当前位置:文档之家› 光调制

光调制

光调制
光调制

光调制

光调制就是将一个携带信息的信号叠加到载波光波上,完成这一过程的器件称为调制器。调制器能使载波光波的参数随外加信号变化而变化,这些参数包括光波的振幅、位相、频率、偏振、波长等。承载信息的调制光波在光纤中传输,再由光探测器系统解调,然后检测出所需要的信息。光调制技术已广泛应用于光通信、测距、光学信息处理、光存储和显示等方面。

一、光调制的方法

(1)直接调制法:外加信号直接控制激光器的泵浦源,如控制半导体激光器的注入电流,从而使激光的某些参量得到调制。根据调制信号的类型,直接调制又可以分为模拟调制和数字调制两种。

a 、半导体激光器(LD )直接调制

半导体激光器处于连续调制工作状态时,无论有无调制信号,由于有直流偏置,所 以功耗较大,甚至引起温升,会影响或破坏器件的正常工作。

b 、半导体发光二极管(LED )的调制

半导体发光二极管由于不是阈值器件,它的输出光功率不像半导体激光器那样会随注入电流的变化而发生突变,因此,LED 的P -I 特性曲线的线性比较好。 c 、半导体光源的模拟调制

无论是使用 LD 或LED 作光源,其调制线性好坏与调制深度m 有关:

偏置电流调制电流幅度阈值电流偏置电流调制电流幅度=-=m m :L E D :

LD d 、半导体光源的脉冲编码数字调制

数字调制是用二进制数字信号“1”和“0”码对光源发出的光波进行调制。而数字信号大都采用脉冲编码调制,即先将连续的模拟信号通过“抽样”变成一组调幅的脉冲序列,再经过“量化”和“编码”过程,形成一组等幅度、等宽度的矩形脉冲作为“码元”,结果将连续的模拟信号变成了脉冲编码数字信号。然后,再用脉冲编码数字信号对光源进行强度调制。

(2)腔内调制:腔内调制是通过改变激光器的参数如增益、谐振腔Q 值或光程等实

现的,主要用于Q开关、腔测空、锁模等技术。腔内调制又分为被动式与主动式两类。

①被动调制

这种调制利用某些吸收波长与激光波长一致的可饱和吸收体(如染料)的非线性吸收特性。把一个染料盒置于激光腔内可以构成一个被动式Q开关,开关时间一般为10~10秒。这种方法比较简单、经济,但开关时间不能精确控制。此外,染料的寿命较短。采用恢复吸收率的驰豫时间短的染料溶液可以实现激光器的锁模工作,获得10~10秒的超短脉冲。

②主动调制

包括机械调制、电光调制、声光调制和磁光调制等。

a、机械调制

利用放在腔内的高速旋转体,如反射镜或全反射棱镜来控制光学谐振腔的Q值变化,可以实现Q调制。这种调制方法简单,插入损耗低,有较高的抗破坏能力,但开关速度低(~0.1微秒),需要使用高速马达。在腔外用高速旋转的开缝转盘很容易制成光斩波器,实现光强的低频调制。

b、电光调制

利用某些晶体、液体或气体在外加电场作用下折射率发生变化的现象进行调制。电光调制分为线性电光调制和平方电光调制两种。

①线性电光调制:所用介质折射率的变化与电场强度成线性关系(泡克耳斯效应)。常见的线性电光调制又分纵向电光调制和横向电光调制两种。纵向调制装置(图1)采用磷酸二氢钾(KDP)、磷酸二氢铵(ADP)等晶体,使入射光的振动方向平行于晶轴x1或x2。沿光轴x3方向加上电场,这时晶体呈双折射性,有一对与原晶轴(x1,x2)成45°的感应轴。振动方向沿感应轴和垂直于感应轴的光的两个分量的相位差,随外加电压的变化而变化。光束通过晶体后,其偏振状态受到调制。再通过图中所示的检偏器,光的振幅受到调制。用稍微不同一点的装置可以获得相位调制。横向调制典型装置(图2)采用钽酸锂、砷化镓等晶体,入射光的振动方向与晶体x3轴成45°,晶体中外加电场方向垂直于光束方向。这种调制方式的调制度与晶体的长宽比有关,可以用增加长宽比的方法来降低晶体上所需的电压。

②平方电光调制:所用介质感生的光学双折射是外加电场强度的二次函数(克尔效

应)。这类介质有晶体(如钽铌酸钾)和液体(如硝基苯、溴化苯等)。利用克尔效应进行调制的方法称为平方电光调制。

c、声光调制

利用光在声场中的衍射现象进行调制。当声波传入到介质中时,介质中存在着疏密波,介质的折射率也相应地发生周期性的变化,形成以声波波长值为常数的等效相位光栅。当光束以一定的角度入射到此介质中时,光束即发生衍射(图3)。衍射光的强度、频率和方向都随声场的变化而变化。这样,就可以实现光束的调制和偏转。声光衍射可分为喇曼-奈斯衍射和布喇格衍射两种。后者衍射效率高,常被采用。声光调制器通常由电声换能器、声光介质和吸声装置组成。声光调制具有驱动功率低、光损耗小、消光比高等优点。

d、磁光调制

线偏振光通过具有法拉第效应的介质时在磁场作用下,其偏振面发生旋转。利用这种效应也可进行光调制。磁光调制所用材料有钇铁石榴石、掺镓钇铁石榴石和重火石玻璃等。由于材料透明波段的限制,磁光调制主要用于红外波段。

电光调制是用电源使得些晶体在外加电场的作用下,其折射率将发生变化,当光波通过此介质时,其传输特性就受到影响而改变。声光调制是光波在介质中传播时,被超生波场衍射或散射的现象。介质的折射率周期变化形成折射率光栅时,光波在介质中传播就会发生衍射现象,衍射光的强度、频率和方向等将随着超生场的变化而变化;磁光调制器是改变线圈的电源来控制磁场的改变,以达到改变光信号的偏振方向。

(3)腔外调制:只改变腔外光波参数而不影响激光振荡本身的一种调制方法,主要用于光偏转、扫描、隔离、调相、调幅和斩波等方面。腔外调制一般都采用主动方式。

由于数字光通信的突出优点,所以其有很好应用的前景。首先因为数字光信号在信道上传输过程中引进的噪声和失真,可采用间接中继器的方式去掉,故抗干扰能力强;其次对数字光纤通信系统的线性要求不高,可充分利用光源(LD)的发光功率;第三数字光通信设备便于和脉冲编码电话终端、脉冲编码数字彩色电视终端、电子计算机终端相连接,从而组成既能传输电话、彩色电视,又能传输计算机数据的多媒体综合通信系统。此外,还可以利用电场、磁场或温度等参数的改变实现光波的频率调制。

二、光强度调制技术

(1)微弯效应光强度调制技术

利用光在微弯光纤中强度的衰减原理,将光纤夹在两块具周期性波纹的微弯析构成的变形器中构成调制器。从波导理论的观点来看,当光纤发生弯曲时,传输光会有一部分泄漏到包层中去,这种泄漏是光纤内发生模式耦合的结果,这些耦合模变为辐射模,造成传播光能量的损耗。纤芯中的光向包层逸出的原因从几何光学来说是由于全反射条件的破坏造成的,从波导理论来说则是光纤的弯曲引起了各种传导模式的耦合,则形成耦合模式被送入包层中去产生辐射模。

(2)光强度的外调制技术

·上述微弯调制技术属于内调制,属于功能性调制技术,它是利用光纤本身特性的改变来实现光调制的。所谓外调制技术,是指调制环节发生在光纤以前的部分,光纤本身的性质并不改变,它只起到传光的作用。此时的光纤分为两部分,即输入光纤和输出光纤,或发送光纤和接收光纤,由于接收光强与接收光纤的端面的法向方面有关,于是接收光纤的端面可以视为接收信号。由输入光纤出射的光投射到反射面上,其反射光的一部分进入输出光纤,进入多少与反射面位置有关。

(3)遮光型光强外调制技术

·上面所言为反射式,除此之外还有遮光式,一种办法是将发射光纤和接取光纤对准,光强调制信号加在移动的遮光板上;另一种方法是直接移动接收光纤。这两种方式都是使接收光纤只能收到发送光纤发出的部分光,从而实现光调制。用这种办法可以测量位移、压力、温度等物理量,这些物理量的变化都可使光强减弱由于闸式要使两光纤距离大一些,因此光损耗较大,但它可固定两光纤,因而使用可靠。

(4)折射率光强度调制技术

反射系数与两介质的折射率有关,利用折射率的变化来改变反射系数,则可达到调制光强的目的,下图给出了一种典型装置:由光纤左端入射的光,一部分沿光路返回到探测器。调制机理是:光纤左端有两个反射面,其中底面的为全反射面(镀膜而成),两反射面搭接,斜面反射面与折射率为的介质接触,调节斜面反射镜的角度使纤芯光经反射后能垂直入射到全反射面上,则纤芯光入射到斜反射面时能够部分地透射到的介质中去。

(5)波长调制技术

波长调制技术主要是利用传感探头的光谱特性随外界物理量变化的性质来实现的。此类传感器多为非功能型传感器。在波长(颜色)调制探头中,光纤只是简单地作为导光用,即把入射光送往测量区,而将返回的调制光送往分析器。

常用的光调节方式分为电光晶体调节,声光调节和磁光调节和半导体激光器的电流直接调节。其中电光晶体调节分为泡克耳斯效应和克尔效应原理;声光调节利用超声光栅的衍射原理;磁光调节利用磁光晶体的法拉第效应,激光器电流调器利用输入激光器的电子数控制粒子数翻转来控制激光光强。电光调制可以对振幅调制,也可以对相位调制,但是其调制带宽易受外电路参数影响,且一个最高调制频率限制;声光调制和磁光调制都只能对振幅调制,但声光调制若应用布拉格衍射可获得较大的调制带宽和较高的调制频率,磁光调制原理简单,易于控制操作。这几种光调制方式都只能用模拟信号调制,电流直接调制还可以用数字信号调制,且这种调制方式简单,能工作在高频,并能保持良好的线性工作区和带宽,但是半导体激光器功耗较大。

法拉第效应与磁光调制实验

法拉第效应与磁光调制实验 1845年,法拉第(M.Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。 法拉第效应有许多重要的应用,尤其在激光技术发展后,其应用价值越来越受到重视。如用于光纤通讯中的磁光隔离器,是应用法拉第效应中偏振面的旋转只取决于磁场的方向,而与光的传播方向无关,这样使光沿规定的方向通过同时阻挡反方向传播的光,从而减少光 于激光多级放大和高分辨率的纤中器件表面反射光对光源的干扰;磁光隔离器也被广泛应用Array激光光谱,激光选模等技术中。在磁场测量方面,利用法拉第 效应驰豫时间短的特点制成的磁光效应磁强计可以测量脉冲 强磁场、交变强磁场。在电流测量方面,利用电流的磁效应和 光纤材料的法拉第效应,可以测量几千安培的大电流和几兆伏 的高压电流。 磁光调制主要应用于光偏振微小旋转角的测量技术,它是 通过测量光束经过某种物质时偏振面的旋转角度来测量物质 的活性,这种测量旋光的技术在科学研究、工业和医疗中有广 泛的用途,在生物和化学领域以及新兴的生命科学领域中也是 重要的测量手段。如物质的纯度控制、糖分测定;不对称合成 M.Faraday(1791-1876) 化合物的纯度测定;制药业中的产物分析和纯度检测;医疗和 生化中酶作用的研究;生命科学中研究核糖和核酸以及生命物质中左旋氨基酸的测量;人体血液中或尿液中糖份的测定等。 一、实验目的 1. 用特斯拉计测量电磁铁磁头中心的磁感应强度,分析线性范围。 2. 法拉第效应实验:正交消光法检测法拉第磁光玻璃的费尔德常数。 3. 磁光调制实验:熟悉磁光调制的原理,用倍频法精确测定消光位置;精确测量不同样品 的费尔德常数。 二、实验原理 1、法拉第效应 实验表明,在磁场不是非常强时,如图1所示,偏振面旋转的角度θ与光波在介质中走 d B成正比,即: 过的路程及介质中的磁感应强度在光的传播方向上的分量 θ (1) = VBd 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔德(Verdet)常数。附录中,表1为几种物质的费尔德常数。几乎所有物质(包括气体、液体、固体)都

磁光调制实验报告

磁光调制实验报告 课程:_____光电子实验_____ 学号: 姓名: 专业:信息工程 南京大学工程管理学院

磁光调制实验报告 一、实验目的 1 观察磁光调制现象 2 测量调制深度与调制角幅度 3测定旋光角与外加磁场的关系 4 测量直流磁场对磁光介质的影响 5 磁光调制与光通讯实验演示 二、实验原理 1 磁光效应 当平面偏振光穿透某种介质时,若在沿平行于光的传播方向施加一磁场,光波的偏振面会发生旋转,实验表明其旋转角θ正比于外加的磁场强度B,这种现象称为法拉第(Faraday)效应,也称磁致旋光效应,简称磁光效应,即: θ (1) = vlB 式中l为光波在介质中的路径,ν为表征磁致旋光效应特征的比例系数,称为维尔德(Verdet)常数。由于磁致旋光的偏振方向会使反射光引起的旋角加倍,而与光的传播方向无关,利用这一特性在激光技术中可制成具有光调制、光开关、光隔离、光偏转等功能性磁光器件,其中磁光调制为其最典型的一种。 图1 磁光效应示意图 如图1所示,在磁光介质的外围加一个励磁线圈就构成基本的磁光调制器件。 2 直流磁光调制 当线偏振光平行于外磁场入射磁光介质的表面时,偏振光的光强I可以分解成如图2所示的左旋圆偏振光I L和右旋圆偏振光I R(两者旋转方向相反)。由于介质对两者具有不同的折射率n L和n R,当它们穿过厚度为l的介质后分别产生不同的相位差,体现在角位移上有:

l n L L λπ θ2= l n R R λ πθ2= 式中λ为光波波长 因θθθθ+=-R L ()()l n n R L R L ?-=-= λ πθθθ221 ( 2 ) 如折射率差()R L n n -正比于磁场强度B ,即可得(1)式,并由θ值与测得的B 与l 求出威德尔常数υ。 图2 入射光偏振面的旋转运动 3 交流磁光调制 用一交流电信号对励磁线圈进行激励,使其对介质产生一交变磁场,就组成了交流(信号)磁光调制器(此时的励磁线圈称为调制线圈),在线圈未通电流并且不计光损耗的情况下,设起偏器P 的线偏振光振幅为A 0,则A 0可分解为 A 0 cos α及A 0 sin α两垂直分量,其中只有平行于P 平面的A 0 cos α分量才能通过检偏器,故有输出光强 αα2020cos )cos (I A I == (马吕斯定律) 其中200A I =为其振幅。 式中α为起偏器P 与检偏器A 主截面之间的夹角,I 0为光强的幅值,当线圈通以交流电信号i=i 0 sin ωt 时,设调制线圈产生的磁场为B=B 0 sin ωt ,则介质相应地会产生旋转角θ=θ0 sin ωt ,则从检偏器输出的光强为: [][])sin (2cos 12 )(2cos 12)(cos 000 20t I I I I ωθαθαθα++=++= += (3)

磁光调制实验

实验七 磁光调制实验 一、 实验背景介绍 (一)概述 磁光调制是利用某些晶体的磁光效应,对光信号进行调制,使光信号的幅度随着调制信号的变化而变化,实现把调制信号加载到光信号上。磁光调制在光电检测,光通讯,光显示等领域有着广泛的应用。 (二)磁光效应原理 磁光效应 置于外磁场中的物体,在光与外磁场作用下,其光学特性(如吸光特性,折射率等)发生变化的现象。法拉第效应 1845年由M.法拉第发现。当线偏振光(见光的偏振)在介质中传播时,若在平行于光的传播方向上加一强磁场,则光振动方向将发生偏转,偏转角度θ与磁感应强度B 和光穿越介质的长度l 的乘积成正比,即V B L θ=??,比例系数V 称为费尔德常数,与介质性质及光波频率有关。偏转方向取决于介质性质和磁场方向。 2 直流磁光调制 当线偏振光平行于外磁场入射磁光介质的表面时,偏振光的光强I 可以分解成如图2所示的左旋圆偏振光I L 和右旋圆偏振光I R ,对应的电矢量为E L 和E R ,两者旋转方向相反。 在磁场作用下,处于磁场中的介质呈现各向异性,由于介质对两者具有不同的折射率n L 和n R ,E L 的传播速度与E R 不同,当它们穿过厚度为L 的介质后会产生相位差,E L 与E R 旋转角度为θL 与θR ,合成电矢量则旋转一个角度θ。 2L L n L π θλ = y=Acos(wt+θ) 初相位的改变 2R R n L π θλ =

因θθθθ+=-R L 1()()()2 2L R L R R L L n n L n n c πωθθθλ = -= -= - (2) 其中n R 为在磁场作用下,右旋圆偏振光通过介质的折射率,n L 为左旋圆偏振光通过介质的折射率,c 为真空中的光速。如折射率差()R L n n -正比于磁场强度B ,即可得(1)式,并由θ值与测得的B 与L 求出维尔德常数V 图2 入射光偏振面的旋转运动 3 交流磁光调制 二、磁光调制实验 (一)实验要求 1、了解磁光调制实验的原理和方法 2、了解磁光调制器用于光通讯的基本原理 3、掌握磁光调制器的主要参数的测试方法 (二)实验内容 1、测定旋光角与激励电流的关系 2、出来晶体的半波电压和工作电压 3、观察输出光强极小时,产生的倍频信号 4、电光调制实现光通讯演示 5、测试电光晶体的消光比和透射率 (三)实验步骤

磁光调制实验

磁光调制实验仪 磁旋光效应(法拉第效应)实验,对不同物质的旋光特性有所认识。实验发现,磁旋光性物质具有左旋和右旋之分,而且它的旋光方向是由磁场的方向来决定。根据实验数据分析获得磁场强度与偏振角之关系,观察磁场电流与旋光方向的关系,进一步了解不同介质的旋光特性。 [实验目的] 1.观察和了解磁旋光现象及其基本特征。 2.学习测量介质的磁旋光费尔德常数V的数值的方法。 3.思考磁旋光效应的应用。 [实验内容] 对给定的两个样品进行下面测量 1、在350nm-750nm波长范围内,分散选取5个以上不同波长,对其在不同磁场强度(在50mT-600mT范围内取10个以上点)下测量样品的磁旋光角。 2、对两个样品,做不同波长的磁旋光角-磁场强度关系图,并由图确定相应的费尔德常数值。 3、分析实验所得磁旋光角--磁场强度关系是否符合式(1)线性关系,以及费尔德常数值随光波长变化的色散关系。 [实验原理] 1845年由M.法拉第发现。当线偏振光(见光的偏振)在介质中传播时,若在平行于光的传播方向上加一强磁场,则光振动方向将发生偏转,偏转角ψ与磁感应强度B 和光穿越介质的长度l的乘积成正比,即ψ=VBl,比例系数V称为费尔德常数,与介质性质及光波频率有关。偏转方向取决于介质性质和磁场方向。这种现象称为法拉第效应或磁致旋光效应

当一束平面偏振光穿过某介质时,如果对介质在沿光的传播方向加上磁场,就会观察到光经过样品后偏振面转过一个角度(见图1),亦即磁场 使介质具有了旋光性,这种现象就是磁旋光效应,也 称为法拉第效应。 实验表明,在磁场不很强时,偏振面旋转的角度 F θ与光波在介质中走过的路程l 及加在介质中的磁 感应强度沿光传播方向上的分量B 成正比,即 F VBl θ= 比例系数V 称为费尔德(Verdet) 常数, 表征着物质的磁光特性,其值由介质和光波长决定。几乎所有的物质(气体、液体,固体)都存在法拉第效应,不过大多不显著。不同的物质,偏振面旋转的方向也可能不同。习惯上规定,旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(0V >);反之叫负旋(0V <)。表1、2 给出某些物质的费尔德常数V 的数值。 表1 一些物质的费尔德常数 磁旋光与自然旋光有不同的地方,也有相同的地方。 不同的地方是磁旋光效应是不可逆的光学过程,即对于给定的物质偏振面的旋转方向相对于实验室坐标,只由B 的方向决定,和光的传播方向无关,光线往返一次,旋转角将是单方向的2倍,而自然旋光则是可逆的,光线往返一次,累积旋转角为零。 相同的地方是旋光存在色散。对磁旋光效应,色散表现为费尔德常数V 值随入射光波长λ而变(见图2),称为旋光色散。如介质是含有三价稀土离子的玻璃,旋光色散可用下式近似表示 221()t V K λλ-=- 式中K 是跃迁波长t λ、有效的电偶极矩阵元t C 、温度和浓度等物理量的函数,但与人射光波长λ无关。

《 光电子技术 》本科期末考试试卷(A卷)

西南科技大学2013-2014-2学期 《光电子技术》本科期末考试试卷(A卷) 一、单选题(每题2分,共20分) 1、光电子技术主要研究()。 A. 光与物质中的电子相互作用及其能量相互转换的一门技术 B. 光电子材料制备的一门技术 C. 光信息转换成电信息的一门技术 D. 介绍光电器件的原理、结构和性能参数的一门科学 2、波长为0.78μm的光子能量为()。 A.3.2eV B.1.59eV C.1.24eV D.2.4eV 3、光波在大气中传播时,气体分子及气溶胶的()会引起光束能量的衰减。 A. 折射和反射 B.吸收和散射 C. 弯曲和漂移 D. 湍流和闪烁 4、将2012年诺贝尔物理学奖授予法国科学家沙吉·哈罗彻(Serge Haroche)与美国科学家大卫·温兰德(David J. Wineland)。大卫·维因兰德是利用光或光子来捕捉、控制以及测量带电原子或者离子,而沙吉·哈罗彻通过发射原子穿过阱,控制并测量捕获的()。 A.光子或粒子 B.电子 C.载流子 D.声子 5、光纤是一种能够传输光频电磁波的介质波导,其结构上由()组成。 A.纤芯、包层和护套 B.单模和多模 C. 塑料、晶体和硅 D.阶跃和梯度光纤 6、直接调制是把要传递的信息转变为()信号注入半导体光源,从而获得调制光信号。 A.电流 B.电压 C. 光脉冲 D.正弦波 7、以下基于光电导效应制成的光电器件是()。 A.光敏电阻 B.光电管 C.雪崩光敏二极管 D.光电池 8、光电成像转换过程需要研究()。 A. 能量、成像、噪声和传递 B. 产生、存储、转移和检测 C. 调制、探测、成像和显示 D.共轭、放大、分辨和聚焦 9、微光光电成像系统的工作条件就是环境照度低于()lx。 A. 0.1 B. 0.01 C. 0.001 D. 0.0001 10、PDP单元虽是脉冲放电,但在一个周期内它发光()次,维持电压脉冲宽度通常5~10μs,幅度90V~100V,工作频率范围30KHz~50KHz,因此光脉冲重复频率在数万次以上,人眼不会感到闪烁。

空间光调制器怎么用_空间光调制器的功能及应用

空间光调制器怎么用_空间光调制器的功能及应用 空间光调制器它是一种对光波的空间分布进行调制的器件,具有能实时的在空间上调制光束的功能,使其成为构成实时光学信息处理,光计算等系统的关键器件。空间光调制器的原理空间光调制器含有许多独立单元,它们在空间上排列成一维或二维阵列。每个单元都可以独立地接受光学信号或电学信号的控制,利用各种物理效应(泡克尔斯效应、克尔效应、声光效应、磁光效应、半导体的自电光效应、光折变效应等)改变自身的光学特性,从而对照明在其上的光波进行调制。 一般把这些独立的小单元称为空间光调制器的像素,把控制像素的信号称为写入光,把照明整个器件并被调制的输入光波称为读出光,经过空间光调制器后出射的光波称为输出光。形象的说,空间光调制器可以看作一块透射率或其它光学参数分布能够按照需要进行快速调节的透明片。显然,写入信号应该含有控制调制器各个像素的信息。把这些信息分别传送到相应像素位置上去的过程,称为寻址。 空间光调制器一般按照读出光的读出方式不同,可以分为反射型和透射型; 按照输入控制信号的方式不同又可分为光寻址(OA-SLM)和电寻址(EA-SLM)。 空间光调制器的基本功能,就是提供实时或准实时的一维或二维光学传感器件和运算器件。在光信息处理系统中,它是系统和外界信息交换的接口。 它可以作为系统的输入器件,也可在系统中用作变换或运算器件。作为输入器件时,其功能主要是将待处理的原始信息处理成系统所要求的输入形式。此时,空间光调制器作为输入传器,可以实现电-光转换、串行-并行转换、非相干光-相干光转换、波长转换等。 作为处理和运算器件时,可以实现光放大、矢量-矩阵或矩阵-矩阵间乘法、对比反转、波面形状控制等。除此还有模拟图像存储的功能。 空间光调制器是一种对光波的光场分布进行调制的元件,广泛地应用于成像投影、光束分束、激光束整形、相干波前调制、相位调制、光学镊子、全息投影、激光脉冲整形等诸多应用领域。

空间光调制器

空间光调制器 一.引言 人们已经认识到,光波作为信息的载体具有特别明显的优点。这是因为:(1)光波的频率高达1014Hz以上,比现有的信息载波(无线电波,微波)的频率要高出几个数量级,因此它有极大的带宽。(2)光波有并行性,这是因为光是独立传播的。原有的以串行输入/输出为基础的各种光调制器已经不能满足光互连,光学信息大容量和并行性的要求,能实时的或者快速的二维输入或者输出的传感器以及具有运算功能的二维期间便应运而生,这就是空间光调制器。 二.概述 1.空间光调制器的基本结构和分类 空间光调制器的基本结构特点在于,它由可以独立接收光学或者电学输入信号,并利用各种物理效应改变自身光学特性,从而实现对输入光波或变换的小单元(像素)组成。而我们把控制像素的光电信号称为:“写入光”,把照明整个器件并被调制的输入光波称为:“读出光”,经过空间调制器后出射的光波叫做“输出光”。 写入光或者写入电信号含有控制调制器各个像素的信息。而这些信息分别传送到相应像素上去的过程叫做“寻址”。 目前国际上报道的已经投入实际运用的光电调制器不下40余种,但对这些空间光调制器还没一个统一的分类的办法。目前比较常见的分类方法有:(1)按寻址方式和读出方式分(2)按用于调制的物理效应分(电光效应,磁光效应,声光效应等等)。 2.功能 一般来说,空间光调制器的主要功能有以下两大类: (1)输入器件—将待处理的信息转换成光学处理系统所要求的输入形式。 A.光--电转换和串行--并行转换 B.非相干光—相干光的转换 C.波长转换 (2)处理运算功能器件 A.放大器----增加光波的光强。 B.乘法器和算术运算功能----所谓的乘法器就是指输出光在空间光调制器的表面上的光强分布等于读出光信号和写入光信号的乘积。如果同时输入 两个相干光图象,空间光调制器还可以实现图象的相加或者相减。 C.对比度反转----在减法运算或者逻辑非运算中,需要将二维图象的对比度反转,就是把写入光的亮区在输出光中变成暗区,反之,写入光中的暗区 在输出光中变为亮区。 D.量化操作和阕值操作----所谓的量化操作就是把连续变化的模拟信号按大小分成若干个分立的等级值,转为数字信号。这就需要设定一个值,当 大于此值时,输出一个值,小于时输出另一个,这个设定的值就叫做阙值。 3.空间光调制器的基本性能参数 A 输入—输出特性曲线-----空间光调制器的透过率随写入信号变化的曲线。 B 灵敏度 C 对比度 公式:r=I max/I min D 灰阶数---透过率的另外一种表示方式

光调制

光调制 光调制就是将一个携带信息的信号叠加到载波光波上,完成这一过程的器件称为调制器。调制器能使载波光波的参数随外加信号变化而变化,这些参数包括光波的振幅、位相、频率、偏振、波长等。承载信息的调制光波在光纤中传输,再由光探测器系统解调,然后检测出所需要的信息。光调制技术已广泛应用于光通信、测距、光学信息处理、光存储和显示等方面。 一、光调制的方法 (1)直接调制法:外加信号直接控制激光器的泵浦源,如控制半导体激光器的注入电流,从而使激光的某些参量得到调制。根据调制信号的类型,直接调制又可以分为模拟调制和数字调制两种。 a 、半导体激光器(LD )直接调制 半导体激光器处于连续调制工作状态时,无论有无调制信号,由于有直流偏置,所 以功耗较大,甚至引起温升,会影响或破坏器件的正常工作。 b 、半导体发光二极管(LED )的调制 半导体发光二极管由于不是阈值器件,它的输出光功率不像半导体激光器那样会随注入电流的变化而发生突变,因此,LED 的P -I 特性曲线的线性比较好。 c 、半导体光源的模拟调制 无论是使用 LD 或LED 作光源,其调制线性好坏与调制深度m 有关: 偏置电流调制电流幅度阈值电流偏置电流调制电流幅度=-=m m :L E D : LD d 、半导体光源的脉冲编码数字调制 数字调制是用二进制数字信号“1”和“0”码对光源发出的光波进行调制。而数字信号大都采用脉冲编码调制,即先将连续的模拟信号通过“抽样”变成一组调幅的脉冲序列,再经过“量化”和“编码”过程,形成一组等幅度、等宽度的矩形脉冲作为“码元”,结果将连续的模拟信号变成了脉冲编码数字信号。然后,再用脉冲编码数字信号对光源进行强度调制。 (2)腔内调制:腔内调制是通过改变激光器的参数如增益、谐振腔Q 值或光程等实

电子技术基础知识练习题与答案

电子技术基础知识练习题与答案电子技术运用在哪一方面?大家知道了多少电子技术基础知识呢? 1. 按照调制方式分类,光调制可以分为:强度调制、相位调制、波长调制、频率调制、偏振调制。 2. 半导体激光器发光是由能带之间的电子空穴对复合产生的。 3. 激励过程是使半导体中的载流子过程从平衡态激发到非平衡态。 4. 固体激光器是以固体为工作物质的激光器,也就是以掺杂的离子型绝缘晶体和玻璃为工作物质。 5. 光纤传感器中常用的光电探测器:光电二极管、光电倍增管、光敏电阻。 6. 红外探测器的响应波长范围参数指探测器电压响应率与入射的红外波长之间的关系。 7. 光子探测原理是指利用半导体在入射光的照射下产生光子效应。 8. 利用温差电势制成的红外探测器称为热电偶。 9. 红外辐射在大气中传播时由于大气中水分子、蒸汽等吸收和散射使辐射在传播过程中衰减。 10. 当红外辐射照在热敏电阻上时,使温度上升,内部粒子无规则运动加剧,自由电子数随温度而上升,所以电阻

会减小。 11. 辐射出射度:辐射体单位面积向半空间发出的辐射通量。 12. 光电磁是利用光生伏特效应将光能变成电能。 13. 任何物质只要温度高于0K就会向外辐射能量。 14. 红外无损检测是通过测量热流或热量来检测。 15. 内光电探测器可分为光电导、光伏特、光电磁三种探测器。 16. 红外探测器的性能参数:电压响应率、噪声等效功率、时间常数。 17. 光束扫描根据其应用的目的可分为模拟扫描和数字扫描。模拟扫描用于显示,数字扫描用于光存储。 18. 固体摄像器件主要有:CCD、CMOS、CID。 19. 声光相互作用分为:拉曼—纳斯衍射和布喇格衍射。 20. 磁光效应:外加磁场作用引起材料光学各向异性的现象。 21. CCD的基本功能:电荷存储、电荷转移。按结构分为线阵CCD和面阵CCD。 22. 液晶分为溶致液晶和热致液晶两大类。 23. 光辐射照射在半导体表面,材料中电子和空穴由原来的不导电状态转化为导电状态,这种现象称为光电导。

磁光调制实验

磁光调制实验 实验目的 1.了解磁光效应的原理,掌握光线偏振面旋转角度的测量方法。 2.通过试验,验证费尔德常数公式,并计算荷质比。 实验原理 1845年,英国科学家法拉第(Faraday)在探索电磁现象和光学现象之间的联系时,发现平面偏振光沿着磁场方向通过磁场中的透明介质时,光的偏振面发生了旋转,其旋转的角度正比于磁感应强度及光波通过介质的路程。这种现象叫做磁致旋光效应或法拉第效应。 1. 在磁场作用下介质的旋光作用 在磁场作用下,处于磁场中的介质呈现各向异性,其光轴方向为沿着磁场的方向。当一束平面偏振光和沿着磁场方向通过磁场中介质的时候,便会产生如图1所示的情形: 图1 平面偏振光沿磁场B 通过介质 图2 在波振面内平面偏振光电矢量的旋转 设平面偏振光的电矢量为,角频率为ω,研究问题时我们可以把看成两个圆偏振光成分(左旋圆偏振光L 和右旋圆偏振光R )的矢量合成。在磁场作用下通过介质时,我 X Y Z O B L E R E Y Z O L R E E E +=

们可以认为R E 传播速度比L E 慢,那么通过介质后R E 和L E 之间将产生相位差θ,合成矢量E ,则旋转一个角度φ: 2 θ φ= (1) 这就是说,在磁场作用下,一束平面偏振光沿着磁场方向通过介质后,它的电矢量的振动方向旋转了一个角度,也就是该平面偏振光的偏振面旋转了一个角度。 设介质的厚度为D ,L 的传播速度为L V ,R 的传播速度为R V ,则有: )()( )(L R L R L R n n C D V D V D t t -=-=-=ωωωθ (2) )(2L R n n C D -= ωφ (3) (2),(3)中R n 为在磁场B 作用下,右旋圆偏振光通过介质的折射率,L n 为左旋圆偏振光通过介质的折射率,C 为真空的光速。 2. 法拉第旋光角度的计算 由量子理论知道,介质中原子的轨道电子具有磁偶极矩μ: m e 2- =μ (4) 其中e 为电子电荷,m 为电子质量,为电子的轨道角动量。 在磁场B 作用下,一个电子磁矩具有势能V : 轴L m eB B L m e B V 22=?= ?-= (5) 其中L 轴为电子轨道角动量的轴向分量。 在磁场B 作用下,当平面偏振光通过介质时,光子与轨道电子发生交互作用,使轨道电子发生能级跃迁。跃迁时轨道电子吸收角动量 ±=?=?轴L L ,跃迁后轨道电子动能不变,而势能则增加了V ?: m eB L m eB 22V ±=?= ?轴 (6) 当左旋光子参与交互作用时: m eB 2V = ? (7)

相关主题
文本预览
相关文档 最新文档