有机化合物波谱解析
- 格式:doc
- 大小:3.34 MB
- 文档页数:26
红外光谱(i nfra r ed spectroscopy 缩写为IR )由于分子吸收了红外线的能量并导致分子内振动能级的跃迁而产生的记录信号。
IR 谱主要提供分子中官能团的结构信息。
横坐标:波数(σ)400~4000cm -1;表示吸收峰的位臵。
纵坐标:透过率(T %),表示吸收强度。
T ↓,表明吸收的越好,故曲线低谷表示是一个好的吸收带。
%100%0⨯=I IT I :表示透过光的强度;I 0:表示入射光的强度。
红外光谱官能团区(4000-1500 cm -1)由分子的伸缩振动导致,用于鉴定各种不同官能团产生红外光谱的必要条件:1.红外辐射光的频率与分子振动的频率相当,才能满足分子振动能级跃迁所需的能量,而产生吸收光谱。
2.只有能引起分子偶极矩的变化的振动才能产生IR 光谱。
完全对称的分子H 2、O 2、N 2不会产生红外吸收光谱。
H―C≡C―H 、R―C ≡C―R ,其C≡C (三键)振动也不能引起红外吸收。
指纹区(1500-650 cm-1)分子弯曲及伸缩振动吸收峰,多用于鉴定基团的结合方式官能团区(高频区)1500-4000 cm-1Y -H 伸缩振动区2500~3700 cm-1,Y= O、N、C。
Y≡Z 三键和累积双键伸缩振动区2100~2400 cm-1,主要是:C≡C、C≡N 三键和C=C=C、C=N=O 等累积双键的伸缩振动吸收峰。
Y=Z双键伸缩振动区1600~1800 cm-1,主要是:C=O、C=N、C=C等双键。
指纹区(低频区)650-1500 cm-1主要是:C-C、C-N、C-O等单键和各种弯曲振动的吸收峰,其特点是谱带密集、难以辨认。
红外谱图各主要官能团红外光谱的特征吸收峰频率3600-3200NH, OH d, br, s3300C CHstrong3100-3010 =C-H middle2960-2850 -C-H strong2260-21002700-CHO doubleC Cvariable1850-1690 C=OAcids, esters Ketones Aldehydes very strong1680-1620 or 1600-1500 C=C variable 1470-1350 bend C-H1000-700 bend alkenes benzene substituted type4000cm-1650cm-11300-1030 bend C-O C-N几个明显的红外特征峰-OH(醇和酚):-OH吸收处于3200~3650cm-1,由于-OH可形成分子间或分子内氢键,而氢键所引起的缔合对红外吸收峰的位臵、形状和强度都有重要影响。
第七章有机化合物的波谱分析(一)概述研究或鉴圧一个有机化合物的结构,需对该化合物进行结构表征。
其基本程序如下: 分离提纯一物理常数测左一元素分析一确立分子式一确泄其可能的构适式(结构表 征(参见 P11-12)(1)结构表征的方法传统方法:(化学法)① 元素左性.泄量分析及相对分子质量测泄 —— 分子式:② 官能团试验及衍生物制备——分子中所含官能团及部分结构片断: ③ 将部分结构片断拼凑 —— 完整结构; ④ 查阅文献,对照标准样,验证分析结果。
特点:需要较多试样(半微量分析,用样虽为10-100mg ),大虽:的时间(吗啡碱,1805- 1952年).熟练的实验技巧,高超的智慧和坚韧不拔的精神。
缺点:①分子有时重排,导致错误结论;② P 及一C=C 一的构型确定困难。
波谱法:① 质谱(最好用元素分析仪验证)——分子式:② 各种谱图(UV 、IR 、NMR. MS ) —— 官能团及部分结构片断; ③ 拼凑——完整结构; ④ 标准谱图——确认。
特点:样品用量少(v30mg ),不损坏样品(质谱除外),分析速度快,对'C 及一C=C 一的 构型确左比较方便。
光谱法已成为有机结构分析的常规方法。
但是化学方法仍不可少,它与光谱法相辅相成, 相互补充,互为佐证。
(2)波谱过程分子运动:平动、振动、转动、核外电子运动等9量子化的(能量变化秘续)A 每个分子中只能存在一定数量的转? 动.振动、电子跃迁能级波谱过程可表示为:有机分子+电磁波选择性吸收 仪器记录用电磁波照射有机分子时, 分子便会吸收那些与分子内 的能级差相当的电磁波,引 起分子振动、转动或电子运 动能级跃迁,即分子可选择 性地吸收电磁波使分子内能 提高用仪器记录分子对不 同波长的电磁波的吸收情 况,就可得到光谱。
不饱和度亦称为分子中的环加双键数、缺氢指数、双键等价值等。
其定义为: 当一个化合物衍变为相应的绘后,与其同碳的饱和开链桂比较,每缺少2个氢为 1个不饱和度。
有机化合物波谱解析教案一、教学目标1. 理解有机化合物波谱解析的基本概念和方法。
2. 学会使用红外光谱、核磁共振谱、质谱等波谱进行分析。
3. 能够解析有机化合物的结构based on the information from the spectra.二、教学内容1. 红外光谱(IR)基本原理谱图解析功能团振动频率与结构的关系2. 核磁共振谱(NMR)基本原理谱图解析化学位移、耦合常数与结构的关系三、教学方法1. 讲授:讲解基本原理、概念和谱图解析方法。
2. 示例分析:分析具体化合物的红外光谱、核磁共振谱和质谱。
3. 练习:学生自行分析给定的谱图,得出结构结论。
四、教学准备1. 教学PPT:包含基本原理、概念、谱图解析方法和示例。
2. 谱图数据:用于示例分析和学生练习。
五、教学过程1. 导入:介绍有机化合物波谱解析的重要性。
2. 红外光谱(IR)讲解基本原理和谱图解析方法。
分析示例谱图,引导学生理解谱图与结构的关系。
3. 核磁共振谱(NMR)讲解基本原理和谱图解析方法。
分析示例谱图,引导学生理解谱图与结构的关系。
4. 练习:学生分析给定的谱图,得出结构结论。
教学反思:在课后,教师应反思教学效果,根据学生的反馈和练习情况,调整教学方法和难度,以便更好地达到教学目标。
六、质谱(MS)1. 基本原理介绍质谱仪的工作原理和质谱图的获取。
解释质谱图中的峰代表分子离子、碎片离子等。
2. 谱图解析讲解质谱图的解析方法,包括分子离子峰的确定、碎片离子的识别等。
引导学生理解质谱图与分子结构的关系。
七、紫外光谱(UV)1. 基本原理介绍紫外光谱的产生原理,如π-π、n-π等电子跃迁。
解释紫外光谱图中的吸收峰与分子结构的关系。
2. 谱图解析讲解紫外光谱图的解析方法,包括吸收峰的位置、强度和形状等。
引导学生理解紫外光谱图与分子结构的关系。
八、圆二色光谱(CD)1. 基本原理介绍圆二色光谱的产生原理,如手性分子的CD光谱。
波谱数据表—有机化合物的结构解析
波谱数据表用于有机化合物的结构解析,其中包括以下波谱数据:
1. 红外光谱(IR):提供有关化合物中功能团的信息,如官能团的位置和类型。
2. 质子核磁共振谱(^1H NMR):提供有关化合物分子中氢原子的位置和数量的信息。
3. 碳13核磁共振谱(^13C NMR):提供有关化合物中碳原子的位置和数量的信息。
4. 质子-质子相互作用谱(COSY):显示质子之间的相互作用。
5. 核磁共振旋转相准谱(NOESY):显示溶液中的分子之间的核磁共振相互作用。
6. 质子取代实验(HSQC和HMBC):用于确定化合物中异位质子和相邻碳原子的连接关系。
7. 致命作用产物谱(CID):使用质谱仪对化合物进行离解和质量分析,以确定其分子量和碎片信息。
综合使用这些波谱数据,可以确定有机化合物的分子结构,并提供有关化合物的一些基本特性,如官能团和键合情况。
第一章 紫外光谱一、简答1.丙酮的羰基有几种类型的价电子。
试绘出其能级图,并说明能产生何种电子跃迁?各种跃迁可在何区域波长处产生吸收?2.指出下述各对化合物中,哪一个化合物能吸收波长较长的光线(只考虑π→π*跃迁)。
(2)(1)及NHR3CHCHOCH 3CH 及CH 3CH CH23.与化合物(A )的电子光谱相比,解释化合物(B )与(C )的电子光谱发生变化的原因(在乙醇中)。
(C)(B)(A)入max =420 εmax =18600入max =438 εmax =22000入max =475 εmax =320003N NNNO HC32(CH )2N NNNO H C 32(CH )2232(CH )(CH )23NNNNO4.苯胺在λmax 处的εmax 为1430,现欲制备一苯胺水溶液,使其透光率为30%(1cm 比色池),试问制备100ml 该溶液需取多少克苯胺?二、分析比较1.指出下列两个化合物在近紫外区中的区别:CH CH 32(A)(B)2.某酮类化合物,当溶于极性溶剂中(如乙醇中)时,溶剂对n →π*跃迁及π→π*跃迁有何影响?用能级图表示。
3.试述对二烷基苯甲酸在下面一些溶剂中的紫外光谱的区别:λ乙醚max =277nm εmax =20600λEtOH max =307nm εmax =19000NRRCOOHλHCl max =307nm εmax =970三、试回答下列各问题1.某酮类化合物λhexanemax =305nm ,其λEtOH max =307nm,试问,该吸收是由n→π*跃迁还是π→π*跃迁引起的?2. 1,1二苯乙烯(A )在环己烷中的UV 光谱与蒽(B )的UV 光谱有相当大的区别。
在浓硫酸中这两个化合物UV 光谱非常相似,见表1-5,而在稀硫酸中又与环己烷中的UV 光谱相同,试问在浓硫酸中这两个化合物发生了什么变化?表1-1 化合物(A )和(B )在不同溶剂中的λma四.计算下述化合物的λmax :1. 计算下列化合物的λmax :2.计算全反式西红柿烯(结构如下)的λmax 及εmax :3.计算一叶萩碱在乙醇中的λmax :NOO4.计算下列化合物的λmax :(D )(C )(B )(A )2NH COOH3OH COCH O 33OOCH CH O五、结构判定1.由某挥发油中分得一种成分,其UVλhexane max =268nm,由其它方法初步确定该化合物的结构可能为A 或B ,试问可否用UV 光谱做出判断?(A)(B)2. 一化合物初步推断其结构不是A 就是B ,经测定UV λEtOH max =352nm,试问其结构为何?O O(A)(B)3. 2-(环己-1-烯基)-2-丙醇在硫酸存在下加热处理,得到主要产物的分子式为C 9H 14,产物经纯化,测紫外光谱λmax =242nm (εmax =10100),推断这个主要产物的结构,并讨论其反应过程。
CCH OHCH 334. 胆甾烷-3-酮(结构如下)的UV λmax =286nm (lgεmax =1.36),而2α-氯取代为λmax =279nm (lgεmax =1.60),2β-氯取代物λmax =299.5nm (lgεmax =1.53)。
试说明为什么2α-氯取代向紫位移?第二章 红外光谱一.分析1. 指出下列各种振动形式,哪些是红外活性振动,(Δμ≠0),哪些是红外非活性振动(Δμ=0)。
分子 振动形式 (1) CH 3–CH 3 νC —C (2) CH 3–CCl 3 ν C —C (3) O ═ C ═ O νS ,CO2 (4) SO 2 νS , SO2 (5) CH 2═CH 2 νS , C ═ C (6)CH 2═CH—CHO νS , C ═ C二、回答下列问题:1. C —H ,C —Cl 键的伸缩振动峰何者要相对强一些?为什么?2. νC═O 与νC═C 都在6.0μm 区域附近。
试问峰强有何区别?意义何在?三、分析比较1. 试将C═O 键的吸收峰按波数高低顺序排列,并加以解释。
(1)CH 3COCH 3 CH 3COOH CH 3COOCH 3 CH 3CONH 2 CH 3COCl CH 3CHO(A ) (B ) (C ) (D ) (E ) (F )(2) (A ) (B ) (C )(D ) (E )2.能否用稀释法将化合物(A )、(B )加以区分,试加以解释。
(A ) (B )四.结构分析1. 用红外光谱法区别下列化合物。
OCH 3CO CH 3CCH 3O CH 3CCH 3CH 3CH OOOHO O OH O CH 3CNH 2O CH 3CNO 2(1)(2)(A ) (B ) (A ) (B ) (3) (4)(A ) (B ) (A ) (B )2.某化合物在4000~1300cm –1区间的红外吸收光谱如下图所示,问此化合物的结构是(A)还是(B)?(A) (B)3.用IR 光谱(下图)表示的化合物C 8H 9O 2N 是下面哪一种?C 8H 9O 2N 的红外光谱O COOC 2H 5OCOOC 2H 5COCH 3COCH 3CH 3CH 3CH 3O OMeO OMeOHC OCH 3OHC CH 3OHOC NC ONH 2NHCOCH 3OHNH 2COOCH 3CONH 2OCH 3CH 2NH 2COOHNHCH 3COOH4.某化合物初步推测为Ⅰ或Ⅱ或Ⅲ。
试根据其部分红外光谱作出判断。
未知物的红外光谱五、简答1. 1–丙烯与1–辛烯的IR 光谱何处有明显区别?2.下列两个化合物,哪个化合物的IR 光谱中有两个 C═ O 吸收峰?(A) (B)3. 某一天然产物结构不是(A)就是(B),在IR 光谱中,只有2870cm –1峰和926cm –1强吸收,而无2960cm –1峰,试判断该天然产物的正确结构?并说明理由。
(A) (B)4. 用其它光谱确定某一苷类化合物的结构不是A 就是B ,在IR 光谱出现890cm –1弱至中强吸收试确定其可能结构是哪一个,为什么?(A ) (B ) 六、结构解析.OOOHOHOOOHOHHOOOOC H 3OC H 3HOOOOOOOHOH OC H 3H OH OOHOH HOC H 3OH OH1. 某未知物1分子式为C8H7N,低温下为固体,熔点29℃,其IR光谱图见下图试解析其结构。
未知物1的红外光谱2.某化合物2分子式为C6H12O,IR光谱见图,试推断其可能结构式,并说明1400~1360cm–1区域的特征。
某化合物2(C6H12O)的红外光谱第三章核磁共振一、简答1.乙酸乙酯中的三种类型氢核电子屏蔽效应相同否?若发生核磁共振,共振峰应当怎么排列? 值何者最大?何者较小?为什么?CH3—COO—CH2—CH3(a)(b)(c)2.在α-蒎烯中,标出的三种氢核为何有不同的化学位移值?3. 醋酸在用惰性溶剂稀释时,其酸性氢核的共振峰将移向何处?4.CHCl3可与苯环上的π电子按下列形式形成氢键,试问,CHCl3上的氢核共振信号将移向何处?CCl3H二、比较题1. 标记的氢核可预期在1H-NMR的什么区域有吸收?⑴NS(a)H CH3(b)CH3(c)⑵2(a))⑶⑷22CO)))⑸CO)))⑹CH CH CO⑺Cl CH COO23⑻2)CH3CONCH33⑽C C H⑾Cl CH2CH2OH(a)(b)⑿C H2))⑼(a)1.63(b)1.29(c)0.85CH3H3CCH3(a)(b)(c)〔13〕PCH 3C 6HNHCO3 ⒁ NHOOBr2. 下列化合物中,Ha 有几重峰?HcHaHbN H 2HbNH 23. 以下为同一化合物的两种表达方式:H H H H Cl H H H 23X3N41S 77A23X 3N41Cl H H H H试解释为何J 1, 2 = 0~2Hz, J 2, 3N = 8~10Hz, J 3X, 2 = 3~5Hz, J 7A, 7S = 9~11Hz?另外,试推测J 2,7A 与J 2, 7S 中何者数值较大,为什么?4. 已知1,2-二卤环己烷中的J ab =10Hz ,试问该化合物是顺式还是反式?其优势构象将是下列三者中的哪一种?5.下列图谱为AB 系统氢核给出的信号还是AX 系统中的X 氢核给出的信号,为什么?三、结构推定1.试根据给出条件推测下列化合物的结构。
①图3-1 ②图3-2③图3-3④图3-42. 下列化合物各有几组磁不等同碳核,在噪音去偶谱上将出现几个13C 信号?试标出每个信号的重峰数。
① 苯 ② 甲苯 ③ 萘 ④⑤3.一化合物,分子式为C 6H 8,高度对称,在噪音去偶谱(COM )上只有两个信号,在偏共振去耦谱(OFR )上只有一个三重峰(t )及一个二重峰(d),试写出其结构。
四、信号归属1.试按给出结构对图3-4上各个信号做出确切的归属。
CH 3CH 3O图3-52.按给出条件推测下列化合物的结构(括号内为峰的相对高度及重峰数)。
①C13H12O, 76.9(24, d),128.3 (99, d), 127.4 (57, d), 129.3 (87, d ), 144.7 (12, s)②C9H10O, 63.1 (49, t), 126.4 (98, ?), 127.5 (44, ?), 128.5 (87, ?),128.7 (60, ?),130.7 (42,d),136.8 (11, s)③C5H6O4, 38.2 (100, t),128.3 (84, t),136.1 (99, s),168.2 (77, s),172.7 (78, s)3.试按图3-6及条件,写出未知化合物的结构,并通过计算化学位移值进行复核。
图3-6第四章质谱一、简答题1. m/z 200的离子,在分辨率为20,000的质谱仪上,可以与相差多少质量的离子分开?2. 根据下面给出的质谱图,求出化合物的分子式,并推导其可能的结构。
3. 甲基环己烷的EIMS如下。
归属下列信息:a. 分子离子b. 基峰c. M+.-37碎片离子4.一个未知物质的MS呈现强的[M]=79,如果这个化合物含氮或者含氧有多少可能的分子式?指出每个分子的不饱和度。
5. 从一个低分辨质谱中能够找出多少数据来区分C6H13Cl和C3H5Br?6. 从一个高分辨质谱中能够找出多少数据来区分C6H12O和C5H8O2?二、分析题1. 预测下列裂解的结构:OOHNClOO-R-HCl-R??????(a)(b)(c)(d)(e)(f)2. 环己烯的EIMS 如下所示,(a) 简单的单键σ 裂解能解释m/z 的基峰吗? (b) m/z 54的碎片是由于双键的裂解产生的吗?3. 3-甲基-3-庚醇有三种可能的α 裂解途径。