有机化合物光谱解析
- 格式:ppt
- 大小:1.51 MB
- 文档页数:54
红外光谱(i nfra r ed spectroscopy 缩写为IR )由于分子吸收了红外线的能量并导致分子内振动能级的跃迁而产生的记录信号。
IR 谱主要提供分子中官能团的结构信息。
横坐标:波数(σ)400~4000cm -1;表示吸收峰的位臵。
纵坐标:透过率(T %),表示吸收强度。
T ↓,表明吸收的越好,故曲线低谷表示是一个好的吸收带。
%100%0⨯=I IT I :表示透过光的强度;I 0:表示入射光的强度。
红外光谱官能团区(4000-1500 cm -1)由分子的伸缩振动导致,用于鉴定各种不同官能团产生红外光谱的必要条件:1.红外辐射光的频率与分子振动的频率相当,才能满足分子振动能级跃迁所需的能量,而产生吸收光谱。
2.只有能引起分子偶极矩的变化的振动才能产生IR 光谱。
完全对称的分子H 2、O 2、N 2不会产生红外吸收光谱。
H―C≡C―H 、R―C ≡C―R ,其C≡C (三键)振动也不能引起红外吸收。
指纹区(1500-650 cm-1)分子弯曲及伸缩振动吸收峰,多用于鉴定基团的结合方式官能团区(高频区)1500-4000 cm-1Y -H 伸缩振动区2500~3700 cm-1,Y= O、N、C。
Y≡Z 三键和累积双键伸缩振动区2100~2400 cm-1,主要是:C≡C、C≡N 三键和C=C=C、C=N=O 等累积双键的伸缩振动吸收峰。
Y=Z双键伸缩振动区1600~1800 cm-1,主要是:C=O、C=N、C=C等双键。
指纹区(低频区)650-1500 cm-1主要是:C-C、C-N、C-O等单键和各种弯曲振动的吸收峰,其特点是谱带密集、难以辨认。
红外谱图各主要官能团红外光谱的特征吸收峰频率3600-3200NH, OH d, br, s3300C CHstrong3100-3010 =C-H middle2960-2850 -C-H strong2260-21002700-CHO doubleC Cvariable1850-1690 C=OAcids, esters Ketones Aldehydes very strong1680-1620 or 1600-1500 C=C variable 1470-1350 bend C-H1000-700 bend alkenes benzene substituted type4000cm-1650cm-11300-1030 bend C-O C-N几个明显的红外特征峰-OH(醇和酚):-OH吸收处于3200~3650cm-1,由于-OH可形成分子间或分子内氢键,而氢键所引起的缔合对红外吸收峰的位臵、形状和强度都有重要影响。
仪器分析实验有机化合物的红外光谱分析 2015年4月21日有机化合物的红外光谱分析开课实验室:环境资源楼312【实验目的】1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作;2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程;3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。
【基本原理】• 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。
据此,可对物质进行定性和定量分析。
特别是对化合物结构的鉴定,应用更为广泛。
• 红外吸收法:类型:吸收光谱法;原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。
这是因为分子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。
当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。
据此,可对化合物进行定性和定量分析;条件:分子具有偶极矩。
【仪器与试剂】1、仪器:傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机;玛瑙研钵;红外灯。
2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。
【实验步骤】1、样品制备(1)固体样品:KBr压片法在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。
在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的粉末移至环中,盖上另一块模具,放入油压机中进行压片。
KBr压片形成后,若已透明,可用夹具固定测试;(2)液体样品:液膜法取一对NaCl窗片,用刮勺沾取液体滴在一块窗片上,然后用另一块窗片覆盖在上面,形成一个没有气泡的毛细厚度薄膜,用夹具固定,即可放入仪器光路中进行测试,此法适用于高沸点液体样品。
有机化合物的光谱分析方法光谱分析是化学领域中非常重要的一种分析方法,可以通过测量物质与特定波长的电磁辐射的相互作用来获得有关物质性质的信息。
在有机化学中,光谱分析被广泛用于研究有机化合物的结构和特性。
本文将介绍几种常见的有机化合物光谱分析方法,包括紫外-可见吸收光谱、红外光谱和核磁共振光谱。
一、紫外-可见吸收光谱紫外-可见吸收光谱(UV-Vis)是一种测量物质对紫外和可见光的吸收能力的方法。
由于每种有机化合物对不同波长的光具有特定的吸收特性,通过测量物质在紫外-可见光谱范围内的吸收光谱,可以确定物质的吸收峰位置和强度。
这些信息可以帮助确定有机化合物的结构和浓度。
二、红外光谱红外光谱(IR)是一种测量物质对红外辐射的吸收能力的方法。
在有机化学中,红外光谱常用于研究有机化合物的分子结构和功能基团。
不同的功能基团在红外光谱图上会显示出特定的吸收峰,通过对红外光谱图的解析,可以确定有机化合物的结构以及含有的官能团。
三、核磁共振光谱核磁共振光谱(NMR)是一种测量物质中原子核在外磁场中的共振吸收能力的方法。
在有机化学中,核磁共振光谱可用于确定有机化合物的结构、官能团以及分子构型。
通过测量核磁共振信号的位置和强度,可以确定有机化合物的分子式、化学环境以及原子间的空间关系。
综上所述,紫外-可见吸收光谱、红外光谱和核磁共振光谱是常见且重要的有机化合物光谱分析方法。
它们各自通过测量物质与特定波长的电磁辐射的相互作用,提供有机化合物结构和特性的信息。
研究人员可以根据需要选择适当的光谱分析方法,从而更好地理解有机化合物的性质和行为,推动有机化学领域的发展。
实验6有机化合物的红外光谱分析有机化合物的红外光谱分析【实验⽬的】1、初步掌握两种基本样品制备技术及傅⾥叶变换光谱仪器的简单操作;2、通过谱图解析及⽹上标准谱图的检索,了解由红外光谱鉴定未知物的⼀般过程;3、掌握有机化合物红外光谱测定的制样⽅法,回顾基础有机化学光谱的相关知识。
【基本原理】原理概述:物质分⼦中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发⽣振动能级之间的跃迁,形成各⾃独特的红外吸收光谱。
据此,可对物质进⾏定性和定量分析。
特别是对化合物结构的鉴定,应⽤更为⼴泛。
红外吸收法:类型:吸收光谱法;原理:电⼦的跃迁——电⼦由于受到光、热、电等的激发,从⼀个能级转移到另⼀个能级的现象。
这是因为分⼦中的电⼦总是处在某⼀种运动状态中,每⼀种状态都具有⼀定的能量,属于⼀定的能级。
当这些电⼦有选择地吸收了不同频率的红外辐射的能量,发⽣振动能级之间的跃迁,形成各⾃独特的红外吸收光谱。
据此,可对化合物进⾏定性和定量分析。
条件:分⼦具有偶极矩。
【仪器与试剂】1、仪器:傅⾥叶变换红外光谱仪(德国Bruker公司,TENSOR27型;美国Thermo Fisher公司,Nicolet6700型);压⽚机;玛瑙研钵;红外灯。
2、试剂:KBr晶体,待分析试样液体及固体。
【实验步骤】1、样品制备(1)固体样品:KBr压⽚法——在玛瑙研钵将KBr晶体充分研磨后加⼊其量5%左右的待测固体样品,混合研磨直⾄均匀。
在⼀个具有抛光⾯的⾦属模具上放⼀个圆形纸环,⽤刮勺将研磨好的粉末移⾄环中,盖上另⼀块模具,放⼊油压机中进⾏压⽚。
KBr 压⽚形成后,若已透明,可⽤夹具固定测试;(2)液体样品:液膜法——取⼀对NaCl 窗⽚,⽤刮勺沾取液体滴在⼀块窗⽚上,然后⽤另⼀块窗⽚覆盖在上⾯,形成⼀个没有⽓泡的⽑细厚度薄膜,⽤夹具固定,即可放⼊仪器光路中进⾏测试,此法适⽤于⾼沸点液体样品。
(本实验中液膜法采⽤如下⽅法制得:制备纯的KBr 压⽚,然后将待测液体滴在压⽚上,然后⽤夹具固定即可)2、仪器测试与解析(1)打开红外光谱测试软件→进⼊测试对话框→背景测试→样品测试→标峰值→打印谱图→取出样品;(2)解析谱图,推出可能的结构式。