当前位置:文档之家› 基于有限元方法的直齿轮传动系统的模态仿真分析

基于有限元方法的直齿轮传动系统的模态仿真分析

基于有限元方法的直齿轮传动系统的模态仿真分析
基于有限元方法的直齿轮传动系统的模态仿真分析

ansys齿轮模态分析

基于ANSYS 的齿轮模态分析 齿轮传动是机械传动中最重要的传动部件,被广泛的应用在各个生产领域中,经常用在重要的场合;传动齿轮在工作过程中受到周期性载荷力的作用,有可能在标定转速内发生强烈的共振,动应力急剧增加,致使齿轮过早出现扭转疲劳和弯曲疲劳。静力学计算不能完全满足设计要求,因此有必要对齿轮进行模态分析,研究其振动特性,得到固有频率和主振型(自由振动特性)。同时,模态分析也是其它动力学分析如谐响应分析、瞬态动力学分析和谱分析的基础。 本文运用UG 对齿轮建模并用有限元软件ANSYS 对齿轮进行模态分析,为齿轮动态设计提供了有效的方法。 1.模态分析简介 由弹性力学有限元法,可得齿轮系统的运动微分方程为: []{}[]{}[]{}{()}M X C X K X F t ++= (1) 式中,[]M ,[]C ,[]K 分别为齿轮质量矩阵、阻尼矩阵和刚度矩阵;分别为齿轮振动加速度向量、速度向量和位移向量,{}X 、{}X 、{}X 分别为齿轮振动加速度向量、速度向量和位移向量,12{}{,, ,}T n X x x x =;{()}F t 为齿轮所受外界激振力向量,{}12{()},,T n F t f f f =。若无外力作用,即{}{()}0F t =,则得 到系统的自由振动方程。在求齿轮自由振动的频率和振型即求齿轮的固有频率和固有振型时,阻尼对它们影响不大,因此,可以作为无阻尼自由振动问题来处理 [2]。无阻尼项自由振动的运动方程为: []{}[]{}0M X K X += (2) 如果令 {}{}sin()X t φωφ=+ 则有 2{}{}sin()X t ωφωφ=+ 代入运动方程,可得 2([][]){}0i i K M ωφ-= (3) 式中i ω为第I 阶模态的固有频率,i φ为第I 阶振型,1,2, ,i n =。 2.齿轮建模 在ANSYS 中直接建模有一定的难度,考虑到其与多数绘图软件具有良好的数据接口,可以方便的转化,而UG 软件以其参数化、全相关的特点在零件造型方面表现突出,可以通过参数控制模型尺寸的变化,因此本文采用通过UG 软件对齿轮进行参数化建模,保存为IGES 格式,然后将模型导入到ANSYS 软件中的方法。设有模数m=2.5mm ,齿数z=20,压力角β=20°,齿宽b=14mm ,孔径为¢20mm 的标准齿轮模型。如图1

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

有限元模态分析报告实例

ANSYS模态分析实例 5.2ANSYS建模 该课题研究的弹性联轴器造型如下图5.2: 在ANSYS中建立模型,先通过建立如5.2所式二分之一的剖面图,通过绕中轴线旋转建立模拟模型如下图5.3

5.3单元选择和网格划分 由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划分模型实体。课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分后模型如图5.4。 5.4边界约束 建立柱坐标系R-θ-Z,如5-5所示,R为径间,Z为轴向

选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转 5.5联轴器模态分析 模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。 在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。因此在设置中间件2的材料属性时,选用elastic材料。 5.5.1联轴器材料的设置 材料参数设置如下表5-1: 表5.1材料参数设置 表5.1材料参数设置 铁圈1 中间件2 铁圈3 泊松比0.3 0.4997 0.3 弹性模量Mpa 2E5 1.274E3 2E5 密度kg/m 7900 1000 7900 5.5.2联轴器振动特性的有限元计算结果及说明 求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6: 表5.2固有频率 SET TEME/FREQ LOAO STEP SUBSTEP CUMULATIVE 1 40.199 1 1 1 1 73.63 2 1 2 2 3 132.42 1 3 3 4 197.34 1 4 4

斜齿轮的优化设计与有限元分析

现代设计方法三级项目报告斜齿轮的优化设计与有限元分析 姓名: 课程名称:现代设计方法 指导教师: -------------------------------------------------------来自燕大 2013年5月

目录 1 任务分工 0 2 问题描述 0 3 基于matlab的斜齿轮参数优化 0 3.1 目标函数的建立 0 3.2 约束条件的建立 (1) 3.3 建立数学模型 (2) 3.4 斜齿轮参数 (2) 4 基于ansys的斜齿轮有限元分析 (3) 4.1 网格划分本 (3) 4.2 加载 (4) 4.3 受力分析 (5) 4.4 分析结果 (5) 5 总结 (6) 6 参考文献 (6)

斜齿轮的优化设计与有限元分析 徐航,赵航,骆华玥 (燕山大学 机械工程学院) 摘 要: 本文利用matlab 和ansys 对二级同轴斜齿轮减速器进行了优化设计。通过对中心距的优化 得到了最理想的齿轮参数,即在满足使用强度的前提下,最大限度的降低了成本。 1 任务分工 徐航负责Matlab 与Ansys 的模拟仿真 赵航负责模型的建立及数值的分析计算 骆华玥负责演示文稿与说明书的制作。 2 问题描述 齿轮减速器广泛应用在煤炭、 机械等行业,传统设计全由设计人员手工完成, 但在性能更好、 使用更可靠方便、 成本更低、 体积或质量更小的指标要求下, 希望能从一系列可行的设计方案中精选最优, 传统的设计方法做不到, 因而有必要采用matlab 优化方法来确定其设计参数。再运用Ansys 软件来对其进行受力模拟,通过Ansys 就可以辨别优化方案的可靠性,对其进行筛选,通过Matlab 与Ansys 软件的共同使用就可以对方案进行提前鉴别,避免了不必要的损失,更有利于资源的优化使用和效益的产生。 3 基于matlab 的斜齿轮参数优化 3.1 目标函数的建立 据优化目标的不同, 齿轮减速器设计可以有多种最优化方案,文中讨论的是在满足齿轮传动强度、刚度和寿命条件下,使减速器体积最小或质量最小。显然,若减速器结构紧凑, 则其重量和体积为最小,而结构的紧凑与否,关键在于减速器的总中心距,因此以总中心距最小为优化目标,建立优化设计数学模型。二级斜齿圆柱齿轮减速器总中心距 A 的数学表达式为 ()()3434 33412121 12211cos 21cos 2i Z m i Z m A A A n n +=+= ==ββ 式中 mn12,i12和 mn34,i34———高速级和低速级齿轮的法向模数和传动比 Z1,Z3———高速级和低速级小齿轮的齿数 β———斜齿轮螺旋角 因为总传动比 i 已知,则 i12=i34=√2。又因为是同轴减速器mn12=mn34,Z1=Z3, β12=β34。所以目标函数有3个独立的设计变量: [][] T n T Z m x x x X 34 334321,,,,β == 令f (x )=A ,所以目标函数的表达式是:

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

斜齿轮的优化设计与有限元分析

现代设计方法三级项目报告斜齿轮的优化设计和有限元分析 姓名: 课程名称:现代设计方法 指导教师: -------------------------------------------------------来自燕大 2013年5月

目录 1 任务分工 0 2 问题描述 0 3 基于matlab的斜齿轮参数优化 0 3.1 目标函数的建立 0 3.2 约束条件的建立 (1) 3.3 建立数学模型 (2) 3.4 斜齿轮参数 (2) 4 基于ansys的斜齿轮有限元分析 (3) 4.1 网格划分本 (3) 4.2 加载 (4) 4.3 受力分析 (5) 4.4 分析结果 (5) 5 总结 (6) 6 参考文献 (6)

斜齿轮的优化设计和有限元分析 徐航,赵航,骆华玥 (燕山大学 机械工程学院) 摘 要: 本文利用matlab 和ansys 对二级同轴斜齿轮减速器进行了优化设计。通过对中心距的优化 得到了最理想的齿轮参数,即在满足使用强度的前提下,最大限度的降低了成本。 1 任务分工 徐航负责Matlab 和Ansys 的模拟仿真 赵航负责模型的建立及数值的分析计算 骆华玥负责演示文稿和说明书的制作。 2 问题描述 齿轮减速器广泛使用在煤炭、 机械等行业,传统设计全由设计人员手工完成, 但在性能更好、 使用更可靠方便、 成本更低、 体积或质量更小的指标要求下, 希望能从一系列可行的设计方案中精选最优, 传统的设计方法做不到, 因而有必要采用matlab 优化方法来确定其设计参数。再运用Ansys 软件来对其进行受力模拟,通过Ansys 就可以辨别优化方案的可靠性,对其进行筛选,通过Matlab 和Ansys 软件的共同使用就可以对方案进行提前鉴别,避免了不必要的损失,更有利于资源的优化使用和效益的产生。 3 基于matlab 的斜齿轮参数优化 3.1 目标函数的建立 据优化目标的不同, 齿轮减速器设计可以有多种最优化方案,文中讨论的是在满足齿轮传动强度、刚度和寿命条件下,使减速器体积最小或质量最小。显然,若减速器结构紧凑, 则其重量和体积为最小,而结构的紧凑和否,关键在于减速器的总中心距,因此以总中心距最小为优化目标,建立优化设计数学模型。二级斜齿圆柱齿轮减速器总中心距 A 的数学表达式为 ()()3434 33412121 12211cos 21cos 2i Z m i Z m A A A n n +=+= ==ββ 式中 mn12,i12和 mn34,i34———高速级和低速级齿轮的法向模数和传动比 Z1,Z3———高速级和低速级小齿轮的齿数 β———斜齿轮螺旋角 因为总传动比 i 已知,则 i12=i34=√2。又因为是同轴减速器mn12=mn34,Z1=Z3, β12=β34。所以目标函数有3个独立的设计变量: [][] T n T Z m x x x X 34 334321,,,,β == 令f (x )=A ,所以目标函数的表达式是:

机械零件有限元分析——实验报告

中南林业科技大学机械零件有限元分析 实验报告 专业:机械设计制造及其自动化 年级: 2013级 班级:机械一班 姓名:杨政 学号:20131461 I

一、实验目的 通过实验了解和掌握机械零件有限元分析的基本步骤;掌握在ANSYS 系统环境下,有限元模型的几何建模、单元属性的设置、有限元网格的划分、约束与载荷的施加、问题的求解、后处理及各种察看分析结果的方法。体会有限元分析方法的强大功能及其在机械设计领域中的作用。 二、实验内容 实验内容分为两个部分:一个是受内压作用的球体的有限元建模与分析,可从中学习如何处理轴对称问题的有限元求解;第二个是轴承座的实体建模、网格划分、加载、求解及后处理的综合练习,可以较全面地锻炼利用有限元分析软件对机械零件进行分析的能力。

实验一、受内压作用的球体的有限元建模与分析 对一承受均匀内压的空心球体进行线性静力学分析,球体承受的内压为 1.0×108Pa ,空 心球体的内径为 0.3m ,外径为 0.5m ,空心球体材料的属性:弹性模量 2.1×1011,泊松比 0.3。 承受内压:1.0×108 Pa 受均匀内压的球体计算分析模型(截面图) 1、进入 ANSYS →change the working directory into yours →input jobname: Sphere 2、选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→ Options… →select K3: Axisymmetric →OK →Close (the Element Type window) 3、定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3→ OK 4、生成几何模型生成特征点 ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input :1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3)→OK 生成球体截面 ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In ActiveCoord → 依次连接 1,2,3,4 点生成 4 条线→OK Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条线→OK ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 5、网格划分 ANSYS Main Menu : Preprocessor →Meshing →Mesh Tool →(Size Controls) lines: Set

有限元模态分析报告实例

ANSYS 模态分析实例 5.2ANSYS 建模 该课题研究的弹性联轴器造型如下图 5.2 : 图勺2弹性联轴器 1-联接柴油机大铁圈;茁橡胶膜片;3-联接电动机小铁圈 在ANSYS 中建立模型,先通过建立如 5.2所式二分之一的剖面图,通过绕中轴线 旋转建立模拟模型如下图 5.3资料个人收集整理,勿做商业用途 _.:q: 4 1(. 片三 _」」_止

5.3单元选择和网格划分 由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划 分模型实体。课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2 网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分 后模型如图5.4。资料个人收集整理,勿做商业用途 5.4边界约束 建立柱坐标系R- &Z,如5-5所示,R为径间,Z为轴向

选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转资料个人收集整理,勿做商业用途 5.5联轴器模态分析 模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。资料个人收集整理,勿做商业用途在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。因此在设置中间件2的材料属性时,选用elastic材料。资料个人收集整理,勿做商业用途 5.5.1联轴器材料的设置 材料参数设置如下表5-1 : 表5.1材料参数设置 表5.1材料参数设置 5.5.2联轴器振动特性的有限元计算结果及说明 求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6: 表5.2固有频率

有限元实验报告模板

有限元实验报告 T1013-5 20100130508 蔡孟迪

ANSYS有限元上机报告(一) 班级:T1013-5 学号:20100130508 姓名:蔡孟迪 上机题目: 图示折板上端固定,右侧受力F=1000N,该力均匀分布在边缘各节点上;板厚t=2mm 材料选用低碳钢,弹性模量E=210Gpa,μ=0.33. 一、有限元分析的目的: 1.利用ANSYS构造实体模型; 2.根据结构的特点及所受载荷的情况,确定所用单元类型;正确剖分网格并施加外界条件;3.绘制结构的应力和变形图,给出最大应力和变形的位置及大小;并确定折板角点A处的应力和位移; 4.研究网格密度对A处角点应力的影响; 5.若在A处可用过渡圆角,研究A处圆角半径对A处角点应力的影响。 二、有限元模型的特点: 1.结构类型 本结构属于平面应力类型 2.单位制选择 本作业选择N(牛),mm(毫米),MPa(兆帕)。 3.建模方法 采用自左向右的实体建模方法。 4.定义单元属性及类型 1)材料属性:弹性模量:EX=2.10E5MPa, 泊松比:PRXY=0.33 2)单元类型:在Preferences选Structural,Preprocessor>ElemmentType>Add/Edit/Delete中定义单元类型为:Quad4 node 182,K3设置为:平面薄板问题(Plane strs w/thk) 3)实常数:薄板的厚度THK=2mm 5.划分网格 在MeshTool下选set,然后设置SIZE Element edge length的值,再用Mesh进行网格划分。6.加载和约束过程:在薄板的最上端施加X、Y方向的固定铰链,在薄板的最右端施加1000N 的均匀布置的载荷。

模态分析有限元仿真分析学习心得

有限元仿真分析学习心得 1 有限元分析方法原理 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元法是随着电子计算机发展而迅速发展起来的一种工程力学问题的数值求解方法。20世纪50年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析之中,用以求得结构的变形、应力、固有频率以及阵型。由于其方法的有效性,迅速被推广应用于机械结构分析中。随着电子计算机的发展,有限元法从固体力学领域扩展到流体力学、传热学、电磁学、生物工程学、声学等。 随着计算机科学与应用技术的发展,有限元理论日益完善,随之涌现了一大批通用和专业的有限元计算软件。其中,通用有限元软件以ANSYS,MSC公司旗下系列软件为杰出代表,专业软件以ABAQUS、LS-DYNA、Fluent、ADAMS 为代表。 ANSYS作为最著名通用和有效的商用有限元软件之一,集机构、传热、流体、电磁、碰撞爆破分析于一体,具有强大的前后处理及计算分析能力,能够进行多场耦合,结构-热、流体-结构、电-磁场的耦合处理求解等。 有限元分析一般由以下基本步骤组成: ①建立求解域,并将之离散化成有限个单元,即将问题分解成单元和节点; ②假定描述单元物理属性的形(shape)函数,即用一个近似的连续函数描述每个单元的解; ③建立单元刚度方程; ④组装单元,构造总刚度矩阵; ⑤应用边界条件和初值条件,施加载荷; ⑥求解线性或者非线性微分方程组得到节点值,如不同节点的位移; ⑦通过后处理获得最大应力、应变等信息。 结构的离散化是有限元的基础。所谓离散化就是将分析的结构分割成为有限

基于ANSYS的齿轮强度有限元分析

62 2013年第31期(总第274期) NO.31.2013 ( CumulativetyNO.274 ) 通常在设计齿轮强度选择过程中,采取的多是人工方式进行设计和齿轮强度校验,具体方法是材料力学,用齿轮作为悬臂梁,对齿面接触强度和翅根弯曲强度进行设计和校核。接着利用所得的设计结果对结构进行设计,同时将二维图纸画出来。 1 设计想法 实践中可以看到,ANSYS技术对复杂实体建模表现出一定的局限性,一方面难以保证渐开线齿廓自身的形状精确度,另一方面也不能完成参数化设计。对于Pro/E软件而言,其可以有效解决这一问题,实现这一操作目标;此外,与ANSYS之间的数据接口性能也比较好。笔者建议在Pro/E软件应用基础上,建立一个精确度非常高的三维参数化圆柱齿轮模型,然后向ANSYS中导入Pro/E软件得到的模型,对齿轮模态、静态特性等进行有限元分析,此时推土机的终传齿轮自身的强度特性就可以得出,最后可以通过振型图、应用云图以及变形云图等方式和方法,对分析结果进行最为直接的显示。 2 建模 图1?齿轮模型 以笔者之见,齿轮模型建立只需将模数、齿数以及压力角和螺旋角等齿轮参数整合,并对轮缘、辅板的厚度以及轴孔的半径等参数进行综合考虑,便可以自动生成 齿轮。 低,所以得到了极大的推广。而现代社会中随着PC机的普及发展,虚拟仪器的测试技术得到了实现,与前两段历程相比,这个阶段操作性更强,且费用最低,其灵活性与效率也最高,势必在将来得到大发展,但是其漏洞在于潜在的第三方技术的升级成为了始终威胁安防系统的隐患。 5 结语 信息技术与通信技术的发达使安防技术的质量与效率愈加提高完善。目前,安防技术已经涵盖了几乎所有行业,包括建筑、生活区、银行、交通、车辆等。伴随人民生活水平的提高其需求水平相应增加,安防意识也越来越强,信息技术的飞速发展也反过来刺激了不法人员的升级换代,所以安防系统的重要性可想而知,由于智能安防市场的扩大,越来越多的企业开始介入对其的研发,但是客观的安防并不能根除危机隐患,要从根本上杜绝还依赖于社会精神文明的建设,人民总体素质的提高。 参考文献 [1] 汪光华.智能安防视频监控全面解析与实例分析[M]. 北京:机械工业出版社,2008.[2] 西刹子.安防天下[M].北京:清华大学出版社, 2010.[3] 陈龙.智能建筑安防系统[M].北京:机械工业出版 社,2012. [4] 薛亮.适用于智能化建筑和小区管理的安防系统研究 与开发[J].天津科技,2009.[5] 许恩江,吴波,王保山.智能机器人的安防和服务功 能系统设计及应用[J].实验科技与管理,2010,11.[6] 宋杰,张宇松,刘平心.基于互联网的智能变电站新 型安防设计方案[J].电力信息化,2012,6. [7] 唐铮,程三友.从世博会看智能建筑安防技术发展方 向[J].建筑电气,2011,3. 基于ANSYS的齿轮强度有限元分析 章俊华 (福建龙净脱硫脱硝工程有限公司,福建 龙岩 364000) 摘要:通常在设计齿轮强度时,用齿轮作为悬臂梁,对齿面接触强度和翅根弯曲强度进行设计和校核。因为齿轮有着极为复杂的受力和结构形状,特别是在进行工作的时候常常会受到动载的作用,同设想中梁承受静载的状况差距过大,造成很大的误差,使结构整体的应力情况和变形无法反映出来。关键词:ANSYS;齿轮强度;有限元分析 中图分类号:TH132 文献标识码:A 文章编号:1009-2374(2013)31-0062-02

增速斜齿轮的接触应力有限元分析

第31卷第05期煤矿机械V01.31No.052010年05月CoalMineMachineryMay.2010 增速斜齿轮的接触应力有限元分析 张楠1。周珊珊1.张延化2 (1.济南市特种设备监督检验所,济南250002;2.青岛理工大学,山东青岛266033)摘要:通过Pro/E软件建立斜齿轮三维模型.利用数据接口将模型导入到ANSYS有限元软件中,建立有限元模型对斜齿轮进行接触分析。通过选择不同的啮合位置。建立接触对。进行接触应力计算,并比较不同啮合点的应力大小。找出轮齿啮合时的应力分布规律。研究结果对增速斜齿轮的优化设计、结构改进有一定的参考价值。 关键词:斜齿轮:有限元:ANSYS 中图分类号:THl32.41文献标志码:A文章编号:1003—0794(2010)05—0094—02FiniteElementAnalysisofAcceleratingHelicalGear’SContactStress ZHANGNan‘.ZHOUShan-shan‘,ZHANGYan-hua2 (1.SupervisionandInspectionofSpecialEquipmentinJinan,Jinan250002,China;2.QingdaoTechnologicalUniversity, Qingdao266033,China) Abstract:Throughtheestablishmentofthree—dimensionalmodelofhelicalgear,chosedifferentmeshingpositions,thecontactstressiscalculatedinANSYS,andthestressintensityiscomparedondifferentmeshingpoints,thestressdistributionisidentified.Theresearchresulthassomereferencevalueontheimprovementandtheoptimizationdesignofthegear. Keywords:helicalgear;finiteelement;ANSYS 0引言 在对风力发电机增速装置进行齿轮动力学分 析时,进行斜齿轮接触应力计算.分析啮合轮齿随 时间变化的应力分布是很重要的。在润滑良好的闭 式齿轮传动中。常见的齿面失效形式多是点蚀。点 蚀是齿面材料在变化着的接触应力作用下.由于疲劳而产生的麻点状损伤现象。为了使齿轮达到使用要求,满足使用寿命。要保证齿面具有较高的接触疲劳强度。接触疲劳强度受很多因素的影响.比如齿面接触应力、齿面滑动速度、轮齿润滑状态以及材料的力学性能等.其中接触应力对齿面接触疲劳强度的影响最大. 1增速斜齿轮三维建模 在有限元分析过程中.建模是非常关键的步骤,模型是否准确将直接影响计算结果的正确性.如果说模型是错误或者是误差太大.即使算法再精确。得到的分析结果将是错误的。虽然ANSYS软件具有一定的建模功能,但功能不够全面。对于齿轮这种较为复杂的几何形状.不容易得到较为准确的三维实体模型。所以选择Pro/E软件对斜齿轮进行三维建模。模型如图1所示。 2有限元分析 通过Pro/E与ANSYS软件之间的数据交换接口.将利用Pro/E软件建立的斜齿圆柱齿轮对模型导入ANSYS中。 图1斜齿轮对模型 (1)添加材料常数在对模型进行网格划分之前.要定义所需要的单元类型.不同的单元类型会直接影响网格划分以及最终求解的效果。考虑到斜齿轮齿形的复杂、计算精度以及求解时间等分析因素.使有限元模型能在尽量少的节点情况下.较精确地模拟实际情况以提高有限元计算的精确程度.采用Solid95为有限元单元类型。针对不同的结构模型.选择不同的单元类型。对于此齿轮划分采用先对端面进行网格划分.然后通过体扫掠生成单元体网格。最终生成的网格如图2所示 ..——94.—-—— 图2斜齿轮对模型网格划分 万方数据

ANSYS模态分析实例

高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。 一.问题描述 本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3, 密度DENS=7.8E-9Tn/mm 3。 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0) 5(-15, 40, 0) L=10+(学号×0.1) RS=5 二.分析具体步骤 1.定义工作名、工作标题、过滤参数 ①定义工作名:Utility menu > File > Jobname ②工作标题:Utility menu > File > Change Title(个人学号) 2.选择单元类型 本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下: Main Menu >Preprocessor > Element Type > Add/Edit/Delete

①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元) ②“ Structural Solid”→“ Quad 8node 45” →ok(添加六面体单元SOLID45为2号单元) 在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 3.设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX Main Menu >Preprocessor > Material Props > Material Models> Structural > Linear > Elastic >Isotropic 弹性模量EX=2.1E5 泊松比PRXY=0.3 ②定义材料的密度DENS Main Menu >Preprocessor > Material Props > Material Models>density DENS =7.8E-9 4.实体建模 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。 ①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only

有限元实验报告

一、实验目的 通过上机对有限元法的基本原理和方法有一个更加直观、深入的理解;通过对本实验所用软件平台Ansys 的初步涉及,为将来在设计和研究中利用该类大型通用CAD/CAE 软件进行工程分析奠定初步基础。 二、实验设备 机械工程软件工具包Ansys 三、实验内容及要求 1) 简支梁如图3.1.1所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚 度t=10mm 。上边承受均布载荷,集度q=1N/mm2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: 图3.1.1 ①在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 ②计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 ③针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 2) 一个正方形板,边长L = 1000mm ,中心有一小孔,半径R = 100mm ,左右边 受均布拉伸载荷,面力集度q = 25MPa ,如图 3.2.1所示。材料是 206E GPa =,0.3μ=,为平面应力模型。当边长L 为无限大时,x = 0截面上理论解为: ) 534()4 (6222 23-+-=h y h y q y x L h q x σ

)32(2|44 220r R r R q x x ++==σ 其中R 为圆孔半径,r 为截面上一点距圆心的距离。x = 0截面上孔边(R r =)应力q x 3=σ。所以理论应力集中系数为3.0。 图3.2.1 用四边形单元分析x = 0截面上应力的分布规律和最大值,计算孔边应力集中系数,并与理论解对比。利用对称性条件,取板的四分之一进行有限元建模。 3) 如图3.3.1所示,一个外径为0.5m ,内径为0.2m ,高度为0.4m 的圆筒,圆 筒的外壁施加100MPa 的压强,圆筒的内部约束全部的自由度,材料参数是密度。 使用平面单元,依照轴对称的原理建模分析。 q

模态分析基本内容简介

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。 概述 振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。模态分析提供了研究各类振动特性的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。 用处

模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为以下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷。 最佳悬挂点 模态试验时,一般希望将悬挂点选择在振幅较小的位置,最佳悬挂点应该是某阶振型的节点。 最佳激励点 最佳激励点视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。 最佳测试点 模态试验时测试点所得到的信息要求有尽可能高的信噪比,因此测试点不应该靠近节点。在最佳测试点位置其AD DOF(Average Driving DOF Displacement)值应该较大,一般可用EI(Effective Independance)法确定最佳测试点。 模态参数有那些 模态参数有:模态频率、模态振型、模态质量、模态向量、模态刚度和模态阻尼等。 主模态主空间主坐标 无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。 模态截断

有限元分析法在齿轮设计中的应用 蔡涌

有限元分析法在齿轮设计中的应用蔡涌 发表时间:2018-06-27T17:53:00.957Z 来源:《建筑学研究前沿》2018年第3期作者:蔡涌1 于站雨2 王爱钦3 [导读] 现代机械零件不仅承受各种复杂机械载荷,还可能工作在热、电、磁、流体的环境中。 河南电力博大科技有限公司河南郑州 450001 摘要:本文利用有限元分析,显示出齿轮的应力分布情况,找出应力集中点,形成对齿轮分析的一整套方法,对新齿轮的设计提供理论依据。由于齿轮在传递动力时,轮齿处于悬臂状态,在齿根产生弯曲应力和其他应力,并有较大的应力集中,因而易造成轮齿折断,本文所选的齿轮为输入轴端的大齿轮。 关键词:有限元分析法;齿轮设计;应用 1、前言 现代机械零件不仅承受各种复杂机械载荷,还可能工作在热、电、磁、流体的环境中,因此零件设计不仅要考虑机械载荷,还应对其他因素的作用进行计算,有限元软件的后处理器,用户容易获得和处理数值计算结果,并可利用图形功能进行深层次再加工。 2、创建有限元模型 齿轮轮齿断裂现象在机械传动设备中是一种最为常见的齿轮损伤形式,也是造成齿轮失效的主要原因。按照轮齿断裂的原因和断口性质可以分为过载断裂、轮齿剪断、塑变后断齿和疲劳断齿。最常见的是疲劳断齿和过载断裂两种形式。轮齿在长期受到过高的交变应力重复作用下,在轮齿的根部弯曲应力较大且应力相对集中的部位会产生疲劳裂纹(疲劳源),随着重复载荷作用的次数增多,原始的疲劳裂纹不断扩展,当齿根剩余截面上的应力超过其极限应力时,轮齿就会因过载最终导致疲劳断齿。过载断齿是当实际载荷大大超过设计载荷,或因轮齿接触不良,载荷严重集中,使轮齿的应力超过其极限应力,在使用不太长的时间内产生轮齿整个或局部断裂。 某带式输送机传动装置为二级齿轮减速器,下面以高速级齿轮设计为例来说明齿轮传动的设计。其输入功率P=10kW,输入转速n1=960r/min,选择高速级齿数比u=3.2、斜齿圆柱齿轮传动、7级精度。其中小齿轮材料为40Cr,调质处理,齿面度280HBS;大齿轮材料为45钢,调质处理,齿面硬度240HBS。按常规设计方法设计,最终设计出的高速级齿轮的参数为:Z1=31,Z2=99,Mn=2mm,螺旋角β=14°02′5″,齿宽B1=70mm、B2=65mm,中心距134mm。在对减速器齿轮进行有限元分析时,首先要建立准确的实体模型。这里应用SolidWoks2013软件完成减速器高速级大齿轮的三维实体模型。 将已建立的齿轮模型另存为.x_t类型的文件,然后导入ANSYS中。设置材料属性参数为:泊松比μ=0.269,弹性模量E=2.09×1011N/mm2,密度ρ=7.89×103kg/m3。为了提高计算精度并减少计算时间,在这里将大齿轮模型进行简化处理,并在ANSYS中选择8节点四面体Solid45单元类型。然后选择自由网格划分方式进行网格划分,得到单元总数为188237,节点总数36879,有限元模型如图1所示。 图1 斜齿圆柱齿轮有限元模型 3、ANSYS的模态分析 模态分析用于确定设计结构或机器部件的振动特性,即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其他动力学分析问题的起点。利用有限元软件对齿轮进行模态分析研究其动态特性,提高齿轮的工作可靠性。这里在齿轮的中心孔处进行全约束处理,对齿轮有限元模型进行模态分析时选择BlockLanczos作为模态提取方法,输入提取12阶模态,完成其他设置后,进行求解。从后处理获取的结果可以看出,前三阶固有频率为零,第四到六阶固有频率很小几乎为零,属于刚体模态,故不予考虑。第七阶模态对应第一阶模态。得到齿轮前六阶振型的固有频率和模态振型,了避免传动系统发生共振,应当使外界激励响应频率避开齿轮的固有频率。 4、ANSYS的齿根弯曲应力分析 齿轮轮齿受载时,齿根所受的弯矩最大,因此齿根的弯曲疲劳强度最弱。当轮齿在齿顶处啮合时,处于双对齿啮合,此时弯矩的力臂最大,单力不是最大,因此弯矩也不是最大。根据分析,齿根所受的最大弯矩发生在轮齿啮合点位于单对齿啮合区的最高点时。所以,齿根弯曲强度也应该按载荷作用于单对齿啮合区最高点来计算。由于斜齿轮的接触线为一斜线,在两齿轮啮合时,首先过接触点做两基圆的公切线,切点分别为N1和N2,是两齿轮的理论啮合点,再过理论啮合点和接触点做一平行于Z轴的平面,该平面与齿廓面的交线就是接触线,也是最佳加载线的位置。 将前面创建的斜齿圆柱齿轮的有限元模型进一步做简化处理,然后添加约束条件并施加载荷。根据上述条件,求得齿轮的输入转矩T=99.48N·m,然后求出切向力Ft=3113.62N,径向力Fr=1168.41N,轴向力Fa=1133.36N。采取集中力加载的方式将所求得的各分力平均加载到接触线附近的各节点上。计算求解后,在ANSYS后处理中提取齿根弯曲应力云图如图2所示。

相关主题
文本预览
相关文档 最新文档