空间光调制器
- 格式:pptx
- 大小:5.13 MB
- 文档页数:18
近代物理实验液晶空间光调制器的振幅调制实验报告在光通信、显微和望远等成像系统、自适应光学、光镊等许多应用领域中,都会涉及到光相位的调制,这时就需要用到一种新型的可编程光学仪器——空间光调制器。
空间光调制器是采用LCOS(LiquidCrystalOnSilicon,硅基液晶)芯片来调节光波前的振幅或相位的光学器件。
LCOS芯片是由液晶像元组成的像素阵列,每个像素都能单独地调制光。
对于同一束光来说,像元的尺寸越小,调制得就越精细;像素的个数就是芯片的分辨率,分辨率越高,可调制的自由度就越高。
从早期的铁电物质和扭曲向列液晶结构开始,到利用光电寻址。
滨松的中央研究所和固体事业部致力于空间光调制技术已有30多年的历史了。
其空间光调制器目前主要在高端市场中,以高线性度、高光利用率、高衍射效率等性能著称。
对于滨松空间光调制器LCOS本身的性质来说,它只改变光的相位,而不影响光的强度和偏振状态(振幅/光强的调制需要通过光路来实现)。
通过改变电压来改变液晶的排列方式,相位调制随着液晶的排列方式而变化。
通过CMOS背板和PC输出的DVI信号,液晶的排列是单像素可控的。
选择分辨率和像元大小LCOS是由像素阵列组成的,目前滨松可以提供两种分辨率:792×600,1272×1024;对于792×600分辨率的产品,还有两种像元大小可供选择:20μm,12.5μm。
不同的分辨率和像元大小以系列表示在产品型号的前半部分,如X10468-08,X10468指的就是该型号的产品分辨率为792×600,像元大小为20μm。
表中的“有效面积(Effecttiveareasize)”是指LCOS头上可以对光进行调制的液晶面的面积。
而用户在选型时,需要考虑该面积是否可以容纳下所需调制的光斑大小。
“填充因子(Fillfactor)”则是指单个像素有效面积占总面积的百分比,它在影响光利用率方面比较关键。
一、概述当今社会,激光技术已经广泛应用于军事、医疗、通信、工业等领域,而激光损伤阈值是评定激光设备性能的重要指标之一。
而在激光损伤阈值的研究中,dmd空间光调制器也被广泛应用。
本文将探讨dmd空间光调制器在激光损伤阈值研究中的应用。
二、dmd空间光调制器简介1. dmd空间光调制器是一种基于数字微镜片技术的高精度光电器件,它可以通过调制光的相位和振幅来实现对光的空间分布控制。
2. dmd空间光调制器具有高反射率、高光学质量、快速响应等特点,被广泛用于激光领域的研究和应用。
三、dmd空间光调制器在激光损伤阈值研究中的应用1. 激光损伤阈值是评估材料对激光辐射的耐受能力的重要参数。
传统的激光损伤阈值测试需要大量的人力物力,并且测试效率低下。
2. dmd空间光调制器可以根据需要实现对激光的空间分布进行调节,可以很好地模拟不同材料在不同激光条件下的受损情况,从而大大提高了激光损伤阈值的测试效率和准确性。
3. 通过对不同材料在不同激光条件下的损伤情况进行模拟实验,研究人员可以更加全面地了解材料的激光损伤特性,为材料的选用和激光设备的设计提供科学依据。
四、dmd空间光调制器在激光损伤阈值研究中的优势1. 高精度:dmd空间光调制器可以精确控制光的相位和振幅,可以满足不同激光损伤阈值测试的需求。
2. 高效性:相比传统的激光损伤阈值测试方法,dmd空间光调制器可以大大提高测试效率,节约时间和成本。
3. 灵活性:dmd空间光调制器可以根据实际需求灵活调整激光的空间分布,适用于不同材料在不同激光条件下的损伤研究。
五、结论dmd空间光调制器在激光损伤阈值研究中具有重要的应用前景和广阔的市场需求。
随着激光技术的不断发展,dmd空间光调制器将会在激光领域中发挥越来越重要的作用,为激光设备的性能评定和材料的选择提供更加科学的依据。
六、 dmd空间光调制器在激光损伤阈值研究中的实际应用案例在激光技术领域,dmd空间光调制器在激光损伤阈值研究中得到了广泛的实际应用。
空间光调制器使用方法嘿,朋友们!今天咱来聊聊空间光调制器的使用方法,这玩意儿可神奇了呢!你想想看,空间光调制器就像是一个光的魔法师,能让光按照我们的想法去变化。
它可以把普通的光变得千奇百怪,就像孙悟空七十二变一样!那怎么用这个神奇的“光魔法师”呢?首先啊,你得把它安好,就像给它找个安稳的家。
然后呢,给它通上电,让它“醒过来”。
这时候,你就可以开始摆弄它啦!比如说,你可以通过各种设置,让它把光变成你想要的形状。
哎呀,就像你在纸上画画一样,只不过这是用光来画!你可以让它变出个爱心形状的光,多浪漫呀!或者变出个星星形状的光,一闪一闪亮晶晶。
再说说它的调节功能吧。
你可以像调音量一样调节光的强度,想亮就亮,想暗就暗,多有意思!而且它还能改变光的颜色呢,红橙黄绿青蓝紫,随你挑,这不比彩虹还好玩嘛!还有啊,你知道吗,它还能和其他设备配合起来用呢!就像好伙伴一起合作一样。
比如说和投影仪搭配,那就能在大屏幕上变出各种奇妙的光影效果,哇塞,那场面,绝对震撼!你说这空间光调制器是不是特别厉害?咱要是能熟练掌握它的用法,那可就像掌握了一门神奇的技艺。
到时候,你在朋友面前露一手,他们肯定会瞪大眼睛,哇,你怎么这么厉害!用空间光调制器的时候,可别马虎哦!要像对待宝贝一样细心。
毕竟它能给我们带来那么多的乐趣和惊喜。
你想想,要是因为你的不小心,让它“不高兴”了,那多可惜呀!总之呢,空间光调制器就是一个充满魔力的东西,只要你用心去探索,去尝试,它一定会给你带来意想不到的收获和快乐。
别犹豫啦,赶紧去和这个“光魔法师”来一场奇妙的邂逅吧!怎么样,是不是迫不及待啦?哈哈!原创不易,请尊重原创,谢谢!。
空间光调制器FSLM-2K39-P02西安中科微星光电科技有限公司目录1 空间光调制器主要参数 (2)2 外形尺寸 (3)3 产品特点 (3)4 基础操作 (4)5 典型光路 (5)6 配置清单 (6)7 软件介绍 (7)空间光调制器产品手册1 空间光调制器主要参数图1 FSLM-2K39-P02产品实物图2外形尺寸图2 FSLM-2K39-P02产品尺寸结构图3产品特点像元更小:4.5μm;支持彩色显示模式;更优信赖性:采用陶瓷背板,散热效果更好,信赖性更可靠;首次采用Type-C接口的标准5V 2A电源适配器作为电源,可兼容市面上大部分电源适配器;首次使用MiniDP接口作为视频信号的输入接口,具备更高的带宽;首次具备光源驱动的功能,可同步驱动低功率的光源,便于系统集成;具备场同步信号及光源使能信号的输出,可同步外部的光源或采集设备; 驱动板体积小型化(55*80mm)。
4基础操作启动计算机。
按图3所示连接各部件,打开电源开关。
图3 各部件连接示意图注意:1.首先连接视频线,再连接电源线。
2.空间光调制器的电源为专用电源,切勿与其他电源混用,损坏调制器。
以Windows系统为例,在桌面右击,点击“屏幕分辨率”,识别当前显示器,单击另一个显示器,将屏幕分辨率设置为1920×1080,将“多显示器”中设置为“拓展这些显示”,点击“应用”,然后点击“确定”,此时完成将桌面图像扩展到第二个显示器的设置。
在空间光调制器液晶光阀表面放置偏振片,旋转偏振片,观察液晶光阀中显示的图像是否正常,确保计算机桌面的图片顺利扩展到第二个显示器上,如图像不正常,检查接线。
将空间光调制器用配置的支架固定在光学平台上。
搭建所需的光路(该款调制器使用时要求入射光的偏振方向与液晶光阀长边夹角为45°)。
根据需要更换桌面图像。
方法为右击桌面,单击“个性化”,点击下方“桌面背景”,找到所需的图像单击,根据需要设置“图片位置”,一般建议设置为“平铺”。
数字微镜(DMD)空间光开关光调制器开发系统1.能够支持1920x1080全高清点对点正方形DMD(DMD微镜为10.8微米);2.1024 X 768 的DMD(4:3)有两种微镜结构,一种是13.68微米,对角线长度为0.7英寸;另一种是10.8微米的,对角线长度为0.55英寸;我们系统都能支持所有主流分辨率DMD;3.支持USB2.0高速度传输图片和控制信号;4.控制软件基于Windows XP全速度USB驱动,在Visual Basic下编制,开发式接口,易于扩展;易于高精度光学科研实验;5.提供丰富的Windows XP的USB控制程序和API开发系统6.支持XGA, 1080p和1920x1200分辨率单个微镜精确控制;7.开放式FPGA架构, 提供示例FPGA的二次开发选择和客户定制功能;8.高速二进制图片显示; 输入输出系统触发,支持通用客户顶GPIO口设置.9.我们能为客户提供全程独特定做和设计服务.用途:结构光投影, 激光全息, 无掩模光刻, 高光谱成像,激光光束校形, 3D测量和3D打印机技术, 光谱分析.Jefferson_zhao@DMD通用驱动板结构示意图数字微镜空间光开关光调制器开发系统正面数字微镜空间光开关光调制器开发系统接口板DMD空间光调制器开发系统DMD(0.7” XGA:1024X768, 10.8微米)正面DMD控制电子系统原理结构图数字微镜空间光开关光调制器开发系统全图0.95” DMD系统工作原理简单示意图Xilinx JTAG调试下载接口0.7” DMD系统工作原理简单示意图0.55” SVGA Absolute Ratings(本征对比度2000:1)0.55” XGA Absolute Ratings (本征对比度2000:1)0.7” SVGA Absolute Ratings(本征对比度2000:1)高级投影镜头和照明光学系统高级投影镜头和照明光学系统模型图DLP DMD 高级投影镜头和照明光学系统全图0.7” XGA DMD微镜工作原理典型应用光谱分析3D结构光投影和3D扫描DMD电子驱动系统工作原理示意图DMD分成3步显示数据:1.用户生成数据送到DMD;2.数据送到DMD小微镜底部的CMOS微结构电路;3.DMD小微镜根据数据翻转产生新图像.通用通用DMD激光和LED光源光学系统(一)通用DMD激光和LED光源光学系统(二)。