有限元模态分析报告实例
- 格式:doc
- 大小:666.00 KB
- 文档页数:16
注意:本文件内容只是一个简短的分析报告样板,其内相关的分析条件、设置和结果不一定是正确的,您还是要按本书正文所教的自行来做。
一、范例名: (Gas Valve气压阀)1 设计要求:(1)输入转速1500rpm。
(2)额定输出压力5Mpa,最大压力10Mpa。
2 分析零件该气压泵装置中,推杆活塞、凸轮轴和箱体三个零件是主要的受力零件,因此对这三个零件进行结构分析。
3 分析目的(1)验证零件在给定的载荷下静强度是否满足要求。
(2)分析凸轮轴零件和推杆活塞零件的模态,在工作过程中避开共振频率。
(3)计算凸轮轴零件的工作寿命。
4 分析结果1.。
推杆活塞零件材料:普通碳钢。
在模型上直接测量得活塞推杆的受力面积S为:162mm2,由F=PS计算得该零件端面的力F为:1620N。
所得结果包括:1 静力计算:(1)应力。
如图1-1所示,由应力云图可知,最大应力为21Mpa,静强度设计符合要求。
(2)位移。
如图1-2所示,零件变形导致的最大静位移为2.2e-6m。
(3)应变。
如图1-3所示,应变云图与应力云图的对应的,二者之间存在一转换关系。
图1-1 应力云图图1-2 位移云图图1-3 应变云图图1-4 模态分析2 模态分析:图1-4的“列举模式”对话框中列出了“推杆活塞”零件在工作载荷下,其前三阶的模态的频率远远大于输入转速的频率,因此在启动及工作过程中,该零件不会发生共振情况。
模态验证符合设计要求。
2。
凸轮轴零件材料:45钢,屈服强度355MPa。
根据活塞推杆的受力情况,换算至该零件上的扭矩约为10.5N·m。
1 静力分析:如图1-5所示为“凸轮轴”零件的应力云图,零件上的最大应力为212Mpa,平均应力约为120MPa,零件的安全系数约为1.7,符合设计要求。
图1-5 应力云图图1-6 模态分析2 模态分析图1-6的“列举模式”对话框中列出了“推杆活塞”零件在工作载荷下的模态参数,“模式1”的结果为其自由度内的模态,不作为校核参考。
ANSYS模态分析实例5.2ANSYS建模该课题研究的弹性联轴器造型如下图5.2:在ANSYS中建立模型,先通过建立如5.2所式二分之一的剖面图,通过绕中轴线旋转建立模拟模型如下图5.35.3单元选择和网格划分由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。
经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划分模型实体。
课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分后模型如图5.4。
5.4边界约束建立柱坐标系R-θ-Z,如5-5所示,R为径间,Z为轴向选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转5.5联轴器模态分析模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。
在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。
因此在设置中间件2的材料属性时,选用elastic材料。
5.5.1联轴器材料的设置材料参数设置如下表5-1:表5.1材料参数设置表5.1材料参数设置5.5.2联轴器振动特性的有限元计算结果及说明求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6:表5.2固有频率(l)一阶振型频率为40.199Hz,振型表现为大铁圈和中间件顺时针旋转(从小铁圈观察),小铁圈逆时针旋转。
(2)二阶振型频率为73.632Hz, 振型表现为大铁圈,中间件和小铁圈同时顺时针旋转(从小铁圈观察)。
(3)三阶振型频率为132.42Hz,振型表现为大铁圈和小铁圈同时逆时针旋转(从小铁圈看),中间件顺时针旋转,由上图我们可以发现,在这个频率下是联轴器最容易发生断裂。
有限元分析报告(1)有限元仿真分析实验⼀、实验⽬的通过刚性球与薄板的碰撞仿真实验,学习有限元⽅法的基本思想与建模仿真的实现过程,并以此实践相关有限元软件的使⽤⽅法。
本实验使⽤HyperMesh 软件进⾏建模、⽹格划分和建⽴约束及载荷条件,然后使⽤LS-DYNA软件进⾏求解计算和结果后处理,计算出钢球与⾦属板相撞时的运动和受⼒情况,并对结果进⾏可视化。
⼆、实验软件HyperMesh、LS-DYNA三、实验基本原理本实验模拟刚性球撞击薄板的运动和受⼒情况。
仿真分析主要可分为数据前处理、求解计算和结果后处理三个过程。
前处理阶段任务包括:建⽴分析结构的⼏何模型,划分⽹格、建⽴计算模型,确定并施加边界条件。
四、实验步骤1、按照点-线-⾯的顺序创建球和板的⼏何模型(1)建⽴球的模型:在坐标(0,0,0)建⽴临时节点,以临时节点为圆⼼,画半径为5mm的球体。
(2)建⽴板的模型:在tool-translate⾯板下node选择临时节点,选择Y-axis,magnitude输⼊,然后点击translate+,return;再在2D-planes-square ⾯板上选择Y-axis,B选择上⼀步移下来的那个节点,surface only ,size=30。
2、画⽹格(1)画球的⽹格:以球模型为当前part,在2D-atuomesh⾯板下,surfs 选择前⾯建好的球⾯,element size设为,mesh type选择quads,选择elems to current comp,first order,interactive。
(2)画板的⽹格:做法和设置同上。
3、对球和板赋材料和截⾯属性(1)给球赋材料属性:在materials⾯板内选择20号刚体,设置Rho为,E为200000,NU为。
(2)给球赋截⾯属性:属性选择SectShll,thickness设置为,QR设为0。
(3)给板赋材料属性:材料选择MATL1,其他参数:Rho为,E为100000,Nu 为,选择Do Not Export。
《有限元分析》报告基本要求:1. 以个人为单位完成有限元分析计算,并将计算结果上交;(不允许出现相同的分析模型,如相同两人均为不及格)2. 以个人为单位撰写计算分析报告;3. 按下列模板格式完成分析报告;4. 计算结果要求提交电子版,报告要求提交电子版和纸质版。
(以上文字在报告中可删除)《有限元分析》报告一、问题描述(要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。
图应清楚、明晰,且有必要的尺寸数据。
)一个平面刚架右端固定,在左端施加一个y 方向的—3000N 的力P1,中间施加一个Y 方向的—1000N 的力P2,试以静力来分析,求解各接点的位移。
已知组成刚架的各梁除梁长外,其余的几何特性相同.横截面积:A=0.0072 m² 横截高度:H=0.42m 惯性矩:I=0.0021028m4x 弹性模量:E=2.06x10n/ m²/ 泊松比:u=0。
3二、数学模型(要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明.)(此图仅为例题)三、有限元建模(具体步骤以自己实际分析过程为主,需截图操作过程)用ANSYS 分析平面刚架1.设定分析模块选择菜单路径:MainMenu-preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择.2.选择单元类型并定义单元的实常数(1)新建单元类型并定(2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。
0072"在IZZ中输入“0。
0002108”,在HEIGHT中输入“0。
42”.其他的3个常数不定义。
单击[OK]按钮,完成选择3.定义材料属性在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图在如下图的对话框EX中输入“2.06e11",在PRXY框中输入“0。
有限元实例分析报告班级:机制12-03班:黄永学号:2一个厚度20mm的带孔矩形板受平面力,如下图所示。
左边固定,右边受载荷p=20N/mm作用,求其变形情况一个典型的ANSYS分析过程可分为以下6个步骤:定义参数、创建几何模型、划分网格、加载数据、求解、结果分析。
1定义参数1.1指定工程名和分析标题(1)在[Enter new jobname]文本框中输入“plane”,同时把[New log and error files]中的复选框选为Yes,单击确定(2)在[Enter new title]文本框中输入“2D Plane Stress Bracket”,单击确定。
1.2定义单位在ANSYS软件操作主界面的输入窗口中输入“/UNIT,SI”1.3定义单元类型(1)选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete 命令,之后单击[Element Types]对话框中的[Add]按钮,在弹出的[Library of Element Types]对话框中选择[Solid]选项和[8node 82]选项,返回[Element Types]对话框。
(2)单击[Options]按钮,弹出如下所示[PLANE82 element type options]对话框。
(2)在[Element behavior]下拉列表中选择[Plane strs w/thk]选项,再次回到[Element Types]对话框,单击[close]按钮结束。
1.4定义单元常数(1)选择Main Menu→PreprocessorReal Constants→Add/Edit/Delete 命令,在弹出的[Real Constants]对话中单击[Add]按钮,进行下一个[Choose Element Type]对话框,选择[Plane82]单元,单击确定。
(2) 在[THK]文本框中输入“20”,定义厚度为20mm。
轴流式通风机叶轮与机座有限元分析分析与优化报告书第2 页共47 页目录第一部分机座的有限元分析与优化—-———--—--—--—--———--——---——--——--—- 41。
1 机座分析的已知条件--—--—--—--—-----—-———---—-————--—-—-——-—— 41。
2 材料的力学性能--—--——-—-——--———-——-—--——---—--------—-————--- 41。
3 有限元分析模型——-—-—--—-—--—------——----———-————-———------—-- 41.3.1 分析前的假设--——-——-——---—-———-——-—---———-—---—-————— 41。
3.2 建立分析模型—--—-————--———---—————--—--—-————-——---—— 51。
3.3 建立有限元分析模型—-——-——-————---———--———-----—--—-- 71.4 计算结果——----——----—--—--—--—————---------———-—————————-—---— 71.4.1 变形结果———---—-——-—-—--——-------——-------—-——————-—-—- 71.4.2 应力结果-——-—--————-----——-—-——--—-—--—-——-—--————----— 81.4。
3 路径结果—-——-----——-—----——-—---—-—-—-———--——--————---- 111。
4。
4 分析结果评判-———-----———-----——-———-—-----——--—--—--—- 131.5 机座优化-———-—---—————-—-------——--——--——--——-——-—---——--—---- 141.5。
1 优化参数的确定—-—-—--—---—-——------——--——-----————-—— 141.5。
有限元模态分析实例有限元模态分析是一种用数学方法对结构物的振动特性进行分析的工程方法。
在设计和优化结构时,对结构的模态进行分析是十分重要的。
通过模态分析可以获得结构的固有频率、模态形态以及模态阻尼等信息,为结构的设计和工程优化提供依据。
下面将介绍一个有限元模态分析的实例。
工程项目中有一座长桥,设计要求对该桥进行模态分析,以评估其振动特性和优化设计。
桥梁的整体结构是由主梁和横梁构成。
在进行模态分析之前,首先进行了有限元建模。
主梁和横梁的几何尺寸、材料性质和截面形状被纳入有限元模型中。
通过有限元分析软件对桥梁进行了静力分析,确定了主梁和横梁的应力分布和变形情况。
在静力分析的基础上,进行了模态分析。
在模态分析中,首先得到了桥梁的固有频率。
固有频率是结构在没有外部激励作用下自发振动的频率,也可以理解为结构的固有振动频率。
通过固有频率的计算,可以得到结构的自由振动周期。
接下来,得到了桥梁的模态形态。
模态形态是固有振动状态下结构各个节点的振型。
通过模态形态的计算,可以了解结构在不同频率下的振动模式,进一步评估结构的振动特性。
最后,得到了桥梁的模态阻尼。
模态阻尼是结构在振动过程中能量耗散的程度。
结构的阻尼特性对于振动特性的评估和结构的设计优化具有重要影响。
对模态分析的结果进行评估,发现一些模态频率较接近结构的主要激励频率,存在共振现象。
为了消除共振现象,采取了一些优化措施,如增加结构的刚度、改变材料性质等。
通过有限元模态分析,得到了桥梁的固有频率、模态形态和模态阻尼等信息,为结构的设计和工程优化提供了依据。
基于模态分析的结果,进行了优化设计和改进措施,提高了结构的振动特性和抗震能力。
总之,有限元模态分析是一种重要的工程分析方法,通过模态分析可以评估结构的振动特性,并为结构的设计和工程优化提供依据。
符合桥梁的模态分析在设计和改进中的实践,对于确保工程质量和结构的稳定性具有重要意义。
.ANSYS有限元案例分析报告资料word.ANSYS分析报告一、ANSYS简介:ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。
由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, AutoCAD等,是现代产品设计中的高级CAE工具之一。
本实验我们用的是ANSYS14.0软件。
二、分析模型:y具体如下:aa= 0.2B , ,如图所示,L/B=1bB的变化对 b= (0.5-2)a,比较 b xba?最大应力的影响。
x L三、模型分析:软件ANSYS我们通过使用该问题是平板受力后的应力分析问题。
然后在平板一段施加位移约首先要建立上图所示的平面模型,求解,束,另一端施加载荷,最后求解模型,用图形显示,即可得到实验结果。
资料word.四、ANSYS求解:求解过程以b=0.5a=0.02为例:1.建立工作平面,X-Y平面内画长方形,L=1,B=0.1,a=0.02,b=0.5a=0.01;(操作流程:preprocessor →modeling→create→areas→rectangle)2.根据椭圆方程,利用描点法画椭圆曲线,为了方便的获得更多的椭圆上的点,我们利用C++程序进行编程。
程序语句如下:资料word.运行结果如下:本问题(b=0.5a=0.01)中,x在[0,0.02]上每隔0.002取一个点,y值对应于第一行结果。
由点坐标可以画出这11个点,用reflect命令关于y轴对称,然后一次光滑连接这21个点,再用直线连接两个端点,便得到封闭的半椭圆曲线。
(操作流程:create →keypoints→on active CS→依次输入椭圆上各点坐标位置→reflect→create→splines through keypoints→creat→lines→得到封闭曲线)。
齿轮箱有限元模态分析及试验研究报告齿轮箱是现代机械设备中重要的组成部分,它广泛用于各种机械传动系统中,如车辆、工程机械等。
因此研究齿轮箱的动力学特性对于机械传动系统的设计、优化和性能提升具有重要意义。
本文通过有限元模态分析和试验研究,对齿轮箱的动力学特性进行了分析和研究。
首先进行有限元模态分析,使用ANSYS软件建立了三维齿轮箱模型,并对其进行了固有频率和模态分析。
在分析过程中,设定了模型的约束和加载条件,确保模型模拟的真实性与可靠性。
通过模态分析,得到了齿轮箱的固有频率和模态形态,并且确定出了前几个重要频率的数值。
结果表明,齿轮箱的固有频率主要集中在数百Hz的高频段。
为了验证有限元模态分析结果的准确性,本文设计了试验验证方案。
首先,使用激光精密测量仪对齿轮箱的位移进行测量,并将测试数据存储为动态位移序列。
然后,基于FFT算法对动态位移序列进行频谱分析,得到齿轮箱的频响函数。
最后,通过对比有限元模态分析结果与试验结果,验证模型的准确性和可靠性。
试验结果表明,模型的预测结果与试验结果相符,二者的误差在可接受范围内。
综上所述,本文采用有限元模态分析和试验验证两种方法,对齿轮箱的动力学特性进行了研究。
结果表明,齿轮箱具有较高的固有频率,且主要分布在数百Hz的高频段。
通过试验验证,证明了有限元模态分析方法的准确性和可靠性。
这些结果对于齿轮箱的优化设计、结构改进和性能提升具有重要参考价值。
齿轮箱的有限元模态分析和试验研究,采用了多项相关数据。
在本文中,我们主要关注以下数据:1. 齿轮箱模型的材料性质2. 模型的约束和加载条件3. 模型的固有频率和模态形态4. 齿轮箱的位移测试数据5. 齿轮箱的频响函数6. 模型预测结果与试验结果的误差对于第一项数据,齿轮箱的材料性质是有限元模型分析的关键。
正确的材料参数可以确保分析结果的准确性和可靠性。
在本文中,我们将齿轮箱的材料定义为铸铁,其杨氏模量为169 GPa,泊松比为0.27。
第11章SAMCEF Field模态分析实例11.1 连杆模态分析11.1.1 概述此例题是在上例的基础上,对连杆结构进行模态分析,求出连杆结构的前十阶固有频率和相应的模态振型。
为初次接触Samcef Field的用户介绍如何利用应力分析模型进行模态分析,并给出模态分析的过程,以便用户能够容易地跟随操作。
在本书光盘中提供有包含此例题所有建模、分析和结果确认过程的最终数据库文件和动画文件。
通过动画先对整个分析过程获得一定了解的话,可以进一步提高跟随操作的效果。
此例题所介绍的各阶段的分析步骤与一般实际工作中的分析过程基本相同。
其具体内容如下。
11.1.2 分析数据材料特性如下:弹性模量 E = 2.1e11 N/m2;泊松比ν = 0.3;密度ρ = 7.8e3 Kg/m3。
右侧大圆孔固定。
11.1.3 模态分析过程1. 读取应力分析模型首先读取上例中生成的分析模型。
(1)将显示在桌面上的Samcef Field图标或相应目录中的Samcef Field连击两次以打开程序。
(2)在主菜单选择File\Open,浏览并选择模型文件crank-stress.sfield。
(3)单击<Open>按钮,调入模型。
(4)单击<Save As>按钮。
(5)输入文件名称crank-mode。
2. 设置分析类型(1)选择主菜单Edit\Analysis Driver。
265266图11-1 转换分析类型(2) 如图11-2所示,从弹出菜单中<Analysis Type>选择<Modal >。
(3) 单击<OK>按钮。
(4) 单击<Solver>模块图标,进入求解设置菜单。
(5) 单击<Convert and Launch>按钮,弹出Export Data And Launch Solver 菜单。
(6) 单击<Eigen Values>按钮。
注意:本文件内容只是一个简短的分析报告样板,其内相关的分析条件、设置和结果不一定是正确的,您还是要按本书正文所教的自行来做。
一、范例名: (Gas Valve气压阀)1 设计要求:(1)输入转速1500rpm。
(2)额定输出压力5Mpa,最大压力10Mpa。
2 分析零件该气压泵装置中,推杆活塞、凸轮轴和箱体三个零件是主要的受力零件,因此对这三个零件进行结构分析。
3 分析目的(1)验证零件在给定的载荷下静强度是否满足要求。
(2)分析凸轮轴零件和推杆活塞零件的模态,在工作过程中避开共振频率。
(3)计算凸轮轴零件的工作寿命。
4 分析结果1.。
推杆活塞零件材料:普通碳钢。
在模型上直接测量得活塞推杆的受力面积S为:162mm2,由F=PS计算得该零件端面的力F为:1620N。
所得结果包括:1 静力计算:(1)应力。
如图1-1所示,由应力云图可知,最大应力为21Mpa,静强度设计符合要求。
(2)位移。
如图1-2所示,零件变形导致的最大静位移为2.2e-6m。
(3)应变。
如图1-3所示,应变云图与应力云图的对应的,二者之间存在一转换关系。
图1-1 应力云图图1-2 位移云图图1-3 应变云图图1-4 模态分析2 模态分析:图1-4的“列举模式”对话框中列出了“推杆活塞”零件在工作载荷下,其前三阶的模态的频率远远大于输入转速的频率,因此在启动及工作过程中,该零件不会发生共振情况。
模态验证符合设计要求。
2。
凸轮轴零件材料:45钢,屈服强度355MPa。
根据活塞推杆的受力情况,换算至该零件上的扭矩约为10.5N·m。
1 静力分析:如图1-5所示为“凸轮轴”零件的应力云图,零件上的最大应力为212Mpa,平均应力约为120MPa,零件的安全系数约为1.7,符合设计要求。
图1-5 应力云图图1-6 模态分析2 模态分析图1-6的“列举模式”对话框中列出了“推杆活塞”零件在工作载荷下的模态参数,“模式1”的结果为其自由度内的模态,不作为校核参考。
西安市新城区某公司科研办公楼结构设计有限元分析报告撰写人:王平班级:工程力学1203学号:*************: ***2016年6月15日目录1 工程概况 (2)2 分析依据 (3)3 荷载与计算工况 (4)3.1荷载简化及荷载组合 (4)3.2 边界条件 (4)3.3 工况 (5)4 有限元模型 (5)4。
1 基本假定 (5)4.2 力学模型 (6)4.3 主要物理参数取值 (6)4。
4单元选取 (7)4.5分网与有限元模型 (8)5 静力分析 (9)5.1模态结果 (9)5.2静力分析结果 (12)5。
3 强度校核 (15)6基于ANSYS、PKPM、手算的误差分析 (17)6。
1计算原理的不同 (17)6。
2 研究对象的复杂性 (18)1 工程概况工程名称:西安市新城区某公司科研办公楼;建筑所在地:西安市;建设规模:总建筑面积约4700m2,主体结构6层,无地下室。
结构总高度22。
5m,底层结构高度4。
5m,其余层结构高度为3。
6m,几何模型图如图1所示;抗震设防烈度:抗震设防烈度为8度,设计基本地震加速度值0。
2g,第一组.场地类别为Ⅱ类,特征周期为0.35s。
周期折减系数为0.75.建筑设计使用年限:50年。
结构重要性等级:二级。
图1 框架几何模型图2 分析依据框架结构是由梁、板、柱以刚接相连接而成,构成承重体系的结构,即由梁、板、柱组成框架共同抵抗使用过程中出现的水平荷载和竖直荷载。
本设计报告采用ANSYS有限元软件分析。
根据框架结构体系特点,本结构分析主要依据以下国家规范:[1]国家标准:《建筑结构荷载规范》(GB50009-2012)。
北京:中国建筑工业出版社.2012;[2]国家标准:《建筑抗震设计规范》(GB50011—2010).北京:中国建筑工业出版社。
2010;[3]国家标准:《混凝土结构设计规范》(GB50010-2010)。
北京:中国建筑工业出版社。
2010;[4]建筑、勘察等技术文件。
有限元分析报告模板1. 引言本文档旨在提供一份有限元分析报告模板,用于记录和展示有限元分析的结果。
有限元分析是一种常用的数值分析方法,用于解决结构力学和热力学问题。
通过将结构划分为有限个小单元,有限元分析能够近似求解结构的应力、应变和变形等参数。
2. 问题描述在本节中,我们将描述待分析的问题。
详细描述问题的几何形状、边界条件和加载情况等。
例如,我们将以一个简单的悬臂梁为例进行说明。
悬臂梁的几何形状为矩形截面,长度为L,宽度为W,高度为H。
其中,梁的一侧通过固定边界条件固定不动,另一侧施加集中力F。
3. 网格划分在本节中,我们将进行网格划分,将问题的几何形状划分为有限个小单元。
我们可以使用一些专业的有限元分析软件,如ANSYS或Abaqus等,来进行网格划分操作。
针对我们的悬臂梁问题,我们可以将其划分为若干个矩形或三角形单元。
4. 材料性质和边界条件在本节中,我们将描述材料性质和边界条件。
材料性质包括弹性模量、泊松比等,而边界条件包括位移约束、力加载等。
对于悬臂梁问题,我们可以假设材料为均匀的弹性材料,边界条件为一侧固定不动,另一侧施加集中力。
5. 有限元模型的建立在本节中,我们将建立有限元模型,将问题转化为一组代数方程。
有限元模型的建立涉及到单元类型选择、单元数目确定等。
我们可以选择合适的单元类型,如梁单元或壳单元等,根据具体情况确定单元数目。
6. 有限元分析在本节中,我们将进行有限元分析,求解代数方程组,得到结构的应力、应变和变形等结果。
有限元分析可以通过数值方法,如有限差分法或有限差分法等,进行求解。
通过有限元分析,我们可以得到悬臂梁在加载条件下的应力分布、应变分布和位移分布等。
7. 结果讨论在本节中,我们将讨论有限元分析的结果。
我们可以对悬臂梁的应力、应变和位移等结果进行分析和评估。
我们可以考虑不同加载条件下的结果差异,或者与理论计算结果进行比较。
通过结果讨论,我们可以评估结构的安全性和合理性。
ANSYS模态分析实例和详细过程ANSYS是一款被广泛应用于工程领域的有限元分析软件,可以进行多种不同类型的分析,包括模态分析。
模态分析是通过对结构进行振动分析,计算得到结构的固有频率、振型和阻尼比等参数,对结构的动力响应进行预测和分析。
本文将介绍ANSYS模态分析的实例和详细过程。
一、模态分析实例假设我们有一个简单的悬臂梁结构,长度为L,横截面面积为A,杨氏模量为E,密度为ρ。
我们想要计算该梁结构的固有频率、振型和阻尼比等参数,以评估其动力特性。
二、模态分析过程1.准备工作在进行模态分析之前,我们需要先准备好结构的有限元模型。
假设我们已经完成了悬臂梁结构的几何建模和网格划分,并且已经定义好了材料属性和约束条件。
2.设置分析类型和求解器打开ANSYS软件,并选择“Structural”工作台。
在“Analysis Settings”对话框中,选择“Modal”作为分析类型。
然后,在“Analysis Type”对话框中选择“Modes”作为解决方案类型。
3.定义求解控制参数在“Analysis Settings”对话框中,点击“Solution”选项卡。
在该选项卡中,我们可以定义求解控制参数,例如计算模态频率的数量、频率范围和频率间隔等。
4.添加约束条件在模态分析中,我们需要定义结构的边界条件。
假设我们对悬臂梁的一端施加固定边界条件,使其不能在该位置发生位移。
我们可以在“Model”工作区中选择相应的表面,然后右键点击并选择“Fixed”。
5.添加载荷在模态分析中,我们通常可以不添加外部载荷。
因为模态分析着重于结构的固有特性,而不是外部激励。
6.定义材料属性在模态分析中,我们需要定义材料的弹性性质。
假设我们已经在材料库中定义了结构所使用的材料,并在“Model”工作区中选择了适当的材料。
7.运行分析完成以上设置后,我们可以点击“Run”按钮开始运行分析。
ANSYS将计算结构的固有频率、振型和阻尼比等参数。
工程软件应用及设计实习报告学院:理学院专业班级:力学1101班姓名:杨强学号:1101010121指导老师:罗生虎实习时间:2015.1.9-1.15一.实习目的:1.熟悉工程软件在实际应用中具体的操作流程与方法,同时结合所学知识对理论内容进行实际性的操作。
2.培养我们动手实践能力,将理论知识同实际相结合的能力,提高大家的综合能力,便于以后就业及实际应用。
3.工程软件的应用是对课本所学知识的拓展与延伸,对我们专业课的学习有很大的提高,也是对我们进一步的拔高与锻炼。
二.实习内容(一)用ANSYS软件进行输气管道的有限元建模与分析计算分析模型如图1所示承受内压:1.0e8 PaR1=0.3R2=0.5管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。
图1受均匀内压的输气管道计算分析模型(截面图)题目分析:由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。
然后根据结构的对称性,只要分析其中1/4即可。
此外,需注意分析过程中的单位统一。
操作步骤1.定义工作文件名和工作标题1.定义工作文件名。
执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。
2.定义工作标题。
执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。
3.更改目录。
执行Utility Menu-File→change the working directory –D/chen2.定义单元类型和材料属性1.设置计算类型ANSYS Main Menu: Preferences →select Structural →OK2.选择单元类型。
执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →applyAdd/Edit/Delete →Add →select Solid Brick 8node 185 →OKOptions…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。
ANSYS模态分析实例5.2ANSYS建模该课题研究的弹性联轴器造型如下图5.2:在ANSYS中建立模型,先通过建立如5.2所式二分之一的剖面图,通过绕中轴线旋转建立模拟模型如下图5.35.3单元选择和网格划分由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。
经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划分模型实体。
课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分后模型如图5.4。
5.4边界约束建立柱坐标系R-θ-Z,如5-5所示,R为径间,Z为轴向选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转5.5联轴器模态分析模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。
在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。
因此在设置中间件2的材料属性时,选用elastic材料。
5.5.1联轴器材料的设置材料参数设置如下表5-1:表5.1材料参数设置表5.1材料参数设置铁圈1 中间件2 铁圈3 泊松比0.3 0.4997 0.3 弹性模量Mpa 2E5 1.274E3 2E5密度kg/m 7900 1000 79005.5.2联轴器振动特性的有限元计算结果及说明求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6:表5.2固有频率SET TEME/FREQ LOAO STEP SUBSTEP CUMULATIVE1 40.199 1 1 11 73.632 1 2 23 132.42 1 3 34 197.34 1 4 4(l)一阶振型频率为40.199Hz,振型表现为大铁圈和中间件顺时针旋转(从小铁圈观察),小铁圈逆时针旋转。
(2)二阶振型频率为73.632Hz, 振型表现为大铁圈,中间件和小铁圈同时顺时针旋转(从小铁圈观察)。
(3)三阶振型频率为132.42Hz,振型表现为大铁圈和小铁圈同时逆时针旋转(从小铁圈看),中间件顺时针旋转,由上图我们可以发现,在这个频率下是联轴器最容易发生断裂。
(4)四阶振型频率为197.34Hz,振型表现为大铁圈,中间件和小铁圈同时逆时针旋转(从小铁圈观察)。
5.6 联轴器瞬态动力学分析为了简化计算方法和节省计算用时,首先对联轴器的模型进行简化。
因为铁圈上的螺孔的存在会大大的影响计算的复杂程度和时间,但对计算结果的影响却微乎其微,所以决定建模时省略螺孔。
简化后的模型网格划分后如下图5.7:由于橡胶的特殊机械性能,在进行计算机模拟时,必需把非线性因素考虑进去。
5.6.1 非线性分析的基本信息ANSYS程序应用NR(牛顿-拉斐逊)法来求解非线性问题.在这种方法中,载荷分成一系列的载荷增量.载荷增量施加在几个载荷步.图5.8说明了非线性分析中的完全牛顿-拉斐逊迭代求法,共有2个载荷增量。
在每次求解前,NR方法估算出残差矢量,这个矢量回复力(对应于单元应力的载荷)和所加载和的差值,程序然后使用不平衡载荷进行线性求解,且检查收敛性.如果不满足收敛准则,重新估算非平衡载荷,修改刚度矩阵,获得新的解答.持续这种迭代过程直到问题收敛。
ANSYS程序提供了一系列命令来增强问题的收敛性,如线性搜索,目动载荷步,二分等,可被激活来加强问题的收敛性,如果得不到收敛,那么程序试图用一个较小的载荷增量来继续计算。
非线性求解被分成三个操作级别:载荷步,子步和平衡迭代.(1)顶层级别由在一定“时间”范围内用户明确定义的载荷步组成.假定载荷在载荷步内线性地变化。
(2)在每一个载荷步内,为了逐步加载,可以控制程序来多次求解(子步或者时间步)。
(3)在每一子步内,程序将进行一系列的平衡迭代以获得收敛的解。
下图5.9说明了一段用于非线性分析的典型的载荷历史。
5.6.2非线性材料的模拟材料非线性包括塑性,超弹性,蠕变等,非线性应力应变关系是非线性结构行业的普通原因,如图5.10:橡胶是高度非线性的弹性体,应力应变关系较为复杂,在本课题中采用工程中广泛采用Mooent-Rivlin2参数模型进行橡胶材料的模拟,参数包括C10和C01。
5.6.2.1Mooey-Rivlin常数测量的理论基础超弹性材料是指具有应变能函数的一类材料数,对应变分量的导数决定了对应的应力量。
应变能函数W为应变或变形张量的纯量函数,W对应变分量的导数决定了对应的应力量,即:式中S ij——第二类Piola-Kirchhoff应力张量的分量W——单位未变形体积的应变能函数E ij——Green应变张量的分量C ij——变形张量的分量式(5-1)为超弹性材料的本构关系,可以看出,建立本构关系就是要建立应变能函数的表达式。
Mooney-Rivlin模型是1940看由Mooeny提出,后由Rivlin发展的。
其中一般形式为式中C rs——材料常数I1,I2——Cauchy变形张量的不变量超弹性不可压缩材料的本构方程可表示为:式中σij——Cauchy(真实)应力张量的分量P——静水压力δij——Korneker算符下面假设取变形的主方向为坐标轴方向,则Cauchy变形张量用矩阵形式表示为:式中λ1——i方向的主伸长比式中εi——i方向工程应变主值所以C ij的不变量表示为由不可压缩条件:,考虑薄式片受简单拉伸的情况,即试片一个方向受拉力,另两个方向自由,假设受拉方向为1,则有:给定伸长比λ2=λ,则:由式(5-13)解出P代入式(5-12)得:根据所取W的具体形式,可求出的表达式,其中含有材料常数,由试验数据求得各伸长比及对应的应力,将多个试验点的λ和σ11代入式(5-14),可求得这些材料常数值。
5.6.2.2试验测试实验采用长的薄式片作为拉伸试样,通过拉伸计算伸长比λ和应力σ。
按式(5-14)进行回归分析,求解回归系数,将式(5-14)中的应力理论值σ11表示为σi(C jk)(下标i表示数据点序号),用最小二乘法求回归系数C jk。
残差平方和为:通过对R最小化,求Mooney—Rivlin常数C10,C01。
可求得最小二乘意义下的Mooney-Rivlin常数C10,C01。
5.6.2.3橡胶材料的硬度与C10和C01,的关系G或E与材料常数的关系为文献给出了橡胶硬度Hr(IRHD硬度)与弹性模量E的试验数据,经拟合得:通过硬度利用式(3-38),(5-20)得出G,E,将G,E代入(5-18),(5-19)求出C10和C01。
橡胶的硬度为70,通过计算确定C10和C01分别为1.14Mpa和0.023Mpa。
ANSYS 中参数设置如图5.11和5.12所示,其中式中d—橡胶材料的不可压缩比v—像胶材料的泊松比,0.49975.6.3施加载荷在小铁圈端施加205-105cis314t的动载荷,为了能够清楚地看到动态变化的过程,我们取两个周期。
在0.001秒施加第一个载荷,T1=100,迅速达到电动机工作状态。
对于正纺载荷,将每四分之一周期划分成五小段,每一个小段作为1个载荷步,一共可分为20个载荷步。
载荷点和施加过程如图5.13和图5.14所示:考虑到计算的精确性和计算时间,每个载荷步分成5个子步。
5.6.4计算结果及说明ANSYS常用的求解器有:波前求解器、稀疏矩阵直接求解器、雅克比共扼梯度求解器(JCG),不完全乔列斯基共扼梯度求解器(ICCG)、前置条件共扼梯度求解器(PCG)前两种为直接求解器,后二种为迭代求解器。
本课题采用JCG求解器。
计算结果如下图5.15所示:(1)为大小铁圈的相对转角,之所以振幅越来越小是因为理论值中的齐次方程的解随着时间越来越接近于0。
(2)为大小铁圈的相对角速度;(3)为相对角加速度。
速度和加速度都以类似于正弦曲线发生改变,之所以没有完全按照正弦,是由于阻尼的存在,大大缓解了激励载荷对联轴器的影响。
弹性联轴器的使用状况直接关系到机械设备的安全及寿命问题,尤其是一些重要场合,弹性联轴器的失效会引起巨大的经济损失和人员伤亡事故。
弹性联轴器的工作状态涉及多个方面,其中重要的一个方面是弹性联轴器在工作过程中的扭振现象。
因此,对于联轴器的扭振研究有着巨大的实际意义。
6.1 本文总结本文所做的主要工作为分析弹性联轴器,建立了弹性联轴器动力学力学模型并对其进行了仿真计算,同时,对其进行了有限元分析。
现将本文的结论归纳如下:1 引起弹性联轴器扭转振动的原因主要归结于两个方面:即由柴油机引起的机械扰动和由发电机引起的电气扰动,电气扰动的频率较稳定,力矩较小。
2 弹性联轴器的动刚度与静刚度比值为1.3-1.5之间。
3 阻尼对于弹性联轴器的固有特性的影响很小,计算固有频率时,可以近似认为阻尼为O:对于非圆轴的旋转零件的固有频率的计算,可以通过将转动惯量等效分布到圆轴上的方法进行计算。
4 在联轴器的设计过程中,可以通过控制两端的转动惯量,或者通过改变联轴器本身的尺寸来控制它的扭转刚度,力求使弹性联轴器的临界阻尼系数尽可能的接近联轴器本身的阻尼系数,从而减少产生的剪切力,提高联轴器的工作状态和延长联轴器的使用寿命。
5 采月Moony 一rivlin模型参数来模拟超弹性的橡胶材料时,可以通过式(3-37) ,(5-18), (5-19)利用橡胶材料的硬度求出C10和CO1,具有较高的准确性。
6 采用ansys件进行计算机模拟,得出弹性联轴器的固有频率以及干扰正弦激励下的动态特性。
6.2 创新点国内外对扭振进行了大量的研究,但是研究内容大多局限于传动轴系,很少涉及具有大阻尼特性材料的旋转零件的扭振研究。
本课题的研究对象是橡胶弹性联轴器,橡胶是一种典型的非线性材料,具有很大的阻尼特性,本文通过理论方面和计算机方面进行研究,得出了如上的结论。
6.3不足和展望本课题没有引入试验装置,得出的理论结论和试验结论没有试验结果作对比,缺少一定的说服力和信服力;在今后的工作中,引入适当的实验装置,采用合适的实验模拟方法.采集实验数据并进行分析,验证上述结论的正确性。