有机化学-第八章-有机化合物的波谱分析
- 格式:ppt
- 大小:3.74 MB
- 文档页数:67
第⼋章有机化合物的波谱分析第⼋章有机化合物的波谱分析基本要求:1、掌握核磁共振氢谱1HNMR的化学位移、⾃旋偶合、⾃旋裂分与分⼦结构的⼀般规律。
掌握各种质⼦的化学位移δ,并能利⽤δ值、峰裂分的数⽬和形状、峰⾯积⽐等⼀级谱图的规律推断简单有机物分⼦的结构。
了解13C谱。
2、了解红外光区吸收分⼦的结构特征,掌握⼀些特征官能团及苯环的特征吸收频率,并能根据谱图的吸收峰位置、强度和形状鉴别简单有机物分⼦。
3、了解在4~400 nm紫外光区,价电⼦在分⼦轨道中跃迁的三种类型,掌握紫外光谱与共轭分⼦结构关系的⼀般规律。
4、了解质谱的基本原理,母离⼦峰与分⼦量的关系。
Contents8.1红外光谱⼀、基本原理⼆、有机基团的特征吸收频率及其影响因素三、各类有机物的红外吸收频率8.2 核磁共振氢谱⼀、基本原理⼆、化学位移三、⾃旋偶合和⾃旋裂分四、特征质⼦的化学位移与谱图解析五、碳谱(13C-NMR)简介8.3 紫外光谱8.4 质谱简介8.5 谱图综合解析有机化学是⽤结构式来描述的⼀门学科。
有机化合物、有机反应、反应机理、合成⽅法等都能⽤结构式来描述,从结构式可以推断出该化合物的性质。
化合物的结构式最早是⽤化学法测定。
⽤化学法测定化合物的结构往往是⼗分繁琐复杂的⼯作,⽽且在化学变化中往往会发⽣意想不到的变化,从⽽给结构的测定带来困难。
如吗啡(C15H15O3N)从1803年第⼀次被提纯,⾄1952年弄清楚其结构,其间经过了150年;胆固醇(C27H47O)结构的测定经历了40年,⽽所得结果经X-射线衍射发现还有某些错误。
测定有机物结构的波谱法,是20世纪五、六⼗年代发展起来的现代物理实验⽅法。
波谱法的应⽤使有机物结构测定、纯度分析等既快速准确,⼜⽤量极少,⼀般只需1~100 mg,甚⾄10-9g 也能给出化合物的结构信息。
应⽤波谱法可弥补化学⽅法之不⾜。
现在,化学⽅法基本上被物理实验⽅法所取代,现代的教科书、⽂献、论⽂中化合物的结构均以波谱数据为依据,正如熔点、沸点、折光率等作为每个化合物的重要物理常数⼀样的普遍,⽽且更加重要。
有机化合物波谱分析教学大纲一、课程简介有机化合物波谱分析是有机化学中非常重要的基础知识之一,是有机化学实验和研究中不可或缺的一部分。
本课程旨在介绍有机分子的红外光谱、紫外光谱、核磁共振谱和质谱等波谱分析方法及其应用,帮助学生通过波谱分析技术了解有机分子的结构和特性,并培养学生分析、推测、探究问题的思维能力。
二、课程内容1. 红外光谱(1)基本原理介绍红外光谱分析的原理和基本理论。
(2)仪器构造学习仪器、设备和仪器调节,能够熟练操作红外光谱仪。
(3)数据解析根据光谱数据进行结构确定和分析。
2. 紫外光谱(1)基本原理介绍紫外光谱分析的原理和基本理论。
(2)仪器构造学习仪器、设备和仪器调节,能够熟练操作紫外光谱仪。
(3)数据解析根据光谱数据进行结构确定和分析。
3. 核磁共振谱(1)基本原理介绍核磁共振谱分析的原理和基本理论。
(2)仪器构造学习仪器、设备和仪器调节,能够熟练操作核磁共振谱仪。
(3)数据解析根据光谱数据进行结构确定和分析。
4. 质谱(1)基本原理介绍质谱分析的原理和基本理论。
(2)仪器构造学习仪器、设备和仪器调节,能够熟练操作质谱仪。
(3)数据解析根据质谱数据进行结构确定和分析。
5. 实验教学(1)仪器使用熟练操作波谱分析仪器。
(2)样品制备制备有机化合物样品。
(3)数据解析利用波谱仪器进行波谱分析。
三、教学方法本课程采用理论授课和实验教学相结合的方式。
理论授课核心内容将以幻灯片教材为主,教师将以深入浅出的方式进行讲解。
并在课后布置预习作业和课堂问答,以检查学生的学习情况并加强与学生之间的互动和交流。
实验教学部分将由教师带领学生进行独立操作,通过角色扮演、小组讨论等方式,增强学生的实践能力,加深学生的理论认知。
四、考核方式学生考核将采用多元化考核方式。
其中理论考试、实验考核、班级讨论等多种考核方式组合,全面测试学生的知识掌握情况及分析问题的能力。
教师将根据学生的综合能力进行综合评定,制定合理的考试方案,确保考试公平公正。
有机化合物波谱分析有机化合物波谱分析是一种重要的手段,可用于确定有机物的分子结构和功能基团。
其中,核磁共振波谱(NMR)和红外光谱(IR)是两种常用的波谱技术。
本文将重点介绍这两种波谱分析技术的基本原理、应用和解读方法。
核磁共振波谱(NMR)是一种基于核自旋的波谱分析方法。
它通过测量核自旋与外加磁场相互作用导致的能量变化来获得信息。
核磁共振波谱图通常由若干个特征峰组成,每个峰对应于一种不同类型的核。
峰的位置称为化学位移,可以通过参考物质(如四氯化硅)来标定。
峰的形状和强度可以提供有关分子结构和相互作用的信息。
核磁共振波谱提供了关于有机分子的碳氢骨架以及官能团、取代基等信息,因此在有机化学和药物化学领域有广泛应用。
红外光谱(IR)是一种基于分子振动的波谱分析方法。
它通过测量物质吸收红外辐射的能量来获得信息。
由于不同分子具有不同的振动模式和结构,它们吸收红外辐射的方式也不同。
红外光谱图通常由一系列特征峰组成,峰的位置称为波数,可以用来标识不同的官能团和化学键。
峰的强度和形状可以提供关于分子的结构和取向的信息。
红外光谱在有机化学、聚合物化学和无机化学等领域都有广泛的应用。
在进行有机化合物波谱分析时,需要先对样品进行样品制备。
核磁共振波谱通常需要溶解样品,然后将溶液转移到核磁共振管中进行测量。
红外光谱则可以对固体、液体和气体样品进行测量,通常需要将样品制备成固体片或涂在透明载体上。
波谱仪器通常会提供相应的样品制备方法和参数设置。
在分析核磁共振波谱和红外光谱时,需要注意以下几个方面。
首先,对于核磁共振波谱,要正确解读峰的化学位移。
化学位移受到许多因素的影响,如官能团、电子效应、取代基等。
因此,需要结合文献和经验来确定不同类型核的化学位移范围。
其次,对于红外光谱,要正确解读峰的波数。
不同的官能团和化学键都有特定的波数范围,可以用来确定它们的存在。
最后,对于波谱图的解读,需要综合考虑各种信息,如位置、形状、强度和相对强度等。
有机波谱分析总结有机波谱分析是有机化学中一项重要的分析技术,通过对有机化合物的波谱进行分析,可以确定其结构和功能基团,对于有机合成、药物研发等领域有着广泛的应用。
本文将对有机波谱分析的原理、常见波谱技术和分析方法以及应用进行总结。
一、有机波谱分析原理有机波谱分析主要基于分子中所包含的原子核和电子的转动、振动和电子能级跃迁引起的辐射吸收或发射现象。
通过测量分子在不同频率范围内所吸收或发射的辐射能量,可以得到不同类型的波谱。
有机波谱分析常用的波谱包括红外光谱、质谱、核磁共振谱和紫外可见光谱。
二、常见的有机波谱技术1.红外光谱(IR):红外光谱是根据有机化合物中的官能团和化学键所具有的振动频率的不同来进行分析的。
通过红外光谱可以确定有机化合物中的官能团,如羧酸、醇、醛等。
红外光谱具有非破坏性、操作简便的特点,广泛应用于有机合成、药物研发等领域。
2.质谱(MS):质谱是通过对有机化合物中分子离子和碎片离子质量进行测量来分析有机化合物的分子结构。
质谱具有高灵敏度、高分辨率的特点,可以确定分子的组成和相对分子质量,对于有机化合物的鉴定具有重要意义。
3.核磁共振谱(NMR):核磁共振谱是根据核磁共振现象进行分析的。
通过测量有机化合物中原子核受到外加磁场影响的吸收或发射的辐射能量,可以得到有机化合物中原子核的位置、种类和环境。
核磁共振谱具有高分辨率、非破坏性和无辐射的特点,广泛应用于有机合成、物质鉴定和生物医学研究等领域。
4.紫外可见光谱(UV-Vis):紫外可见光谱是通过测量有机化合物在紫外可见光区域吸收或发射的辐射能量,以确定有机化合物的电子能级和共轭体系的存在与否。
紫外可见光谱具有高灵敏度和快速测量的特点,常用于有机合成、化学动力学和药物研发等领域。
三、有机波谱分析方法1.结构鉴定法:通过与已知化合物的波谱进行对比,确定未知化合物的结构。
结构鉴定法常用于核磁共振谱和质谱。
2.定量分析法:通过测定化合物在特定波长或波数处的吸光度或吸收峰面积,来确定有机化合物的含量。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 第八章有机化合物的波谱分析第八章有机化合物的波谱分析授课对象:应用化学、制药工程、化学反应工程与工艺、药学学时安排:6h 教材:《有机化学》(第四版)高鸿宾主编2005 年 5 月一、教学目的与要求 1、了解分子的振动与转动能级跃与红外吸的关系, 2、掌握红外吸收峰的位置和强度与分子结构的关系。
3、熟悉各类有机物的特征吸收频率大致范围,解析红外光谱图的一般步骤。
4、核磁共振谱产生的基本原理,核的自旋和共振与 NMR。
掌握屏蔽效应和化学位移,影响化学位移的因素,峰面积与质子数的关系,自旋偶合裂分的一般1HNMR 谱的解析(寻找信号的位置、数目、强度及裂分状态) 。
规律;5、初步了解紫外光谱、质谱、核磁共振碳谱产生的基本原理及应用; 6、掌握红外光谱、核磁共振谱在鉴定有机化合物分子结构中的作用。
二、教学重点 1、屏蔽效应和化学位移,影响化学位移的因素,自旋偶合裂分的一般规律; 2、红外光谱、核磁共振谱分析(谱图剖析)。
三、教学难点 1、屏蔽效应和化学位移,影响化学位移的因1/ 23素,自旋偶合裂分的一般规律。
2、红外光谱和核磁共振谱图的剖析。
3.质谱的产生原理。
四、教学方法讲授法。
为突出重点,突破难点,应注意如下几点:1、通过复习物理学已学过的波的性质,引出四大波谱。
并举例说明其在有机化合物分析中的应用。
2、尽量结合实际波谱谱图来分析有机化合物的结构,多做多练。
六、教学过程及时间分配引言:研究有机化合物,不论是从天然产物中提取的还是化学方法合成的,都要测定它们的分子结构。
如果对某一有机化合物的结构还不太了解,则对其性质和作用的研究是很难深入的,更不用说合成和改进它了,因此,确定有机化合物的结构很自然地变成了研究有机化学的首要任务。
有机波谱分析要点例题和知识点总结一、有机波谱分析简介有机波谱分析是有机化学中非常重要的分析手段,它能够帮助我们确定有机化合物的结构。
常见的有机波谱分析方法包括红外光谱(IR)、紫外可见光谱(UVVis)、核磁共振谱(NMR,包括氢谱 1H NMR 和碳谱 13C NMR)以及质谱(MS)。
二、红外光谱(IR)(一)原理分子中的化学键在不同频率的红外光照射下会发生振动和转动,从而产生吸收峰。
不同的官能团具有特定的吸收频率范围。
(二)要点1、官能团的特征吸收峰例如,羰基(C=O)在 1700 1750 cm⁻¹有强吸收峰;羟基(OH)在 3200 3600 cm⁻¹有宽而强的吸收峰。
2、影响吸收峰位置的因素包括诱导效应、共轭效应、氢键等。
(三)例题例 1:某化合物的红外光谱在 1720 cm⁻¹处有强吸收峰,可能含有什么官能团?答:可能含有羰基(C=O)。
三、紫外可见光谱(UVVis)(一)原理基于分子中的电子在不同能级之间跃迁产生吸收。
(二)要点1、生色团和助色团生色团如羰基、双键等能产生紫外吸收;助色团如羟基、氨基等能增强生色团的吸收。
2、影响吸收波长的因素包括共轭体系的大小、取代基的种类等。
(三)例题例 2:某化合物在 250 nm 处有强吸收,可能的结构是什么?答:可能具有共轭双键结构。
四、核磁共振谱(NMR)(一)氢谱(1H NMR)1、原理氢原子核在磁场中的自旋能级跃迁产生信号。
2、化学位移不同环境的氢原子具有不同的化学位移值。
例如,甲基上的氢通常在 08 12 ppm 处出峰。
3、峰的裂分相邻氢原子的个数会导致峰的裂分,遵循 n + 1 规律。
例题 3:一个化合物的氢谱在 12 ppm 处有一个三重峰,在 36 ppm 处有一个单峰,可能的结构是什么?答:可能是 CH₃CH₂OH。
(二)碳谱(13C NMR)1、化学位移不同类型的碳原子具有不同的化学位移范围。