模态分析基本内容简介
- 格式:docx
- 大小:19.36 KB
- 文档页数:3
模态分析原理模态分析是指通过对物体或系统的振动特性进行分析,来确定其固有频率、振型和振动模态等相关参数的一种分析方法。
在工程领域中,模态分析被广泛应用于结构设计、振动控制、故障诊断等方面,具有重要的理论和实际意义。
本文将对模态分析的原理进行介绍,希望能够帮助读者更好地理解和应用模态分析技术。
模态分析的基本原理是通过对系统的动力学方程进行求解,得到系统的固有频率和振型。
在进行模态分析时,需要考虑系统的质量、刚度和阻尼等因素,这些因素将直接影响系统的振动特性。
在实际工程中,通常会采用有限元方法或者试验测量的方式来获取系统的动力学参数,然后利用模态分析的理论进行计算和分析。
在进行模态分析时,首先需要建立系统的动力学模型,这包括系统的质量矩阵、刚度矩阵和阻尼矩阵等参数。
然后利用模态分析的理论,可以求解系统的特征方程,从而得到系统的固有频率和振型。
通过对系统的固有频率和振型进行分析,可以了解系统的振动特性,包括主要振动模态、振动形式和振动幅值等信息。
在实际工程中,模态分析通常用于结构设计和振动控制方面。
通过对结构的模态进行分析,可以确定结构的主要振动模态和固有频率,从而指导结构设计和优化。
同时,还可以通过模态分析来评估结构的振动响应,为振动控制和减震设计提供依据。
除了在结构设计和振动控制方面的应用外,模态分析还被广泛应用于故障诊断和结构健康监测等领域。
通过对系统的模态进行分析,可以发现系统的异常振动模态和频率,从而判断系统的工作状态和健康状况。
这对于提前发现系统的故障和隐患,具有重要的意义。
总之,模态分析作为一种重要的振动分析方法,具有广泛的应用前景和理论价值。
通过对系统的振动特性进行分析,可以深入理解系统的动力学行为,为工程设计和故障诊断提供重要的依据。
希望本文的介绍能够帮助读者更好地理解和应用模态分析技术,推动其在工程领域的进一步发展和应用。
机械工程中的模态分析方法在机械工程领域,模态分析是一种重要的工具,用于研究和评估机械系统或结构的动力特性。
通过模态分析,工程师可以了解结构的固有振动频率、振型及其相关参数,从而对系统进行设计、改进和优化。
一、模态分析的基本原理模态分析基于结构的自由振动特性。
当结构受到外界激励或内部失稳因素影响时,会出现自由振动。
模态分析通过对这种振动进行精确测量和分析,得到结构的模态参数。
在模态分析中,最关键的一步是确定结构的固有频率和相应的振型。
固有频率是结构在自由振动时所表现出的振动频率,它与结构的刚度密切相关。
振型则描述了结构在不同固有频率下的变形形态,是结构动态响应的关键指标。
二、模态分析的常用方法1.加速度法加速度法是最常用的模态分析方法之一。
它基于物体的加速度与力的关系,通过测量结构上的加速度响应来推导出结构的模态参数。
具体操作中,可以通过加速度传感器将结构上的振动信号采集下来,再使用信号处理算法对信号进行分析。
2.激励-响应法激励-响应法是另一种常见的模态分析方法。
该方法将结构受到的激励信号与结构的振动响应进行对比,从而得到结构的模态参数。
激励信号可以是一个冲击物、一次瞬态激励或周期性激励。
3.频率域方法频率域方法是一种基于结构在频域内的特性进行模态分析的方法。
它以傅里叶变换为基础,将结构的时域信号转化为频域信号,进而得到结构的固有频率和振型。
频率域方法具有计算效率高、信号处理简易等优点。
4.有限元法有限元法是一种数值方法,常用于模态分析中的结构模态分析。
该方法将结构分解为多个小单元,利用有限元理论和方法对结构进行数值模拟。
通过进行有限元分析和计算,可以得到结构的固有频率和振型。
三、模态分析的应用领域模态分析在机械工程领域中具有广泛的应用。
它可以帮助工程师了解和评估结构的动力特性,发现结构的固有频率、共振点和脆弱部位,从而进行系统的设计和优化。
模态分析在航空航天领域中有着重要的应用。
通过对飞机、火箭等结构进行模态分析,可以评估其动态特性和共振情况,保证飞行安全性和运行可靠性。
机械系统动力学特性的模态分析机械系统动力学是研究物体在受到外力作用下的运动规律和机械系统动态特性的学科。
其中,模态分析是一种重要的方法,用于研究机械系统的固有振动特性。
本文将介绍机械系统动力学特性的模态分析方法及其应用。
一、模态分析的基本概念模态分析是研究机械系统振动模态的一种方法。
模态是指机械系统在自由振动状态下的振动形式和频率。
模态分析通过分析机械系统的初始条件、约束条件和外力等因素,确定机械系统的固有频率和振型,并进一步得到机械系统的振荡特性。
二、模态分析的基本步骤模态分析一般包括以下几个步骤:1. 系统建模:根据实际情况,将机械系统抽象为数学模型,包括质量、刚度、阻尼等参数。
2. 求解特征值问题:通过求解系统的特征值问题,得到系统的固有频率和振型。
3. 模态验算:将得到的固有频率和振型代入原始方程,验证其是否满足振动方程。
4. 模态分析:通过对系统的振动模态进行进一步分析,得到系统的动态响应和振动特性。
三、模态分析的应用模态分析在机械工程领域有广泛的应用。
主要包括以下几个方面:1. 结构优化设计:通过模态分析,可以评估机械系统的固有频率和振型,判断系统是否存在共振现象或其他异常振动情况,为结构设计提供依据。
2. 动力学特性分析:通过模态分析,可以了解机械系统的振动特性,包括固有频率、阻尼特性和模态质量等指标,为系统的动力学性能评估和优化提供依据。
3. 故障诊断与预测:模态分析可以用于机械系统的故障诊断和预测。
通过对机械系统振动模态的变化进行监测和分析,可以判断系统是否存在故障,并提前发现潜在的故障。
4. 振动控制技术:通过模态分析,可以了解机械系统振动的特征,并采取相应的振动控制措施。
比如调节系统的阻尼、改变系统的刚度等,来减小系统的振动幅度,提高系统的稳定性和工作性能。
四、模态分析存在的问题与挑战模态分析作为一种成熟的技术方法,仍然面临一些问题和挑战。
例如,模态分析需要对机械系统进行精确的建模,包括质量、刚度和阻尼等参数的准确度和全面性。
1. 什么是模态分析?模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
振动模态是弹性结构的固有的、整体的特性。
如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。
因此,模态分析是结构动态设计及设备的故障诊断的重要方法。
模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
2. 模态分析有什么用处?模态分析所的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:1. 评价现有结构系统的动态特性;通过结构的模态分析可以求得各阶模态参数(模态频率、模态振型以及模态阻尼),从而评价结构的动态特性是否符合要求,并校验理论计算结构的准确性。
2. 在新产品设计中进行结构动态特性的预估和优化设计;3. 诊断及预报结构系统的故障;近年来,结构故障技术发展迅速,而模态分析已成为故障诊断的一个重要方法。
利用结构模态参数的改变来诊断故障是一种有效方法。
例如,根据模态频率的变化可以判断裂纹的出现;根据振型的分析可以确定断裂的位置;根据转子支承系统阻尼的改变,可以诊断与预报转子系统的失稳等。
4. 控制结构的辐射噪声;结构噪声是由于结构振动所引起的。
结构振动时,各阶模态对噪声的“贡献”并不相同,对噪声贡献较大的几阶模态称为“优势模态”。
Workbench -Mechanical Introduction第五章模态分析简介Training Manual •在这一章中,将介绍模态分析。
进行模态分析类似线性静力分析。
–假设用户已学习了第4章线性静力结构分析部分。
•本章内容:–模态分析步骤–有预应力的模态分析步骤•本节所述的功能,一般适用于ANSYS DesignSpace Entra及以上版本的许可。
Training Manual模态系统分析基础•对于模态分析,振动频率ωi 和模态φi 是根据下面的方程计算的出的:2•假设:[][](){}0=−iiM K φω–[K] 和[M] 不变:•假设材料特性为线弹性的•利用小位移理论,并且不包括非线性的•不存在[C] ,因此无阻尼•无{F} , 因此无激振力•结构可以强迫振动也可以不强迫振动–模态{φ} 是相对值,不是绝对值A.模态系统分析步骤Training Manual •模态分析与线性静态分析的过程非常相似,因此不对所有的步骤做详细介绍。
用蓝色斜体字的步骤是针对模态分析的。
–附加几何模型–设置材料属性–定义接触区域(如果有的话)–定义网格控制(可选择)–定义分析类型–加支撑(如果有的话)–求解频率测试结果–设置频率测试选项–求解–查看结果…几何体和质点Training Manual •模态分析支持各种几何体:实体, 表面体和线体–,•可以使用质量点:•质点在模态分析中只有质量(无硬度)。
质点在模态分析中只有质量(无硬度)•质量点的存在会降低结构自由振动的频率。
•材料属性: 杨氏模量,泊松比, 和密度是必需的。
密度是必需的Training Manual。
模态分析理论1模态分析简介1.1 模态简介模态是结构固有的振动特性,每一个模态具有一个特定的固有频率、阻尼比和模态振型。
这些模态参数可以由分析软件分析取得,也可以经过试验计算获得,这样一个软件或者试验分析过程称为模态分析。
这个分析结果如果是由有限元计算的方法取得的,则称为计算模态分析;如果结果是通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
1.2 固有频率简介固有频率是物体的一种物理特性,由它的结构、大小、形状等因素决定的。
这种物理特征不以物体是否处于振动状态而转移。
当物体在多个频率上振动时会渐渐固定在某个频率上振动,当他受到某一频率策动时,振幅会达到最大值,这个频率就是物体的固有频率。
1.3 振型简介振型是指体系的一种固有的特性。
它与固有频率相对应,即为对应固有频率体系自身振动的形态。
每一个物体实际上都会有无穷多个固有频率,每一阶固有频率相对应物体相对应的形状改变我们称之为振型。
理论上来说振型也有无穷多个,但是由于振型阶数越高,阻尼作用造成的衰减越快,所以高振型只有在振动初期才较明显,以后则衰减。
因此一般情况下仅考虑较低的几个振型.1.4模态分析的目的模态分析技术从上世纪60年代开始发展至今,已趋于成熟。
它和有限元分析技术一起,已成为结构动力学中的两大支柱。
到目前,这一技术已经发展成为解决工程振动问题的重要手段,在机械、航空航天、土木建筑、制造化工等工程领域被广泛的应用。
我国在这一方面的研究,在理论上和应用上都取得了很大的成果,处于世界前列。
模态分析的最终目标就是识别出系统的模态参数,为结构系统的振动特性的分析、振动故障的诊断和检测以及结构的优化提供依据。
模态分析技术的应用可归结为以下几个方面:1) 评价所求结构系统的动态特性;2) 在新产品设计中进行结构特性的预估,优化对结构的设计;3) 诊断及预报结构系统中的故障;4) 识别结构系统的载荷。
仿真设计:模态仿真1. 简介模态仿真是一种通过计算机模拟来预测和分析系统的振动特性的方法。
它可以帮助工程师在产品设计的早期阶段就评估和优化系统的振动性能,从而减少开发时间和成本。
本文将介绍模态仿真的基本概念、应用领域以及常用的仿真工具。
2. 模态分析模态分析是模态仿真的核心内容之一。
它通过计算结构或系统在不同频率下的固有振动模式(也称为固有频率)和对应的振型来描述系统的振动特性。
这些固有频率和振型可以提供关于系统强度、稳定性、耐久性等方面的重要信息。
在进行模态分析时,首先需要建立一个数学模型来描述系统或结构物。
这个数学模型通常基于有限元方法,将结构物离散成多个小单元,并通过连接这些单元来建立整个结构物的力学行为方程。
然后,利用求解这些方程得到结构物在不同频率下的响应。
3. 模态分析的应用领域3.1 结构工程模态分析在结构工程中具有广泛的应用。
它可以用于评估建筑物、桥梁、飞机、汽车等结构的振动特性,以及识别和解决潜在的振动问题。
例如,在设计高层建筑时,模态分析可以帮助工程师确定建筑物的固有频率,从而避免与周围环境或风荷载产生共振。
3.2 汽车工程在汽车工程中,模态分析可以用于评估车身和底盘等部件的振动特性,并优化其结构以提高乘坐舒适性和安全性。
通过模态分析,工程师可以确定引起噪声和震动的源头,并采取相应的措施来减少噪声和振动。
3.3 航空航天工程在航空航天工程中,模态分析被广泛应用于飞机、火箭等载具的设计和改进。
通过对飞行器进行模态分析,可以确定其固有频率以及与发动机震动、气流相互作用等相关的振动问题。
这些信息对于改善飞行器的性能和安全性至关重要。
4. 常用的仿真工具4.1 ANSYSANSYS是一款广泛使用的有限元分析软件,提供了强大的模态分析功能。
它可以对各种结构进行振动特性的分析,并提供丰富的后处理功能来可视化和解释仿真结果。
4.2 MSC NastranMSC Nastran是另一款常用的有限元分析软件,也具备强大的模态分析能力。
模态分析原理模态分析是一种用于研究材料结构和性能的重要方法。
通过模态分析,我们可以了解材料在外部力作用下的响应情况,进而指导材料的设计和制备。
本文将介绍模态分析的原理及其在材料科学中的应用。
首先,我们来了解一下模态分析的基本原理。
模态分析是通过对材料的振动特性进行研究来分析其结构和性能。
在模态分析中,我们通常会使用有限元方法来建立材料的数学模型,然后通过数值计算的方式来求解材料的振动模态。
在振动模态分析中,我们可以得到材料在不同频率下的振动模式和振动形态,从而了解材料的结构特性和动态响应。
模态分析在材料科学中有着广泛的应用。
首先,模态分析可以帮助我们了解材料的固有振动特性,包括自然频率、振动模式等。
这对于材料的设计和优化至关重要,可以帮助我们预测材料在不同工况下的响应情况,指导材料的合理设计。
其次,模态分析还可以用于研究材料的损伤和疲劳行为。
通过监测材料在振动过程中的变化,我们可以及时发现材料的损伤情况,预测材料的寿命,从而延长材料的使用寿命。
除此之外,模态分析还可以应用于材料的质量控制和故障诊断。
通过对材料进行振动特性的监测和分析,我们可以及时发现材料的质量问题和故障情况,从而采取相应的措施进行修复和改进。
这对于提高材料的质量和可靠性具有重要意义。
总的来说,模态分析是一种重要的研究方法,可以帮助我们深入了解材料的结构和性能。
通过模态分析,我们可以预测材料在不同工况下的响应情况,指导材料的设计和制备,提高材料的质量和可靠性。
因此,模态分析在材料科学领域具有重要的应用前景,也是当前材料研究的热点之一。
综上所述,模态分析原理是一种重要的研究方法,通过对材料的振动特性进行分析,可以帮助我们了解材料的结构和性能。
模态分析在材料科学中有着广泛的应用,可以指导材料的设计和制备,提高材料的质量和可靠性。
相信随着科学技术的不断发展,模态分析在材料研究领域将会发挥越来越重要的作用。
模态试验分析方法简介1 试验模态分析的基本步骤试验模态分析一般分为如下的四个步骤:第一步:建立测试系统所谓建立测试系统就是确定实验对象,选择激振方式,选择力传感器和响应传感器,并对整个测试系统进行校准。
第二步:测量被测系统的响应数据这是试验模态的关键一步,所测量得到的数据的准确性和可靠性直接影响到模态试验的结果。
在某一激振力的作用下被测系统一旦被激振起来,就可以通过测试仪器测量得到激振力或响应的时域信号,通过输血手段将其转化为频域信号,就可以得到系统频响函数的平均估计,在某些情况下不要求计算频响函数,只需要时间历程就可以了。
第三步:进行模态参数估计即利用测量得到的频响函数或时间历程来估计模态参数,包括:固有频率,模态振型,模态阻尼,模态刚度和模态质量等。
第四步:模态模型验证它是对第三步模态参数估计所得结果的正确性进行检验,它是对模态试验成果评定以及进一步对被测系统进行动力学分析的必要过程。
以上的每个步骤都是试验模态中必不可少的组成部分,其具体的介绍如下:2、建立测试系统建立测试系统是模态试验的前期准备过程,它主要包括:被测对象的理论分析和计算,测试方案的确定(包括激振方式的确定,传感器的选择,数据采集分析仪器的选择等),按照方案要求安装和调试,测试系统的校准等工作。
接下来对激振方式,传感器的选择和数据采集仪器的选择的具体介绍如下:2.1激振方式的确定:激振方式有很多种,主要分为天然振源激振和人工振源激振。
天然振源包括地震,地脉动,风振,海浪等;其中地脉动常被使用于大型结构的激励,其特点是频带很宽,包含了各种频率的成分,但是随机性很大,采样时间要求较长,人工振源包括起振机,激振器,地震模拟台,车辆振动,爆破,张拉释放,机械振动,人体晃动和打桩等。
其中爆破和张拉释放这两种方法应用较为广泛。
在工程实际中应当根据被测对象的特点,选取适当的激振方式。
2.2传感器的选择:传感器是测试系统的一次仪表,它的可靠性,精确度等参数指标直接影响到系统的质量。
模态分析报告报告目的本报告旨在对某架飞机进行模态分析,以评估其结构的固有频率和模态特性,以及提供相关结构设计和改进意见。
报告结构本报告结构如下:1. 模态分析简介2. 试验数据处理3. 基础模态分析4. 主要模态分析结果5. 结构设计和改进意见1. 模态分析简介模态分析是通过控制结构的激励条件,来研究结构振动的一种方法。
对于飞机等结构物,模态分析能够评估其固有频率和模态特性,以及寻找可能的改进措施,从而提高其性能和安全性。
2. 试验数据处理本次试验使用了xxx测试仪器,得到了多组振动数据。
处理过程包括滤波、采样和波形分析等步骤,最终得到了结构在不同激励条件下的振动模态。
3. 基础模态分析在模态分析之前,需要进行基础模态分析,以确定结构的基本模态。
本次试验得到了飞机前根部、中根部和后根部的基础模态,如下图所示:(插入基础模态图)其中,1、2、3分别表示前根部、中根部和后根部,a、b、c分别表示不同的振荡模态。
4. 主要模态分析结果基于试验得到的振动数据,进行了主要模态分析,结果如下表所示:(插入主要模态分析结果表)表中列出了前五个主要模态的特征频率、模态形状和振幅等信息。
可以看出,第二个主要模态具有较高的特征频率,表示该模态较为稳定,但其形状较为复杂,需要特别关注。
5. 结构设计和改进意见针对模态分析结果,提出如下结构设计和改进意见:1)增加加强结构件,加强飞机的抗振能力。
2)优化组件结构设计,使其形状更加简单,减少激励条件下的振荡变形。
3)采用新型材料,提高飞机结构的刚度和韧度,以减少频率响应。
结论通过模态分析,确定了该飞机的固有频率和模态特性,并提出了结构设计和改进意见,为飞机的性能和安全性提供了有力保障。
模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
概述振动模态是弹性结构固有的、整体的特性。
通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。
因此,模态分析是结构动态设计及设备故障诊断的重要方法。
机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。
模态分析提供了研究各类振动特性的一条有效途径。
首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。
用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。
根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。
近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。
已有多种档次、各种原理的模态分析硬件与软件问世。
用处模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:1) 评价现有结构系统的动态特性;2) 在新产品设计中进行结构动态特性的预估和优化设计;3) 诊断及预报结构系统的故障;4) 控制结构的辐射噪声;5) 识别结构系统的载荷。
工程振动测试技术模态分析简介在线性振动理论中,振动方程的矩阵表达式为非对角阵,存在动力耦合和静力耦合,为了求方程的解,首先应用正则振型(进行解耦)对其进行坐标变换,使其成为对角阵,然后求正则坐标的解,再将结果进行反变换得到物理坐标的解。
模态分析实质上也是一种坐标变换,与线性振动理论相似,其目的也在于把原物理坐标系统中描述的相应向量转换到“模态坐标系统”中来描述。
实验模态分析就是通过对结构实验数据的处理和分析,利用参数识别以求得“模态参数”的一种方法。
实验模态分析及参数识别是研究复杂机械和工程结构振动的重要手段。
由于固有频率、阻尼比和振型是振动的固有特性,这些参数可以由计算分析或实验分析得到,这样的分析过程称为模态分析。
模态分析有两种:1、计算模态分析2、实验模态分析计算模态分析就是利用线性振动理论,由有限元计算分析得到的,则称为计算模态分析。
计算模态分析的优点:1、在设计阶段,可根据设计图纸进行模态分析。
2、不需要物理模型,节约经费。
计算模态分析的缺点:误差较大,主要原因是1、计算模型和实际结构的误差较大2、边界条件很难准确确定3、某些大型结构的形状和动态特性十分复杂有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)如果是通过实验将输入与输出的振动信号经过分析计算和参数识别,获得模态参数,称为实验模态分析。
通常,如果不特别指明,模态分析都是指实验模态分析。
而实验模态分析则是对结构进行激励力激励,由力信号和响应信号求得系统的频响函数矩阵,再采用多种识别方法求出模态参数,得到结构固有的动态特性。
主要应用有 1、求出比较精确的固有频率、模态振型、模态阻尼、模态质量和模态刚度。
2、指导有限元理论模型的修正,使理论模型更趋完善和合理。
3、可以利用此方法建立一个子结构的数学模型,再将其组合到完整的结构中去。
4、进行结构动力学修改和反问题的计算等。
主要应用有5、进行响应计算和载荷识别。
由于理论模型计算很难得到模态阻尼(阻尼比),只能通过模态实验得到。
模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。
这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。
通常,模态分析都是指试验模态分析。
概述
振动模态是弹性结构固有的、整体的特性。
通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。
因此,模态分析是结构动态设计及设备故障诊断的重要方法。
机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。
模态分析提供了研究各类振动特性的一条有效途径。
首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。
用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。
根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。
近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。
已有多种档次、各种原理的模态分析硬件与软件问世。
用处
模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为以下几个方面:
1) 评价现有结构系统的动态特性;
2) 在新产品设计中进行结构动态特性的预估和优化设计;
3) 诊断及预报结构系统的故障;
4) 控制结构的辐射噪声;
5) 识别结构系统的载荷。
最佳悬挂点
模态试验时,一般希望将悬挂点选择在振幅较小的位置,最佳悬挂点应该是某阶振型的节点。
最佳激励点
最佳激励点视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。
如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。
最佳测试点
模态试验时测试点所得到的信息要求有尽可能高的信噪比,因此测试点不应该靠近节点。
在最佳测试点位置其AD DOF(Average Driving DOF Displacement)值应该较大,一般可用EI(Effective Independance)法确定最佳测试点。
模态参数有那些
模态参数有:模态频率、模态振型、模态质量、模态向量、模态刚度和模态阻尼等。
主模态主空间主坐标
无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。
模态截断
理想的情况下我们希望得到一个结构的完整的模态集,实际应用中这即不可能也不必要。
实际上并非所有的模态对响应的贡献都是相同的。
对低频响应来说,高阶模态的影响较小。
对实际结构而言,我们感兴趣的往往是它的前几阶或十几阶模态,更高的模态常常被舍弃。
这样尽管会造成一点误差,但频响函数的矩阵阶数会大大减小,使工作量大为减小。
这种处理方法称为模态截断。
实模态和复模态
按照模态参数(主要指模态频率及模态向量)是实数还是复数,模态可以分为实模态和复模态。
对于无阻尼或比例阻尼振动系统,其各点的振动相位差为零或180度,其模态系数是实数,此时为实模态;对于非比例阻尼振动系统,各点除了振幅不同外相位差也不一定为零或180度,这样模态系数就是复数,即形成复模态。
有限元分析
1)利用有限元分析模型确定模态试验的测量点、激励点、支持点(悬挂点),参照计算振型对测试模态参数进行辩识命名,尤其是对于复杂结构很重要。
2)利用试验结果对有限元分析模型进行修改,以达到行业标准或国家标准要求。
3)利用有限元模型对试验条件所产生的误差进行仿真分析,如边界条件模拟、附加质量、附加刚度所带来的误差及其消除。
4)两套模型频谱一致性和振型相关性分析。
5)利用有限元模型仿真分析解决实验中出现的问题!
修正有限元分析的结果
用试验模态分析的结果怎么修正有限元分析的结果?
1)结构设计参数的修正,可用优化方法进行。
2)子结构校正因子修正。
3)结构矩阵元素修正,包括非零元素和全元素修正两种。
4)刚度矩阵和质量矩阵同时修正。