制冷剂,有良好的热物理及化学性能。目前,国外已将R502的使用从开始的全封闭压缩机推广到半封闭和开启式

低温压缩机中。

非共沸混合物制冷剂:液相和气相中具有不同的组成成分,气相中低沸点组分较多,液相中高沸点组份较多。在一定压力下冷凝或蒸发时,冷凝温度和蒸发温度都要发生变化。即非共沸制冷剂没有共沸点。这一特性,与实际运用中,冷凝过程冷却水是不断变化的,蒸发过程被冷却对象温度表1 共沸混合制冷剂的热力学性能改善情况

表2 非共沸混合制冷剂的应用领域

是不断降低的变温特点相适应,缩小了变相过程中的传热温差、减小了过程的不可逆损失,进而减小了冷凝器和蒸发器的传热不可逆损失使制冷循环的效率得以提高。当蒸发温度与被冷却对象温度、冷凝温度与环境介质温度之间的温差值越小,制冷循环效率就越高。非共沸制冷剂达到了这个目的,因此也就达到了节能的目的。其符号表示为R4(),括号内的数字为该制冷剂命名的先后顺序号,从0开始,当构成非共沸混合制冷剂的纯物质种类相同但成分不同时,须分别在数字后加上大写英文字母以示区别。例如采用R22、R152a 和R124构成的非共沸混合物,其所占量分别为53%、

13%和34%时可表示为R401A ,当各组分所占量分别为61%、11%与28%时,其符号表示为R401B 。

在考虑到混合制冷剂的节能效果的同时,也应考虑到其不利面。譬如混合制冷剂制作工艺复杂,生产成本高;与单一组分制冷剂相比,其充注过程难度大;对于非共沸混合制冷剂,一旦发生泄露,会引起系统内组分的变化,从而引起系统运行性能发生变化等等在混合制冷剂的研发和制冷装置的设计制造过程中,应全面考虑各种因素,从而优化系统的综合技术经济指标

[1]罗南春. 浅论混合制冷剂的节能原理[A]. 山东省制冷学会.山东制冷空调——2009年山东省制冷空调学术年会“烟台冰轮杯”优秀论文集[C].山东省制冷学会:,2009:4.

[2]郑镇. 混合制冷剂的应用研究[J]. 制冷与空调, 1994, (2).

自然工质制冷剂应用及发展

自然工质制冷剂应用及发展 程念庆刘阳秦鹏 (西部建筑抗震勘察设计研究院西安710054 西部建筑抗震勘察设计研究院西安710054 西安探矿机械厂,陕西西安,710065) 前言 自从1931年卤代烃制冷剂R21被开发出来后,相继涌现出一大批它的同族化合物,如R12,R114,R22等。它们以优良的热物性迅速占领了市场。然而由于其对臭氧层的破坏作用,《蒙特利尔协议》明确禁止了CFC 类和HCFC 类工质的继续使用。作为这类工质替代品的HFC 类工质,对臭氧层破坏值ODP=0,但是其对地球温室效应的贡献作用不可忽视,《京都议定书》为此对其作了相应的规定,限制使用。因此,HFC类工质只能作为过渡替代品,寻找ODP 值和GWP 值(温室效应值)均为0 的工质才是努力的方向。在此情况下,一些曾经被氟利昂淘汰的自然工质重新得到人们的关注,如氨、水、CO2等。表1比较了几种常用制冷剂的性质,这类物质取自自然,对自然界生态没有破坏。下面将阐述一些自然工质的应用现状,并对其讨论分析。 1、氨(NH3) 氨在制冷领域的应用已经超过了120年,其ODP=0、GWP=0,是一种环境友好的制冷剂。它具有以下优点:节流损失小,能溶解于水,有漏气现象时易被发现,价格低廉。氨的临界温度和临界压力分别为132. 3 ℃和11. 33MPa ,高于R22 ( 96. 2 ℃/4. 99MPa ) 和 R410A(70. 2 ℃/4. 79MPa),可在较高的热源温度和冷源温度下实现亚临界制冷循环。它的标准沸腾温度低( - 33.4 ℃) 。在冷凝器和蒸发器中的压力适中( - 15 ℃时的蒸发压力为0.24MPa ,30 ℃时的冷凝压力为11.7MPa),单位容积制冷量大,并且其导热系数大,蒸发潜热也大( - 15 ℃时的蒸发潜热是R12 的8.12 倍) 。

02-混合制冷剂-PPT

西安交通大学 制冷与低温技术原理

混合制冷剂

混合制冷剂(mixture refrigerants ) 两种或两种以上的纯制冷剂组成的混合溶液。采用混合制冷剂为调节制冷剂的性质和扩大制冷剂的选择提供了更大的自由度。 非共沸混合物 相变过程中,气相与液相的成分不相同,而且各自都是变化的,直到相变完成。 共沸混合物 在定压相变过程中,其温度滑移为零,且气相与液相的成分相同。近共沸混合物 相变温度滑移很小的非共沸混合物,定压下相变时气相和液相成分改变很小,其热力性状很接近共沸混合物。 相变存在温度滑移存在共沸点

混合物的T-x 相图 定压下混合物的露点线和泡点线呈鱼形曲线。它在定压相变(蒸发或凝结)过程中,伴随有一定的温度变化。温度的改变量为混合物成分x 所对应的露点与泡点之差。称该差值称为相变温度滑移。另外,相变过程中,气相与液相的成分不相同,而且各自都是变化的,直到相变完成。 非共沸混合物的特征

非共沸制冷剂在蒸发和冷凝过程中温度是变化的,其单级压缩循环的T-s 图如图所示,这就有可能较好的适应变温热源的情况,减少冷凝过程和蒸发过程中的传热温差,提高循环的热力完善度。 非共沸制冷剂单级循环的T-s 图 T T kmax T kmin T 0max T 0min s 降低了制冷循环中的压比,使单级压缩能获得更低的蒸发温度。 同组成它的单一制冷剂相比,增大制冷机的制冷量。

混合制冷剂 符号组分(成分)沸点/℃符号组分(成分)标准沸点/ 滑移温度/℃ R401A R22/152a/124 (53/13/34)-33.1R404A R125/143a/134a(44/ 52/4) -46.5/0.5 R402A R125/290/22 (60/2/38)-49.2R407A R32/125/134a (20/40/40) -45.8/6.6 R402B(38/2/60)-47.4R407C R32/125/134a (23/25/52) -44.3/7.1 R403A R290/22/21B (5/75/20) -50.0R410A R32/125 (50/50)-52.5/- R405A R22/152a/142b/C3 18 (45/7/5.5/42.5)-27.3R507R125/143a (50/50) -46.5/0.2 R406A R22/600a/142b (55/4/41)-22.0 主要混合制冷剂

氟利昂制冷剂的分类和优劣势

氟利昂制冷剂的分类及优劣势 氟利昂是在制冷机中完成热力循环的工质。它在低温下吸取被冷却物体的热量,然后在较高温度下转移给冷却水或空气。在蒸气压缩式制冷机中,使用在常温或较低温度下能液化的工质为制冷剂,合肥空调加氟服务中心介绍,常见的有R12.R22.R502 、R123及R134a,由于其他型号的制冷剂已经停用或禁用。在此不做说明。 一、氟利昂R600a(C4H10) 2-甲基丙烷(异丁烷),属于CH类制冷剂A3类物质,充灌量很少时可用作冰箱制冷剂,具有节能、低噪、对大气无破坏的优势,但其易燃、易爆、安全性差。 二、氟利昂R410A 是一种新型环保制冷剂,HFC制冷剂,由二氟甲烷R32(CH2F2),五氟乙烷R125(C2HF5)以50%,50%的质量百分比混合而成的非(近)共沸制冷剂,温度滑移较小,发生相变时两组分比例基本保持恒定,物性接近单组分制冷剂。工作压力为普通R22空调的1.6倍左右,制冷(热)效率更高,不破坏臭氧层。另外,采用新冷媒的空调在性能方面也会有一定的提高。R410A 是目前为止国际公认的用来替代R22最合适的的冷媒,并在欧美,日本等国家得到普及。 三、氟利昂R407C 是一种新型环保制冷剂,HFC制冷剂,由二氟甲烷R32(CH2F2),五氟乙烷R125(C2HF5),四氟乙烷R134a(C2H2F4)以23%,25%,52%的质量百分比混合而成的非共沸制冷剂,温度滑移较高。 四、氟利昂134a(C2H2F4,R134a) 是一种较新型的制冷剂,HFC制冷剂,其蒸发温度为-26.5℃。它的主要热力学性质与R12相似,不会破坏空气中的臭氧层,是鼓吹的环保冷媒,但会造成温室效应。是比较理想的R12替代制冷剂。 五、氟里昂502(R502) R502是由R12.R22以51.2%和48.8%的百分比混合而成的共沸溶液。R502与R115.R22相比具有更好的热力学性能,更适用于低温。R502的标准蒸发温度为-45.6℃,正常工作压力与R22相近。在相同的工况下的单位容积制冷量比R22大,但排气温度却比R22低。R502用于全封闭、半封闭或某些中、小制冷装置,其蒸发温度可低达-55℃。R502在冷藏柜中使用较多。 六、氟利昂22(CHF2CL,R22) HCFC制冷剂,是氟里昂制冷剂中应用较多的一种,主要以家用空调和低温冰箱中采用。R22的热力学性能与氨相近。标准气化温度为-40.8℃,通常冷凝压力不超过1.6MPa。R22不燃、不爆,使用中比氨安全可靠。R22的单位容积比R12约高60%,其低温时单位容积制冷量和饱和压力均高于R12和氨。对大型空调冷水机组的冷媒大都采用R134a来代替。 七、氟利昂-13

混合制冷剂发展与应用

混合制冷剂的应用与发展 一、前言 自70年代美国教授莫利纳(M.J.Molina)和罗兰(F.S.Rowland)提出CFC破坏同温层中的臭氧层的观点以来,臭氧层的破坏问题已引起越来越多的关注。87年9月签署了《制破坏大气臭氧层物品的蒙特利尔议定书》,明确了受控物质及其限用时间表。而受控的CFC目前广泛用于制冷,空调等系统,这势必给这些行业造成巨大的冲击。因此,尽快找到合适的替代物以逐步取代受控的CFC制冷剂已势在必行。目前国内外提出的CFC12替代方案近20种。主要从单一工质和混合工质两个途径着手。单一工质方面,用HFC134a替代CFC12的呼声甚高。发达国家已集中注意于HFC134a的应用研究,并已取得初步成果,开始商业化生产。但一般认为如没有化学合成和物质结构方面的突破,要筛选出具有满意的热物性且无毒不可燃的纯工质实在有限。为此发展替代制冷剂的另一途径是开展混合工质的研究。混合制冷剂做为替代制冷剂为我们提供了更多的选择余地。 关键词:混合制冷剂共沸制冷剂非共沸制冷剂 二、混合制冷剂历史发展 混合制冷剂是由两种或两种以上性质不同的制冷剂按一定比例混合,使之达到一定要求的产物。按相变过程中表现出的特征,混合制冷剂可分为共沸,非共沸和近共沸三类。在相变过程中,平衡汽相和平衡液相具有相同的成分,即各相中混合物的组分不发生变化,则该种混合物为共沸混合制冷剂。汽、液相中组分的浓度不同,且在任何浓度比下都不发生共沸现象的混合物称为非共沸混合物。露点线和泡点线比较接近的称非共沸混合物。 在制冷循环中使用混合制冷剂的尝试至少可以追溯到1888年(R.Piotet),但当时还没有考虑到混合制冷剂需要满足哪些要求才能使循环性能得到改善。1939年,G.Maiuri首先提出混合制冷剂的优点是在变温下制冷。1949年,F.Carr用热力学观点阐述了利用混合制冷剂在变温下制冷达到降低功耗的可能性。从1961年起,Mcb.rness和ChaPmeu对纯制冷剂、共沸与非共沸制冷剂进行了大量运行测试,发现采用非共沸制冷剂引起了制冷量变化,但在热交换器中的变温过程引起的能量节约仍未考虑。1975年,Lor-enz首次成功地进行了R12/R11混合物的变温度实验。 现在,在苏联、东德、西德和印度,旨在挖掘制冷装置潜力,使用混合制冷剂的研究一直特别活跃[1]。 三、常用共沸与非共沸制冷剂 (一)共沸制冷剂 现在常用的共沸制冷剂有R500、R502、R503等。R12/R31用在小型制冷机中代替R12,当蒸发压力相同时,它有较高的容积制冷量与换热流动特性,适用于陈列柜、冷藏车、轿车空调器等。另外,美国凯利亚公司应用R500当制冷机由60Hz转到50Hz运转时,已测得制冷量不变。同样R502及R503也有较高的单位容积制冷量。由RC318/R12组成的共沸制冷剂,Ke值比R12高5-12%,排温低,是最安全的制冷剂。在一系列条件下,用R501代替R22,可以降低压缩机的热应力以及改善系统中油的循环条件。R502是六十年代出现的一种共沸制冷剂,有良好的热物理及化学性能。目前,国外已将R502的使用从开始的全封闭压缩机推广到半封闭和开启式低温压缩机中[2]。 (二)非共沸制冷剂 目前应用较普遍的ODS替代品是R407C和R410A、HFC-32/HFC-134a、HFC-152a/HFC-125,R407C是HFC-32/HFC-125/HFC-134a的三元混合物,其主要优点是能效比、压比接近HCFC-22,可以直接充灌,主要缺点系统泄漏时成分会发生变化,对系统维修及性能产生影响。R410A是

制冷剂发展与研究前沿

制冷剂的发展与研究前沿 田玉保安全工程0901 200901145025 摘要:回顾了制冷剂从早期使用至现在的进步历程,探讨了未来方向与一些候选制冷剂。 根据所定义的选择标准把此历程划分为四代制冷剂。考察了对现有国际协定相关方案的展 望,其中包括了分别为防止平流层臭氧耗损与全球气候变化的蒙特利尔与京都议定书的分 析。介绍了多种HCFCs制冷剂的替代物,包括R1234yf,DME,CO2和氨的混合物等。对 下一代制冷剂做出了展望。 关键词:制冷剂温室效应臭氧损耗潜能值全球变暖潜能值 Development on Refrigrants an Reseach Fronts Abstracts Reviews the progression of refrigerants,from early uses to the present,and then addresses future directions and candidates.Breaks the history into four refrigerant generations based on defining selection criteria.refrigerants”.Examines the outlook for current options in the contexts of existing international agreements,including the Montreal and Kyoto Protocols to avert stratospheric ozone depletion and global climate change,respectively.This paper introduced several alternative refrigerants from the basic thermal physical and circulation performance,etc.,including R1234yf,DME and the combination of carbon dioxide an ammonia etc.Also,a briefe glance of the future of next generation of refrigrantsis given. Keywords Refrigetants Greenhouse effects ODP GWP 臭氧层的破坏和全球气候变化,是当前世界所面临的主要环境问题。由于制冷空调热泵行业广泛采用的CFC与HCFC类制冷剂对臭氧层有破坏作用以及产生温室效应,使全世界这一行业面临严重挑战。但是,迄今为止,国外的一些HFC类和碳氢类替代制冷剂均或多或少地存在一些问题,还不太理想,例如大多数HFC类制冷剂及其混合制冷剂的温室效应潜能值(GWP)还比较高,被列为“温室气体”,需控制其排放量;而碳氢类制冷剂则存在强可燃性引起的安全问题,特别对于大中型制冷空调热泵设备,需要行之有效的安全措拖和技术。因此,这一行业均在探索如何从制冷剂的发展历史中,总结经验,寻求正确、科学地解决由于环保要求提出的制冷剂替代问题,力争少走弯路。 1.制冷剂的发展历程 制冷的历史可追溯到古代,当时用以储冰和一些蒸发过程。从历史上看,制冷剂的发展经历了四个阶段[1](图1)。第一阶段是十九世纪的早期制冷剂;第二阶段是二十世纪时代的CFC与HCFC类制冷剂;第三阶段是二十一世纪的绿色环保制冷剂。第四阶段是今后制冷剂发展的主要方向,即以防止全球变暖为主要目标的制冷剂的研发。

制冷剂应用知识手册-常用制冷剂

制冷剂应用知识手册-常用制冷剂 一、水,R-718 多数制冷过程是吸收循环或蒸气压缩循环。商业吸收循环一般用水作为制冷剂,溴化锂为吸收剂. 水无毒、不可燃、来源丰富。是一种天然制冷剂.吸收式制冷机即使是双效制冷机,其挑战是COP(性能系数)只比1稍大(离心式制冷机的COP大于5)。从寿命周期的观点来看,吸收式制冷机需要一个彻底的调查,以确定其解决方案在经济上是否可行。从环保观点来看,用水作为制冷剂是好的。吸收式制冷机的低COP值可能表明比离心制冷机需要消耗更多的化石燃料。但是不一定,因吸收式制冷机直接使用化石燃料,而电制冷机使用电能。选择用哪种制冷机实际上取决于电能是如何产生的。 二、氨,R-717 氨(NH3)被认为是一种效率最高的天然制冷剂。它是一种今天仍在使用的“原始”制冷剂。多用于正位移压缩机的蒸气压缩过程。ASHRAE标准34将其分类为B2制冷剂(毒性高低可燃).ASHRAE标准15要求对氨制冷站有特殊的安全考虑。尽管在商业空调也使用很多,但氨在工业制冷上的应用更广泛些。 三、二氧化碳,R-744 二氧化碳(CO2)是一种天然制冷剂.它在19世纪末20世纪初停止使用,现在正在研

究重新对它的使用。用于蒸气压缩循环正位移压缩机。在32℃时CO2的冷凝压力超过6MP A,这是一个挑战。而且,CO2的临界点很低,能效差。尽管如此,仍可能有一些应用,如复叠制冷,CO2将是有用的。 四、烃类物质 丙烷(R-290)和异丁烷(R-600a),以及其他氢碳物质,能够在蒸气压缩过程中作为制冷剂使用。在北欧,大约有35%的制冷机使用氢碳物质。它们毒性低且能效高,但容易燃烧。后者严重限制了它们在北美的使用,因受现今安全规范的制约。 五、氯氟碳族(CFC族) 氯氟碳族(CFC族)有许多物质,但在空调中最常用的是R-11、R12、R-113和R -114.CFC族到20世纪中叶时已经普遍使用。发达国家在1995应蒙特利尔议定书的要求停止了CFC族的生产。在发展中国家它们仍被生产和使用(按时间表将很快淘汰)。它们用于蒸气压缩过程的所有型式的压缩机中。常用CFC族物质都稳定、安全(从制冷剂标准的角度看)、不可燃且能效高。不幸的是,它们破坏臭氧层。 六、氢氯氟碳族(HCFC族) 氢氯氟碳族(HCFC族)几乎和CFC族同时出现。HCFC-22是世界上使用最广泛的制冷剂。HCFC-123是CFC-11的过渡替代制冷剂。它们用于蒸气压缩过程的所有型式的压缩机中。HCFC-22能效高,被分类成A1(低毒不燃).HCFC123能效高,被分类成B1(高毒不燃).和CFC族一样,这些制冷剂按蒙特利尔议定书的要求将逐步淘汰。在发达国家已被限量生产且很快将减产。发展中国家也有一个淘汰时间表,但淘汰时限延长。

中央空调制冷剂R407C优缺点分析资料报告

环保制冷剂(R407C)浅析 1 前言 目前还没有各方面性质都比较理想的纯工质来替代R22 ,主要采用二元或三元非共沸或近共沸混合工质作为替代物。对于新型的替代工质,不仅要研究其热力学性质、环保及安全性等,还要对传热性能及应用中出现的一系列特殊问题进行深入细致的研究,R22 替代工质的研究也正是从这几个方面展开的,目前国际上广为关注,且研究较多的近期替代物为非共沸混合工质R407C。 2 R407C 的热物性分析 2.1 安全环保性 根据美国标准ANS1/ ASHRAE34 - 1989 ,对制冷剂的安全性主要考虑毒性和可燃性。 R407C 是由R32、R125、R134a 组成的非共沸混合工质,低毒不可燃,属安全性制冷剂。制冷剂的环保性能主要由两个重要的环境指标来体现,即臭氧衰减指数ODP 和温室效应指数GWP ,R407C 的ODP 为0 , GWP 约为0. 05 , 均优于R22 ( ODP 为0. 04 ~0. 06 , GWP 为0. 32~0. 37) ,即R407C 的环保性能优于R22。 2.2 热力性能 热力性能是制冷剂筛选的主要依据, 替代工质的热力性能不能与原制冷剂有太大的差异。R407C 的蒸发、冷凝温度与R22 很相似,容积制冷量、能效比以及冷凝压力都与R22 非常接近, 压力也比较适中:一方面蒸发压力稍高于大气压,避免了空气向系统中的渗入;另一方面冷凝压力不是很高,减小了制冷设备的承受压力及制冷剂外泄的可能性。 2.2.1 非共沸特性 R407C 是一种非共沸混合制冷剂,相变过程中气相和液相浓度会发生变化,使制冷空调系统

在运行、维护等过程中出现一些新的问题,这就要求在设计系统时要认真处理相变过程中产生的组份变化,消除由此引起的系统性能不稳定。另外,R407C 泄漏时冷媒成份发生变化,会引起制冷能力的下降。研究表明:R407C 工质发生泄漏时,追加冷媒液体后制冷能力最多下降5 % , 这一点完全可以接受。 2.2.2 变温换热特性 R407C 在蒸发过程中温度逐渐升高,而在冷凝过程中温度逐渐降低,即在定压相变过程中存在着温度滑移(约为7 ℃) , 这一变温特性为通过对换热器改型增强换热, 进一步改善制冷性能提供了可能。 2.3 对现有制冷空调系统的适应性 从热力性能来看, R407C 对现有制冷空调系统有着较好的适应性,除更换润滑油、调整系统的制冷剂充注量及节流元件外,对压缩机及其余设备可以不做改动。如果要运用其变温特性实现节能的目的,则需要设计新的蒸发盘管、选择不同的使用场合,来有效发挥温度滑移高,以接近劳伦茨循环达到节能效果。如果单从对现用设备的适应性方面来看,R407C 可作为R22 的一种近期替代 3 R407C 换热性能的实验研究 沸腾与凝结换热是制冷、空调及其它许多工业设备中非常重要的换热过程, 设计换热器的通常方法是先估算出换热管两侧流体的平均换热系数,计算总换热系数,所以制冷工质的两相换热特性对于换热器的设计尤为重要。R407C 的相变换热是一个变温过程,由于存在汽液相组分浓度上的差异,换热特性较单一工质更为复杂,这就为换热系数和流体性能的预测带来了一定的难度。目前的手段和对问题的认识还不足以对这类工质进行比较完全的理论分析和计算,因此研究工作主要集中在对换热规律的实验研究,并根据实验结果综合出换热系数的经验计算式上。国外许多学者已对R407C 的两相换热规律进行了实验研究[1~12]

制冷剂R134a的特点及正确使用

制冷剂R134a的特点及正确使用长期以来含氯氟利昂R 12(CCL2F2)一直是汽车空调的唯一制冷剂,近年来科学家们发现,R 12的氯会破坏地球上空15km-25km 内的臭氧层,从而使更多的太阳能光紫外线能辐射到地球危害到人体健康,因此,国际社会于1987年9月在加拿大缔结了蒙特利尔协议书,明确规定了禁用R 12的期限为2000年,但近年来由于臭氧层的破坏不断加剧,国际社会把R 12R 的完全禁用日期提前到了1995年,发展中国家则可推迟10年。 我国于1992年发文规定:各汽车厂从1996年起在汽车空调中逐步用新制冷剂R 134a替代R 12,在2000年生产的新车上不准再用R 12。因此,汽车使手人员和维修人员必须了解和熟悉新制冷剂R134a的特点,以便能够熟练、正确地使用。 一、制冷剂R 134a的主要特点 ①.R 134a不含氯原子,对大气臭氧层不起破坏作用; ②.R 134a具有良好的安全性能(不易燃,不爆炸,无毒,无剌激性无腐性); ③.R 134a的传热性能比较接近,所以制冷系统的改型比较容易。 ④.R 134a的传热性能比R 12好,因此制冷剂的用量可大大减少。 二、 R 134a与R12制冷系统的主要区别

①.存放R 134a的容器为浅蓝色,而存放R 12的容器为白色。 ②.R 134a制冷系统连接软管是用橡胶和尼龙特制的,并且在其处部有汽车工程学会的印记(S.A.E.#J2196);而 R12制冷系统连接软管常用一般橡胶管。 ③.R 134a制冷系统连接管有颜色标记(低压管是蓝色带黑色条纹,高压管是红色带黑色条纹,普通管是黄色带黑色条纹)而R 12制冷系统连接管则无标记。 ④.R 134a制冷剂入口处使用的是快速接头,而R 12制冷系统估用的是螺纹接口。 ⑤.R 134a制冷系统连接软管与仪表的接头具有1/2in英寸螺纹,且高压口的接头比低压口的大;而R12制冷系统连接软管与仪表的接头具有7/16in螺纹。 ⑥.与R12制冷系统相比R134a制冷系统具有较高的压力和温度,需要较大的冷却风扇。 三、 R134a的使用及维修注意事项。 A).用于R 134a的仪器,设备和量具等不能与用R 12的互换,因若在R 134a中混有R12会使压缩面损坏,并且也可能使用仪器和调备损坏。 B).R 134a与R 12制冷剂的冷冻机油不能混用,因为R 134a 与R 12制冷系统的冷冻机油不相容。R12制冷系统一般用国产的18号、25号冷冻机油或日本产的SUNISO3GS、SUNISO4GS、SUNISO5GS

制冷剂的演变及展望

制冷剂的演变与展望 制冷剂的演变及展望 摘要:介绍了制冷剂发展史中三个具有代表性的阶段,提供了几种常用制冷剂的替代方案并展望了制冷剂的未来。 关键词:演变天然制冷剂CFC替代 Refrigerants in evolvement and prospect By Xie Xuming Abstract Reviews three representational changes in the history of the refrigerants used in mech anical refrigeration, provides some projects substituting for widely used refrigerants, and prospe cts the future of refrigerant. Keywords evolvement,natural refrigerant, CFCs replacement 1.前言 制冷剂必须具备一定的特性,包括热力学性质(即沸点、蒸发与冷凝压力、单位容积制冷量、循环效率、压缩终了温度等)、安全性(毒性、燃烧性和爆炸性)、腐蚀性与润滑油的溶解性、水溶性、充注量、导热系数等。 臭氧层的破坏和全球气候变化是当今全球面临的两大主要环境问题。因此,在开发制冷剂时除考虑以上性质外,还需遵循两个重要的选择原则(1)ODP值,即臭氧层破坏潜能;(2)GWP值,即温室效应能力。 制冷剂本身所必须具备的特性和所要遵循的原则决定了制冷剂的发展方向和演变过程。同时,正因为这样,决定了寻找理想的或者环保的制冷剂之路是非常困难和漫长的。为此,本文回顾了制冷剂的发展历史,探讨了未来发展趋势。 2.制冷剂的发展史 从时间上看,制冷剂的发展经历了三个阶段。第一阶段是十九世纪的早期制冷剂;第二阶段是二十世纪时代的CFC与HCFC类制冷剂;第三阶段是二十一世纪的绿色环保制冷剂。 2.1 早期制冷剂 1805年,Oliver Evans最早提出了在封闭循环中,使用挥发性流体的思路,用以将水冷冻成冰。具体描述为,在真空下将乙醚蒸发,并将蒸汽泵到水冷式换热器,冷凝后再利用。1824年, Richard Trevithick首先提出了空气制冷循环设想,但未建成此装置。1834年, Jacob Perkins则第一次开发了蒸气压缩制冷循环,并获得了英国专利(6662号)[1]。在他所设计的蒸气压缩制冷设备中使用二乙醚(乙基醚)作为制冷剂。

制冷剂R22与R134a的应用比较

制冷剂R22与R134a的应用比较

制冷剂R22与R134a的应用比较 目前全社会越来越重视环保问题,部分地区政府相关职能部门也发出了全面禁氟的政策法令,但禁氟不仅是错误的概念,也导致了广大用户和生产厂家的应用困惑。本文从氟利昂概念、国际公约、国家政策、应用特性入手对常用制冷剂R22和R134a做全面分析,以明确制冷剂R22的优势地位。 一、氟利昂的概念 目前,国内很多用户都要求生产厂家采用R134a等环保冷媒,拒绝使用氟里昂R22冷媒,理由是响应国家号召保护环境。其实R22和R134a都是氟利昂家族的成员,属于氢氯氟烃类。氟里昂是饱和烃类(碳氢化合物)的卤族衍生物的总称。从氟里昂的定义可以看出,现在人们所谓的环保冷媒R134a、R410A及R407C等其实都属于氟里昂家族。所以禁氟这一概念把该禁不该禁的内容混为一谈。 氟里昂之所以能够破坏臭氧层是因为制冷剂中含有CL元素,而且随着CL原子数量的增加对臭氧层破坏能力也增加,随着H元素含量的增加

对臭氧层破坏能力降低;造成温室效应主要是因为制冷剂在缓慢氧化分解过程中,生成大量的温室气体,如CO2等。根据分子结构的不同,氟里昂制冷剂大致可以分为以下三大类: 1.氯氟烃类:简称CFC,主要包括R11、R12、R113、R114、R115、R500、R502等,由于其对臭氧层的破坏作用最大,被《蒙特利尔议定书》列为一类受控物质。此类物质目前已被我国逐步禁止使用。 2.氢氯氟烃:简称HCFC,主要包括R22、R123、R141b、R142b等,臭氧层破坏系数仅仅是R11的百分之几,因此,《中国消耗臭氧层物质逐步淘汰国家方案》将HCFC类物质视为CFC类物质的最重要的过渡性替代物质。 3.氢氟烃类:简称HFC,主要包括R134a,R125,R32,R407C,R410A、R152等,臭氧层破坏系数为0,但是气候变暖潜能值较高。 我国目前所使用的所有制冷剂(包括环保冷媒)全部都是氟里昂制品,理想的非氟里昂制冷剂到目前为止还没有研发出来。在新的制冷剂研发出来之前,我们所要解决的是空调机组选用那种制冷剂,对我们赖以生存的环境造成的破坏力相对

混合制冷剂R422D refrigerant r422d

HFC-422d 產品信息 产品名称: R422D 产品类别: HFC 化学成份:五氟乙烷/四氟乙烷/异丁烷混合物 安全等级: A1无毒,不燃 包装规格: 11.3KG/25LB不可回收钢瓶 产品详细介绍: R422D是一种使用简单、ODP(臭氧消耗潜能)为零的HFC制冷剂,可直接替换R-22于中温和低温的直接膨胀(DX)式制冷设备,包括商业超级市场系统,及固定的直接膨胀(DX)式空调设备,包括DX水冷机组。 产品信息 ASHRAE # R-422D 替换: R-22 应用: 中温及低温的商业、工业直接膨胀(DX)式制冷系统,包括: 1)餐饮冷藏 2)超市展示柜 3)食品储藏与加工 4)制冰机 家用、商用空调(AC):

直接膨胀(DX)式水冷机的最佳选择 优点: 提供简单、高效、经济的直接替换–比R-404A, R-507, R-407C 具有更简单的替换 HFC类制冷剂,ODP值为零 兼容传统的、新的润滑油。多数情况下,替换过程无需更换润滑油类型 到目前为止,所有的现场测试是成功的,且无需更换温度调节膨胀阀—可能需要调节过热度 仍可继续使用现有设备 比R-404A 和R-507的全球温室潜力(GWP)低30% 充注使用后,若发现系统内制冷剂容量不足,可以直接重新补足,无需排走全部已灌充的制冷剂 性能表现: 在大多数系统中,具有与R-22非常接近的制冷能力和效率 具有比R-22更低的排气温度,可以延长压缩机的寿命 在低温条件下,提供比R-22高达8%制冷能力及高达14%效率在中温条件且过冷度为6°C时,R422D的制冷能耗比R-22低约5%,但效率与R-22相当 产品淘汰期限: R422D 制冷剂ODP为零,因此不受《蒙特利尔》草案法规中淘汰物质的管制。

三种压缩机性能特点优缺点比较

螺杆式压缩机又称螺杆压缩机。20世纪50年代,就有喷油螺杆式压缩机应用在 制冷装置上,由于其结构简单,易损件少,能在大的压力差或压力比的工况下, 排气温度低,对制冷剂中含有大量的润滑油(常称为湿行程)不敏感,有良好的输气量调节性,很快占据了大容量往复式压缩机的使用范围,而且不断地向中等容量范围延伸,广泛地应用在冷冻、冷藏、空调和化工工艺等制冷装置上。 以它为主机的螺杆式热泵从20世纪70年代初便开始用于采暖空调方面,有空气热源型、水热泵型、热回收型、冰蓄冷型等。在工业方面,为了节能,亦采用螺杆式热泵作热回收. 离心式压缩机是一种叶片旋转式压缩机(即透平式压缩机)。在离心式压缩机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。 早期,由于这种压缩机只适于低,中压力、大流量的场合,而不为人们所注意。由于化学工业的发展,各种大型化工厂,炼油厂的建立,离心式压缩机就成为压缩和输送化工生产中各种气体的关键机器,而占有极其重要的地位.随着气体动力学研究的成就使离心压缩机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心压缩机向高压力,宽流量范围发展的一系列问题,使离心式压缩机的应用范围大为扩展,以致在很多场合可取代往复压缩机,而大大地扩大了应用范围。 是各类压缩机中发展最早的一种,公元前1500年中国发明的木风箱为往复活塞压缩机的雏型。18世纪末,英国制成第一台工业用往复活塞空气压缩机。20世纪30年代开始出现迷宫压缩机,随后又出现各种无油润滑压缩机和隔膜压缩机。50年代出现的对动型结构使大型往复活塞压缩机的尺寸大为减小,并且实现了 单机多用. 活塞式压缩机使用历史悠久,是目前国内用得最多的制压缩机。由于其压力范围广,能够适应较宽的能量范围,有高速、多缸、能量可调、热效率高、适用于多种工况等优点;其缺点是结构复杂,易损件多,检修周期短,对湿行程敏感,有脉冲振动,运行平稳性差。 螺杆压缩机是一种新的压缩装置,它与往复式相比: 优点: ①机器结构紧凑,体积小,占地面积少,重量轻.

浅析制冷剂的分类及应用

浅析制冷剂的分类及应用 制冷剂又称制冷工质,在南方一些地区俗称雪种。它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。 根据制冷剂的化合物组成有以下四类: 1.无机化合物制冷剂无机化合物制冷剂是使用较早的制冷剂,后来逐渐为氟利昂制冷剂所取代,但氨和水依然作为制冷剂应用于空调制冷行业中。 2.卤族化合物制冷剂(氟利昂制冷剂)氟利昂(英语Freon的译音)是中、小型空调、食品冷藏与家用冰箱中使用量最普遍的制冷剂,也是目前对人体危害最小的制冷剂。最常用的氟利昂制冷剂是R22、R134a及R13。 3.碳氢化合物制冷剂碳氢化合物制冷剂主要作为工业制冷装置的制冷剂。 4.共沸混合物制冷剂共沸混合物制冷剂是由两种或两种以上共熔的单纯制冷剂,在常温下按一定比例混合而成。混合物的性质同单纯制冷剂的性质一样,具有较为固定的蒸发温度和冷凝温度。常用的有R502、R503等。 根据制冷剂使用的温度范围,可分为高温、中温、低温三大类。 1.高温制冷剂又称低压制冷剂。其蒸发温度高于0℃,冷凝压力低于0.3MPa,如R21等,适用于离心式压缩机的空调系统。 2.中温制冷剂又称为中压制冷剂。其蒸发温度为-50~0℃,冷凝压力为1.5~2.0MPa,如R22、R502等。其适用范围较广,适用于活塞式压缩机的电冰箱、食堂小冷库、空调用制冷系统、大型冷藏库等制冷装置中。 3.低温制冷剂又称高压制冷剂。其蒸发温度低于-50℃,冷凝压力为2.0~ 4.0MPa,如R13、R14等,主要用于低温的制冷设备中,如复叠式低温制冷装置。 以上和顺制冷小编为您介绍了这么多,不知道您了解多少,如果您还有其他疑问欢迎致电和顺制冷!和顺制冷作为冷库行业的知名品牌,一直专注于制冷领域。凭借在制冷领域的专业水平和成熟技术,在行业迅速崛起。希望与业界各方一起努力,为中国的冷库行业发展做出贡献。

三种压缩机性能特点优缺点比较

织杆式压缩机就有喷油螺杆式压缩机应用在制冷装量上,世纪50年代,螺杆式压缩机又称螺杆压缩机。20由于其结构简单,易损件少,能在大的压力差或压力比的工况下,排气溫度低,对制冷剂中含有大量的润滑油(常称为湿行程)不敏感,有良好的输气量调节性,很 快占据了大容量往复式压缩机的使用范?, 而且不断地向中等容量范H延伸,广泛地应用在冷冻、冷藏、空调和化工工艺等制冷装置上。年代初便开始用于采暖空调方面,有空气热 源型、7020世纪以它为主机的螺杆式热泵从水热泵型、热回收型、冰畫冷型等。在工业方面,为了节能,亦采用螺杆式热泵作热回收。离心式压缩机离心式压缩机是一种叶片旋转式压缩机(即透平式压缩机\在离心式压缩机中,高速旋转使气体压力得到提以及在扩压通道中给予气体的扩压作用,的叶轮给予气体的离心力作用,高。 早期,由于这种压缩机只适于低,中压力、大流量的场合,而不为人们所注意。 由于化学工业的发展,各种大型化工厂,炼油厂的建立,离心式压缩机就成为压缩和输送化工生产中各种气体的关键机器,而占有极其重要的地位。随看气体动力学研究的成就使离心压缩机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心压缩机向高压力,宽流量范围发展的一系列问题,使离心式压缩机 的应用范E大为扩展,以致在很多场合可取代往复压缩机,而大大地扩大了应用范围。 往复活塞压缩机年中国发明的木冈箱为往复活塞压缩机的雏公元前1500是各类压缩机中发展最早的一种,年代开始出现迷世纪3020型。18世纪末,英国制成第一台工业用往复活塞空气压缩机。年代出现的对动型结构使大50宫压缩机,随后又出现各 种无油润滑压缩俯口隔膜压缩机。型往复活塞压缩机的尺寸大为减小,并且实现了单机多用。 活塞式压缩机使用历史悠久,是目前国内用得最多的制压缩机。由于其压力范S 广,能够适应较宽的能量范围,有高速、多缸、能量可调、热效率高、适用于多种工况等优点;其缺点是结构复杂,易损件多,检修周期短,对湿行程敏感,有脉冲振动,运行平稳性差。 螺杆压缩机是一种新的压缩装置”它与往复式相比: 优点: ①机器结构紧凑,体积小,占地面积少,重量轻。 ②热效率高,加工件少,压缩机的零件总数只有活塞式的1/10.机器易损件少, 运行安全可靠,操作维护简单。 ③气体没有脉动,运转平稳,机组对基础不高不需要专门基础④运行中向转子腔喷油,因此排气溫度低。 ⑤对湿行程不敏感,湿蒸汽或少量液体进入机内,没有液击危险。

制冷剂的发展历史和应用..

制冷剂的发展历史和应用 摘要 社会生产力的随着快速发展和人民生活水平的显著提高,制冷技术在工程和生活中的应用越发的深入和广泛。而在蒸汽压缩式制冷系统中,制冷剂被形象的称之为“血液”。本文对制冷剂的发展历史进行了简单的介绍,并列举出了一些制冷剂在各个应用领域的最新研究和进展。制冷剂随着制冷技术的发展而不断变迁,大致可分为4个阶段。从最初能用即可的原则,因为工业发展的需要,进入到以安全及耐久性为主的第二阶段。随着环境问题的加剧,制冷剂步入围绕臭氧层保护的第三阶段。而今,对制冷剂的探索没有停止,防止全球变暖,低ODP,低GWP,短寿命,高效是我们对制冷剂的目标。制冷剂在各个领域应用广泛,家用空调,中大型冰库,车载空调等,都可以看到制冷剂活跃的身影,而针对各个领域的制冷剂的技术革新研究也将会被提及。 关键词制冷剂发展阶段应用环境问题发展方向 引言 当前世界的环境问题主要是臭氧层遭受破坏和全球范围的变暖。然而,CFC 与HCFC类制冷剂在制冷空调热泵等行业广泛的采用,它对臭氧层有一定的破坏作用还是温室效应的一个重要因素。它对环境的负面影响使得这一行业在全世界都面临重大的压力。但是,到现在为止,一些在国外使用的HFC类和碳氢类替代制冷剂还不太理想,多多少少都存在一些瑕疵。比如说大部分的HFC类制冷剂及其混合制冷剂的GWP还是相当的高,对温室效应影响显著,对排放量还需要严格的控制;而碳氢类制冷剂的安全问题也普遍存在,它的强可燃性令人担忧,当在大中型制冷空调热泵设备使用时,安全措施很技术的要求很高。所以,从制冷剂的发展历史中探索,吸收经验,寻求科学、正确地解决满足环保要求的制冷剂在各种生产和生活的应用的替代问题,避免我们走弯路是非常重要的。为此,本文回顾了制冷剂的发展历史,综述了制冷剂在各个领域的应用及其相关最新研究,探讨了未来发展趋势。 根据J . M . Calm[1-2]的描述,目前人们将制冷剂的发展分为4个阶段,各阶段的特征如表1所示,以下对各发展时期的情况做一简述。

制冷剂和冷冻油的正确使用

专业理论课电子教案模板 专业名称汽修 课程名称汽车空调检修 授课教师张建强 班级15汽车1、2班 教研组长董秀娇

教学环节及内容 教学策略 方法组织实施 一、组织教学 老师:上课 学生:起立 学生:老师好 老师:同学们好 老师:坐下 老师:点名 二、复习与导入 通过观测制冷剂及冷冻油的食物,引入汽车空调为什么要使用专门的制冷剂与冷冻油。 三、新授 活动5 制冷剂和冷冻油的正确使用 一、制冷剂 制冷剂是汽车空调中使用的一种特定的化学物质。它是一种流体。 制冷剂采用英文单词Refrigerant的首写字母R 作为总代号。并在R的后面用数字来区分不同的制冷剂。 在我国,车用空调使用的制冷剂主要是R12与R134a两种,如图1-29所示。 1.R134a制冷剂的主要性能 R134a制冷剂是乙烷的衍生物。化学名为-四氟乙烷。 (1)R134a的安全性好,无色,无味,不燃烧,不爆炸,基本无毒性,化学性质稳定,无腐蚀性。(2 )蒸发潜热高,具有较好的制冷能力。 (3 )R134a的主要热力性能并与R12对比如下表1-2所示。 表1-2 R134a与R12主要热力特性对比 特性项目R134a R12 分子量102.9

120.9 标准大气压下-26.5℃ -29.8℃ 沸点 凝固温度-101℃ -157℃ 临界温度101.1℃ 111.7℃ 临界压力 4.07MPa 4.12MPa 临界比容 1.942dm3/kg 1.793 dm3/kg 汽化潜热(0℃) 197.29kJ/kg 151.5 kJ/kg 分子式CH2FCF3 CF2Cl2 2.R134a的不足 (1) 分子量小,即分子直径比R12略小,所以更容易通过橡胶向外泄漏。 (2) 虽然不含氯原子,臭氧层破坏系数为零。但仍有温室效应。 3.R134a的蒸气压力曲线 图1-30曲线表明,134a的沸点温度,将随着加在液体上的压力的不同而改变。 二、冷冻油 制冷系统中的润滑油称为冷冻油。汽车空调中,冷冻油是与制冷剂溶合在一起工作、流动的。1.冷冻油的作用 (1)润滑作用 (2)冷却作用 (3)密封作用。 2.与R134a相溶的冷冻机油 (1)PAG油(英文名为Poly alkyene glycol:聚链烯乙二醇)是一种合成多元醇。 其特点是:

三种压缩机性能特点、优缺点比较

1螺杆式压缩机 螺杆式压缩机又称螺杆压缩机。20世纪50年代,就有喷油螺杆式压缩机应用在制冷装置上,由于其结构简单,易损件少,能在大的压力差或压力比的工况下,排气温度低,对制冷剂中含有大量的润滑油(常称为湿行程)不敏感,有良好的输气量调节性,很快占据了大容量往复式压缩机的使用范围,而且不断地向中等容量范围延伸,广泛地应用在冷冻、冷藏、空调和化工工艺等制冷装置上。 以它为主机的螺杆式热泵从20世纪70年代初便开始用于采暖空调方面,有空气热源型、水热泵型、热回收型、冰蓄冷型等。在工业方面,为了节能,亦采用螺杆式热泵作热回收。 2离心式压缩机 离心式压缩机是一种叶片旋转式压缩机(即透平式压缩机)。在离心式压缩机中,高速旋转的叶轮给予气体的离心力作用,以及在扩压通道中给予气体的扩压作用,使气体压力得到提高。

早期,由于这种压缩机只适于低,中压力、大流量的场合,而不为人们所注意。由于化学工业的发展,各种大型化工厂,炼油厂的建立,离心式压缩机就成为压缩和输送化工生产中各种气体的关键机器,而占有极其重要的地位。随着气体动力学研究的成就使离心压缩机的效率不断提高,又由于高压密封,小流量窄叶轮的加工,多油楔轴承等技术关键的研制成功,解决了离心压缩机向高压力,宽流量范围发展的一系列问题,使离心式压缩机的应用范围大为扩展,以致在很多场合可取代往复压缩机,而大大地扩大了应用范围。 3往复活塞压缩机 是各类压缩机中发展最早的一种,公元前1500年中国发明的木风箱为往复活塞压缩机的雏型。18世纪末,英国制成第一台工业用往复活塞空气压缩机。20世纪30年代开始出现迷宫压缩机,随后又出现各种无油润滑压缩机和隔膜压缩机。50年代出现的对动型结构使大型往复活塞压缩机的尺寸大为减小,并且实现了单机多用。

制冷剂的发展及应用

制冷剂的发展及应用 摘要:制冷剂是制冷装置必不可少的部分。本文回顾了制冷剂的发展的三个历史阶段历史,综述了目前适应环保需要的国外制冷剂现状及其使用中的主要技术问题,探讨了制冷剂未来发展趋势。 关键词:制冷剂;环境保护;氟里昂;发展 The development and application of the refrigerant Abstract:The refrigerant is an essential part of the refrigeration apparatus. This paper reviews the three historical stages of the development of the refrigerant history reviewed to adapt to the needs of environmental protection abroad refrigerant status quo and its use mainly technical issues, discusses the future trends of the refrigerant. Key words: Refrigerant; Environmental protection; Freon; The development 前言(引言): 每当烈日炎炎人们自然会想起空调带来的丝丝凉意和舒适;想喝一杯冰箱里透心凉的冷饮。这一切都是制冷技术带给人类的巨大福音。在科技发展的今天,空调器、冰箱走进了社会各个领域,给人们的生产生活带来了极大的便利,特别是近年来,制冷技术得到飞跃,尤其是制冷剂的使用得到很大的发展,更新换代的脚步日益加快。 然而臭氧层的破坏和全球范围气候变化,已成为房前世界所面临的主要环境问题。由于制冷空调热泵行业广泛采用的CFC与HCFC类制冷剂对臭氧层有破坏作用以及能产生温室效应,所以绿色环保制冷剂的替代和发展成为众多从事制冷剂研究的科研人员关注的热门话题。 正文: 1.制冷剂的介绍 制冷剂又称制冷工质,在南方一些地区俗称雪种。它是在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。它在系统的各个部件间循环流动以实现能量的转换和传递,达到制冷机向高温热源放热;从低温热源吸热,实现制冷的目的。 1.1.制冷剂的分类 根据制冷剂的分子结构可将制冷剂分为无机化合物和有机化合物;根据制冷剂的组成可分为单一制冷剂和混合制冷剂;根据制冷剂的物理性质可将制冷剂分为高温(低压)、中温(中压)、低温(高压)制冷剂。 通常按照化学成分,制冷剂可分为五类:无机化合物制冷剂、氟里昂、饱和碳氢化合物

相关主题
文本预览
相关文档 最新文档