1-专训1全等三角形判定的六种应用
- 格式:docx
- 大小:72.24 KB
- 文档页数:2
专训12.2.1用SSS 判定全等+综合应用一、单选题1.如图,通过尺规作图,得到COD C O D '''△≌△,再利用全等三角形的性质,得到了A O B AOB '''∠=∠,那么,根据尺规作图得到COD C O D '''△≌△的理由是()A .SASB .AASC .SSSD .ASA【答案】C【分析】根据SSS 证明三角形全等可得结论.【详解】解:连接CD 、C ′D ′,由作图可知,OD OC OD OC =='=',CD C D ='',在COD △和C O D ''' 中,OD O D OC O C CD C D =ⅱ=ⅱ=ìïïïïíïïïïîⅱ,∴()COD C O D SSS @ⅱV V ,∴AOB A O B ∠=∠'''故选:C .【点睛】本题考查作图-复杂作图,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2.如图,用直尺和圆规作图,以点O 为圆心,适当长为半径画弧,分别交OB ,OA 于点E 、D ,再分别以点E 、D 为圆心,大于12ED 的长为半径画弧,两弧交于点C ,连接OC ,则△ODC ≌OEC 的理由是()A .SSSB .SASC .AASD .HL【答案】A【分析】连接EC 、DC .根据作图的过程知,OE=OD ,CE=CD ,利用SSS 即可证明△ODC ≌OEC .【详解】如图,连接EC 、DC.根据作图的过程知,OE=OD ,CE=CD ,在△EOC 与△DOC 中,OE OD OC OC CE CD =⎧⎪=⎨⎪=⎩,∴△EOC ≌△DOC (SSS ).故选A .【点睛】本题考查了基本作图及三角形全等的判定方法,根据作图方法确定出三角形全等的条件是解决问题的关键.3.嘉淇在用直尺和圆规作一个角等于已知角的步骤如下:已知:AOB∠求作:A O B '''∠,使A O B AOB '''∠=∠.作法:(1)如图,以点O 为圆心,m 为半径画弧,分别交OA ,OB 于点C ,D ;(2)画一条射线O A '',以点O '为圆心,n 为半径画弧,交O A ''于点C ';(3)以点C '为圆心,p 为半径画弧,与第(2)步中所画的弧相交于点D ¢;(4)过点D ¢画射线O B '',则A O B AOB '''∠=∠.下列说法正确的是()A .0m p =>B .0n p =>C .102p n =>D .0m n =>【答案】D【分析】根据作一个角等于已知角的步骤作出A O B AOB '''∠=∠,再由SSS 定理得出OMN O M N '''≅△,根据全等三角形的性质即可得出结论.【详解】由题中作法可得:OD OC O D O C ''''===,CD C D ''=,DOC D O C '''∴≅△,∴OD OC m ==,=O C O D n ''''=,CD C D p ''==,∴m n =,∴线段都大于0,所以0m n =>,由题意OD 与CD 的关系无法得出,故选:D .【点睛】本题考查的是作图,掌握作一个角等于已知角的步骤及全等三角形的判定与性质是解答此题的关键.4.小聪在用直尺和圆规作一个角等于已知角时,具体过程是这样的:已知:∠AOB .求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB .作法:(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C '为圆心,CD 长为半径画弧,与第(2)步中所画的弧相交于点D ′;(4)过点D '画射线O ′B ′,则∠A ′O ′B ′=∠AOB .小聪作法正确的理由是()A .由SSS 可得△O ′C ′D ′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBB .由SAS 可得△O ′C ′D ′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBC .由ASA 可得△O ′C ′D ′≌△OCD ,进而可证∠A ′O ′B ′=∠AOBD .由“等边对等角”可得∠A ′O ′B ′=∠AOB【答案】A【分析】根据作图过程可知OD =OC =OD ′=OC ′,CD =C ′D ′,然后根据全等三角形的判定方法即可解答.【详解】解:由作图得OD =OC =OD ′=OC ′,CD =C ′D ′,则根据“SSS ”可判断△C ′O ′D ′≌△COD .故选:A .【点睛】本题主要考查了全等三角形的判定,灵活运用全等三角形的判定定理成为解答本题的关键.5.如图,已知BAD CAD ∠=∠,则下列条件中用AAS 使ABD ACD △≌△的是()A .B C∠=∠B .BDA CDA ∠=∠C .AB AC =D .BD CD=【答案】A【分析】利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.【详解】A:∠BAD=∠CAD,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS),此选项符合;B:∠BAD=∠CAD,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);此选项不符合;C:∠BAD=∠CAD,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS),此选项不符合;D:∠BAD=∠CAD,AD为公共边,若BD=CD,不能判定△ABD≌△ACD,此选项不符合;故选:D.【点睛】此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.6.如图,在△ABC中,AB=AC,D为BC的中点,则下列结论中:①△ABD≌△ACD;②∠B=∠C;③AD平分∠BAC;④AD⊥BC,其中正确的个数为()A.1个B.2个C.3个D.4个【答案】D【分析】由D为BC中点可得BD=CD,利用SSS即可证明△ABD≌△ACD,根据全等三角形的性质逐一判断即可.【详解】∵D为BC的中点,∴BD=CD,又∵AB=AC,AD为公共边∴△ABD≌△ACD(SSS),故①正确,∴∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,即AD⊥BC,故②③④正确.综上所述:正确的结论有①②③④共4个,故选D.【点睛】本题考查了全等三角形的判定和性质,主要考查学生的推理能力.其中灵活运用所给的已知条件,从而对各个选项进行逐一验证进而确定答案是解题的关键.二、填空题7.工人师傅常用角尺平分一个任意角.做法如下:如图,AOB ∠是一个任意角,在边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是AOB ∠的平分线.这种做法是利用了全等三角形对应角相等,图中判断三角形全等的依据是__.【答案】SSS【分析】角尺与已知角固定点重合时有CM CN =,分析已知条件,就能确定全等三角形判定定理.【详解】由图可知,CM CN =,在MCO ∆和NCO ∆中MO NO CO CO NC MC =⎧⎪=⎨⎪=⎩,()COM CON SSS ∴∆≅∆,AOC BOC ∠=∠∴,即OC 是AOB ∠的平分线.故答案为:SSS .【点睛】本题考查的是三角形边边边定理在实际生活中的应用,能根据题意分析出三角形判定的条件是解题关键.8.如图,用直尺和圆规作一个角等于已知角,能得出的依据是__.【答案】SSS根据作一个角等于已知角的作法和步骤解答.【详解】在ODC ∆和△O D C '''中,OD O D OC O C DC D C =''⎧⎪=''⎨⎪=''⎩,ODC ∴∆≅△()O D C SSS ''',故答案为:SSS .【点睛】本题考查尺规作图的应用,熟练掌握用直尺和圆规作一个角等于已知角的方法和步骤是解题关键.9.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,ABO ADO △≌△,下列结论:①AC BD ⊥;②CB CD =;③ABC ADC △≌△;④DA DC =,其中正确结论的序号是__________.【答案】①②③【分析】根据全等三角形的性质得出AB=AD ,∠BAO =∠DAO ,∠AOB =∠AOD =90°,OB=OD ,再根据全等三角形的判定定理得出△ABC ≌△ADC ,进而得出其它结论.【详解】由△ABO ≌△ADO得:AB=AD ,∠AOB =∠AOD =90°,∴AC ⊥BD∠BAC =∠DAC ,又AC =AC ,所以,有△ABC ≌△ADC ,所以,①②③正确.由已知条件得不到DA=DC ,故④不正确.故答案为:①②③.【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS ,SAS ,ASA ,AAS ,以及HL ,是解题的关键.10.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么图中共有___对全等三角形.【答案】3【详解】试题分析:由已知条件,结合图形可得△ADB ≌△ACB ,△ACO ≌△ADO ,△CBO ≌△DBO 共3对.找寻时要由易到难,逐个验证.试题解析:∵AD=AC ,BD=BC ,AB=AB ,∴△ADB ≌△ACB ;∴∠CAO=∠DAO ,∠CBO=∠DBO ,∵AD=AC ,BD=BC ,OA=OA ,OB=OB∴△ACO ≌△ADO ,△CBO ≌△DBO .∴图中共有3对全等三角形.故答案为3.考点:全等三角形的判定.11.如图,在ACD △与BCE 中,AD 与BE 相交于点P ,若AC BC =,AD BE =,CD CE =,55ACE ∠=︒,155BCD ∠=︒,则APB ∠的度数为______.【分析】利用SSS 证明△ACD ≌△BCE 可得∠A =∠B ,∠ACD =∠BCE ,结合已知角度可求解∠ACB =50°,由∠A =∠B ,∠1=∠2可得∠APB =∠ACB =50°,即可求解.【详解】解:在△ACD 和△BCE 中,AC BC AD BE CD CE ⎧⎪⎨⎪⎩===,∴△ACD ≌△BCE (SSS ),∴∠A =∠B ,∠ACD =∠BCE ,∵∠ACE =55°,∠BCD =155°,∴∠ACD +∠BCE =∠BCD +∠ACE =155°+55°=210°,∴∠BCE =∠ACD =105°,∴∠ACB =∠BCE -∠ACE =105°-55°=50°,∵∠A =∠B ,∠1=∠2,∴∠APB =∠ACB =50°,故答案为50°.【点睛】本题主要考查全等三角形的性质与判定,证明△ACD ≌△BCE 是解题的关键.三、解答题12.如图,AB AD =、BC DC =.求证:BAC DAC ∠=∠.【答案】见解析【分析】AB AD =、BC DC =,再加上公共边即可正面两个三角形全等.【详解】证明:在ABC 和ADC 中,,AB AD BC DC AC AC===∴()ABC ADC SSS △△≌∴BAC DAC∠=∠【点睛】此题考查的是三角形全等的判定,掌握三角形全等的条件是解题的关键.13.已知:直线l 和l 外一点P .求作:直线l 的垂线,使它经过点P .作法:①在直线l 上任取两点A 、B ;②分别以点A 、B 为圆心,AP ,BP 长为半径作弧,在直线l 下方两弧交于点C ;③作直线PC .所以直线PC 为所求作的垂线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连结AP 、AC 、BP 、BC .∵AP =AC ,BP =BC ,AB =AB ,∴△APB ≌△ACB ()(填推理依据).∴∠PAB =∠CAB ,∴PC ⊥AB ()(填推理依据).【答案】(1)见解析;(2)SSS ,等腰三角形三线合一【分析】此题考查作图问题,根据题意按照作图步骤一步步进行,注意保留作图痕迹.【详解】解:(1)(2)SSS ,等腰三角形三线合一【点睛】此题考查尺规作图,涉及到尺规作图中的依据,另外考查三角形全等的条件,难度一般.14.如图,已知点A 、B 、C 、D 在同一直线上,AE DF =,BE CF =,AC DB =.求证://AE DF .【答案】证明见详解【分析】“SSS”可证△ABE ≌△DCF ,可得∠A=∠D ,即可得结论.【详解】证明:∵AC=DB∴AB=CD ,且AE=DF ,BE=CF ,∴△ABE ≌△DCF (SSS)∴∠A=∠D ,∴AE ∥DF .【点睛】本题考查了全等三角形的判定和性质,平行线的判定,熟练运用全等三角形的判定是本题的关键.15.如图:已知AD BE =,BC EF =且//BC EF ,求证:ABC DEF ≌△△.【答案】见解析【分析】由AD=BE 可求得AB=DE ,再结合条件可证明△ABC ≌△DEF .【详解】证明:∵AD BE=∴AD BD BE BD+=+∴AB DE=又∵//BC EF∴ABC DEF∠=∠在ABC 和DEF 中AB DE ABC DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△(SAS )【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .16.如图,点A 、F 、C 、D 在一条直线上,,,AB DE BC EF AF CD ===.(1)求证:ABC DEF △≌△;(2)求证://AB DE .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS 即可判断△ABC ≌△DEF ;(2)利用全等三角形的性质即可证明.【详解】证明:(1)∵点A 、F 、C 、D 在一条直线上,AF CD =,∴AC DF =.在ACE △与BDF 中,,.AB DF BC EF AC DF =⎧⎪=⎨⎪=⎩∴ABC DEF △≌△,()SSS (2)∵△ABC ≌△DEF ,∴∠BCA =∠EFD ,∴A D ∠=∠,∴//AB DE .【点睛】本题考查全等三角形的判定和性质,平行线的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.如图,AD CB =,AB CD =,BE AC ⊥,垂足为E ,DF AC ⊥,垂足为F.求证:(1)ABC CDA △△≌;(2)BE DF =.【答案】(1)见解析;(2)见解析.【分析】(1)根据“边边边”直接可证;(2)由ABC CDA △△≌可得BAC DCA ∠=∠,根据“角角边”可证得ABE CDF △≌△,即可得证.【详解】解:(1)在ABC 和CDA 中,AD CB AB CD AC CA =⎧⎪=⎨⎪=⎩,∴ABC CDA △△≌;(2)∵ABC CDA △△≌,∴BAC DCA ∠=∠,在ABE △和CDF 中,AEB CFD BAC DCA AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABE CDF △≌△,∴BE DF =.【点睛】本题考查三角形全等的判定与性质,掌握全等三角形的判定与性质是解题的关键.18.如图,已知AB DC =,AC DB =.求证:A D ∠=∠.【答案】证明过程见解析【分析】利用SSS 判定△ABC ≌△DCB ,根据全等三角形的对应角相等即证.【详解】在△ABC 和△DCB 中AB DC AC DB BC CB =⎧⎪=⎨⎪=⎩∴△ABC ≌△DCB (SSS )∴A D ∠=∠(全等三角形对应角相等).【点睛】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .19.如图,点B 、F 、C 、E 在同一直线上,已知AB DE =,AC DF =,BF EC =.求证:ABC DEF △≌△.【答案】见解析【分析】已知△ABC 与△DEF 两边相等,通过BF=CE 可得BC=EF ,即可判定△ABC ≌△DEF (SSS ).【详解】证明:∵BF EC =,∴BF CF EC CF +=+,即BC EF=在ABC 与DEF 中AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩∴()SSS ABC DEF △≌△【点睛】本题考查三角形全等的判定.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.如图,点A 、B 、C 、D 在同一直线上,AM=CN ,BM=DN ,AC=BD .求证:BM//DN.【答案】见解析.【分析】根据AC =BD ,可得到AB =CD ,结合AM =CN ,BM =DN ,证明出△ABM ≌△CDN ,得到∠MBA =∠D ,进而证明出BM ∥DN .【详解】证明:∵AC =BD ,∴AC +BC =BD +BC ,即AB =CD ,∵在△ABM 和△CDN 中,AB CD BM DN AM CN ⎧⎪⎨⎪⎩===∴△ABM ≌△CDN (SSS ),∴∠MBA =∠D ,∴BM ∥DN .【点睛】本题主要考查全等三角形的判定与性质的应用,解答本题的关键是熟练掌握三角形全等的判定定理,此题难度一般.21.如图,点A ,E ,F ,C 在同一条直线上,AB=CD ,BF=DE ,AE=CF.求证:A C ∠=∠.【答案】见解析【分析】要证明A C ∠=∠,把两角置于三角形中,证两三角形全等,由已知观察由AE=CF 可得AF=CE ,利用三边对应相等的判定即可.【详解】证明:∵AE CF =,∴AF CE =,在ABF ∆和CDE ∆中,AB CD BF DE AF CE =⎧⎪=⎨⎪=⎩,∴()ABF CDE SSS ∆∆≌,∴A C ∠=∠.【点睛】本题考查三角形全等的证明问题,关键是会从条件AE=CF 中,证出AF=CE ,掌握全等的证明方法,会按要求书写证明过程.22.如图,AB =AE ,AC =AD ,BD =CE ,△ABC ≌△AED吗?试证明.【答案】△ABC ≌△AED,证明见解析.【解析】【分析】由BD=CE ,得到BC=ED ,根据“边、边、边”判定定理可得△ABC ≌△AED .【详解】解:△ABC ≌△AED.证明:∵BD =CE ,∴BC +CD =CD +DE ,即BC =ED.在△ABC 与△AED 中, AB AE AC AD BC ED =⎧⎪=⎨⎪=⎩∴△ABC ≌△AED(SSS)【点睛】本题考查了全等三角形的判定与性质,证得BC=ED 是解题的关键.23.如图,点D ,A ,E ,B 在同一直线上,EF =BC ,DF =AC ,DA =EB .试说明:∠F =∠C.【答案】见解析【分析】根据SSS 的方法证明△DEF ≌△ABC,即可得到结论.【详解】因为DA =EB ,所以DE =AB.在△DEF 和△ABC中,因为DE=AB,DF=AC,EF=BC,所以△DEF≌△ABC(SSS),所以∠F=∠C.【点睛】本题考查了全等三角形的判定和性质,属于简单题,找到证明全等的方法是解题关键.24.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.【答案】证明见解析【详解】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)25.如图所示,AB=AC,BD=CE,AD=AE,求证:△ABE≌△ACD.【答案】证明过程见解析【解析】试题分析:根据BD=CE得出BE=CD,然后结合AE=AD,AB=AC利用SSS来判定三角形全等.试题解析:∵BD=CE ,∴BD+DE=CE+DE ,∴BE=CD ,在△ABE 和△ACD 中,AE AD AB AC BE CD =⎧⎪=⎨⎪=⎩,∴△ABE ≌△ACD (SSS )考点:三角形全等的判定26.如图,点B ,F ,C ,E 在一条直线上,AB =DE ,AC =DF ,BF =EC .求证:AB //DE ,AC //DF.【答案】见解析【分析】根据SSS 证明△ABC 与△DEF 全等,进而利用平行线的判定解答即可.【详解】证明:∵BF =EC ,∴BF +FC =EC +FC ,即BC =EF ,在△ABC 与△DEF 中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS ),∴∠B =∠E ,∠ACB =∠DFE ,∴AB ∥DE ,AC ∥DF .【点睛】本题考查了全等三角形的判定与性质、平行线的判定.证明三角形全等是解题的关键.27.如图,,,AE BF AD BC DF CE ===,求证://AD CB.【答案】见解析【分析】根据AE=BF,得到AF=BE,再利用SSS证明△ADF≌△BCE,得到∠A=∠B,可得AD//B C.【详解】解:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,又∵AD=BC,DF=CE,∴△ADF≌△BCE(SSS),∴∠A=∠B,∴AD//B C.【点睛】本题考查了全等三角形的判定和性质,平行线的判定,解题的关键是结合已知条件,找准三角形证明全等.28.如图,AD=CB,E,F是AC上两动点,且有DE=BF.(1)若E,F运动如图①所示的位置,且有AF=CE,求证:△ADE≌△CBF;(2)若E,F运动如图②所示的位置,仍有AF=CE,那么△ADE≌△CBF还成立吗?为什么?(3)若E,F不重合,AD和CB平行吗?说明理由.【答案】(1)详见解析;(2)成立,证明详见解析;(3)AD与CB不一定平行,理由详见解析.【分析】(1)根据AF=CE可得AF+EF=CE+EF,即AE=CF,利用SSS即可证明△ADE≌△CBF;(2)根据AF=CE 可得AF-EF=CE-EF,即AE=CF,利用SSS即可证明△ADE≌△CBF;(3)根据已知两个条件,不能判定△ADE≌△CBF,不能确定∠A=∠C,即可得AD和CB不一定平行.【详解】(1)∵AF=CE,∴AF+EF=CE+EF,即AE=CF,在△ADE和△CBF中AD CB DE BF AE CF=⎧⎪=⎨⎪=⎩,∴△ADE≌△CBF.(2)成立.理由如下:∵AF=CE,∴AF-EF=CE-EF,即AE=CF,在△ADE和△CBF中AD CB DE BF AE CF=⎧⎪=⎨⎪=⎩,∴△ADE≌△CBF.(3)AD与CB不一定平行,理由如下:∵只给了两组对应相等的边,∴不能判定△ADE≌△CBF,∴不能判定∠A与∠C的大小关系,∴AD与CB不一定平行,【点睛】本题考查全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角29.好学的小明同学通过学习,知道一股情况下,要证明一个几何命题,需要明确命题中的己知和求证:根据愿意,画出图形,并用符号表示已知和求证.再写出证明过程,小明准备用上述步骤,证明命题:如果两个三角形有两条边和其中一边上的中线分别相等,那么这两个三角形全等.他已经画出如下的图形,用符号表示了已知,请你帮他用符号表示来证,并写出证明过程.已知:如图,在△ABC 和△A 'B 'C '中,点D 和点D '分别是BC 和B 'C '的中点.且AB =A 'B ',BC =B 'C ',AD =A 'D '.求证:证明:【答案】见解析.【分析】根据点D 和点D '分别是BC 和B 'C '的中点,结合题意可证BD B D ''=,再证明ABD ≅ ()''' B D SSS A ,由全等三角形的性质可得'''∠=∠BD AB A D ,继而证明ABC ≅V ()''' B C SSS A .【详解】求证:ABC A B C '''≅ 证明:,D D ' 分别是BC B C ''、的中点,1122BD BC B D B C ''''∴==、BC B C ''= BD B D ''∴=在ABD △与A B D '''△中,AB A B AD A D BD B D '''''=⎧'⎪=⎨⎪=⎩∴ABD ≅ ()''' B D SSS A '''∴∠=∠D A AB B D 在ABC 与A B C '''V 中,AB A B ABD A B D BC B C '''''''=⎧⎪∠=∠⎨⎪=⎩ABC ∴≅ ()''' B C SSS A .【点睛】本题考查全等三角形的判定与性质,是重要考点,难度较易,掌握相关知识是解题关键.30.如图,在四边形ABCD 中,AD =BC =8,AB =CD ,BD =12,点E 从D 点出发,以每秒1个单位的速度沿DA 向点A 匀速移动,点F 从点C 出发,以每秒3个单位的速度沿C→B→C ,作匀速移动,点G 从点B 出发沿BD 向点D 匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t 秒.(1)试证明:AD ∥BC ;(2)在移动过程中,小明发现有DEG △与BFG 全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间和G点的移动距离.【答案】(1)见解析;(2)3次,t=2,BG=6或t=4,BG=6或t=5,BG=5【分析】(1)由AD =BC =8,AB =CD ,BD 为公共边,所以可证得△ABD ≌△CDB ,所以可知∠ADB =∠CBD ,所以AD ∥BC ;(2)设运动时间为t ,点G 的运动速度为v ,根据全等三角形的性质分类讨论进行解答即可.【详解】(1)证明:在△ABD 和△CDB 中AD CB AB CD BD DB =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CDB(SSS)∴∠ADB=∠CBD ,∴AD ∥BC;(2)由已知得:DE=t,F从C→B移动时BF=8-3t;F从B→C移动时,BF=3t-8;i)当△DEG≌△BFG时,DE=BF,DG=BG;即:t=8-3t或t=3t-8解得t=2或t=4BG=DG=12BD=12×12=6;ii)当△DEG≌△BGF时,DE=BG,DG=BF,∴t+(3t-8)=12或t+(8-3t)=12解得t=5或t=-2(不合题意,舍去)t=5时BG=t=5.综上可得,出现3次全等,t=2,BG=6或t=4,BG=6或t=5,BG=5【点睛】本题主要考查三角形全等的判定和性质,第(2)题解题的关键是利用好三角形全等解得.。
专训一:三角形中的五种常见证明类型名师点金:学习了全等三角形及等腰三角形的性质和判定后,与此相关的几何证明题的类型非常丰富,常见的类型有:证明数量关系、位置关系,线段的和差关系、倍分关系、不等关系等.证明数量关系题型1证明线段相等1.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC 上的点,且AE=AF,求证:DE=DF.(第1题)题型2证明角相等2.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD 于F交BC于E.求证:∠ADB=∠CDE.(第2题)证明位置关系3.如图,在△ABC中,AB=AC,点D,E,F分别在边BC,AB,AC上,且BD=CF,BE=CD,点G是EF的中点,求证:DG⊥EF.(第3题)证明倍分关系4.如图,在△ABC中,AB=AC,AD,BE是△ABC的高,AD,BE相交于点H,且AE=BE,求证:AH=2BD.(第4题)证明和、差关系5.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC.求证:AB+BD=AC.(第5题)证明不等关系6.如图,AD是△ABC中∠BAC的平分线,P是AD上的任意一点,且AB >AC,求证:AB-AC>PB-PC.(第6题)专训二:构造全等三角形的六种常用方法名师点金:在进行几何题的证明或计算时,需要在图形中添加一些辅助线,辅助线能使题目中的条件比较集中,能比较容易找到一些量之间的关系,使数学问题得以较轻松地解决.常见的辅助线作法有:构造法、平移法、旋转法、翻折法、加倍折半法和截长补短法,目的都是构造全等三角形.构造基本图形法1.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,CE⊥AD于点E,其延长线交AB于点F,连接DF.求证:∠ADC=∠BDF.(第1题)翻折法2.如图,在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为D.求证:∠2=∠1+∠C.(第2题)旋转法3.如图,在正方形ABCD中,E为BC上的一点,F为CD上的一点,BE +DF=EF,求∠EAF的度数.(第3题)平移法4.在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于点P,BQ平分∠ABC交AC于点Q,且AP与BQ相交于点O.求证:AB+BP=BQ+AQ.(第4题)加倍折半法5.如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,求∠C的度数.(第5题)截长补短法6.如图所示,AB∥CD,BE、CE分别为∠ABC、∠BCD的平分线,点E 在AD上.求证:BC=AB+CD.(第6题)专训三:分类讨论思想在等腰三角形中的应用名师点金:分类讨论思想是解题的一种常用方法,在等腰三角形中,往往会遇到条件或结论不唯一的情况,此时就需要分类讨论.通过正确地分类讨论,可以使复杂的问题得到清晰、完整、严密的解答.其解题策略为:先分类,再画图,后计算.当顶角和底角不确定时,分类讨论1.若等腰三角形中有一个角等于40°,则这个等腰三角形的顶角度数为()A.40°B.100°C.40°或70°D.40°或100°2.已知等腰三角形ABC中,AD⊥BC于D,且AD=12BC,则等腰三角形ABC的底角的度数为()A.45°B.75°C.45°或75°D.65°3.若等腰三角形的一个外角为64°,则底角的度数为________.当底和腰不确定时,分类讨论4.(2015·荆门)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或125.等腰三角形的两边长分别为7和9,则其周长为________.6.若实数x,y满足|x-5|+(10-y)2=0,则以x,y的值为边长的等腰三角形的周长为________.当高的位置关系不确定时,分类讨论7.等腰三角形一腰上的高与另一边的夹角为25°,求这个三角形的各个内角的度数.由腰的垂直平分线引起的分类讨论8.在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,求∠B的度数.由腰上的中线引起的分类讨论9.等腰三角形ABC的底边BC长为5 cm,一腰上的中线BD把其分为周长差为3 cm的两部分.求腰长.点的位置不确定引起的分类讨论10.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()(第10题)A.7个B.6个C.5个D.4个11.如图,已知△ABC中,BC>AB>AC,∠ACB=40°,如果D,E是直线AB上的两点,且AD=AC,BE=BC,求∠DCE的度数.(第11题)专训四:三角形中常见的热门考点名师点金:本章主要学习了互逆命题与互逆定理,全等三角形的性质与判定,等腰三角形,线段垂直平分线与角平分线等常见的轴对称图形的性质与判定.本章的考点较多,也是中考的重点考查内容.互逆命题、基本事实、互逆定理1.下列命题是真命题的是()A.无限小数是无理数B.相反数等于它本身的数是0和1C.对顶角相等D.等边三角形既是轴对称图形,又是中心对称图形2.下列命题及其逆命题是互逆定理的是()A.全等三角形的对应角相等B.若两个角都是直角,则它们相等C.同位角相等,两直线平行D.若a=b,则|a|=|b|全等三角形的性质与判定3.如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.3对B.2对C.1对D.0对(第3题)(第4题)4.如图,在△ABC中,AC=5,F是高AD和BE的交点,AD=BD,则BF的长是()A.7 B.6 C.5 D.45.(2015·杭州)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC,求证:DM=DN.(第5题)等腰三角形的判定与性质6.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F分别为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)DA平分∠EDF;(4)AD垂直平分EF.其中正确的有()A.1个B.2个C.3个D.4个(第6题)(第7题)(第8题)7.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,则BC′的长为________.8.如图所示,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=6 cm,AC=9 cm,则△AMN 的周长为________.9.(中考·淄博)如图,AD∥BC,BD平分∠ABC.求证:AB=AD.(第9题)尺规作图10.如图,已知线段a,h,作等腰三角形ABC,使AB=AC,且BC=a,BC边上的高AD=h.张红的作法如下:(1)作线段BC=a;(2)作线段BC的垂直平分线MN,MN与BC相交于点D;(3)在直线MN上截取线段h;(4)连接AB,AC.△ABC即为所要求作的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是()(第10题)A.(1) B.(2) C.(3) D.(4)线段垂直平分线与角平分线11.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC 于点D,交AB于点E,则下列结论错误的是()A.BD平分∠ABCB.△BCD的周长等于AB+BCC.AD=BD=BCD.点D是线段AC的中点(第11题)(第12题)12.如图,已知在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,那么∠CAB的大小是()A.80°B.50°C.40°D.20°13.如图,已知C是∠MAN的平分线上一点,CE⊥AB于E,点B,D分别在AM,AN上,且AE=12(AD+AB).问:∠1和∠2有何关系?并说明理由.(第13题)思想方法a.分类讨论思想14.等腰三角形的一个外角等于110°,则这个三角形的顶角度数为________.15.(2014·安顺)已知等腰三角形的两边长分别为a,b,且a,b满足2a-3b+5+(2a+3b-13)2=0,则此等腰三角形的周长为() A.7或8 B.6或10C.6或7 D.7或10b.方程思想16.如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,求∠A的度数.(第16题)c.转化思想17.如图,已知在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于E,求证:BE=12(AC-AB).(第17题)答案专训一1.证明:连接AD.∵AB =AC ,D 是BC 的中点,∴∠EAD =∠FAD.在△AED 和△AFD 中,⎩⎨⎧AE =AF ,∠EAD =∠FAD ,AD =AD ,∴△AED ≌△AFD(S .A .S .).∴DE =DF.2.证明:过点C 作CG ⊥AC 交AE 的延长线于G ,则CG ∥AB ,∴∠BAF =∠G.又∵AF ⊥BD ,AC ⊥CG ,∴∠BAF +∠ABF =90°,∠CAG +∠G =90°.∴∠ABF =∠CAG.在△ABD 和△CAG 中,⎩⎨⎧∠ABF =∠CAG ,AB =AC ,∠BAD =∠ACG =90°,∴△ABD ≌△CAG(A .S .A .).∴AD =CG ,∠ADB =∠G.又∵D 为AC 的中点,∴AD =CD ,∴CD =CG.∵AB =AC ,∴∠ABC =∠ACB.又∵AB ∥CG ,∴∠ABC =∠GCE.∴∠ACB =∠GCE.又∵CE =CE ,∴△CDE ≌△CGE(S .A .S .).∴∠G =∠CDE.∴∠ADB =∠CDE.(第3题)3.证明:如图,连接ED ,FD.∵AB =AC ,∴∠B =∠C.在△BDE 和△CFD 中,⎩⎨⎧BD =CF ,∠B =∠C ,BE =CD ,∴△BDE ≌△CFD(S .A .S .).∴DE =DF.又∵点G 是EF 的中点,∴DG ⊥EF.4.证明:∵AD ,BE 是△ABC 的高,∴∠ADB =∠AEB =90°,又∵∠BHD =∠AHE ,∴∠EBC =∠EAH.在△BCE 和△AHE 中,⎩⎨⎧∠EBC =∠EAH ,BE =AE ,∠BEC =∠AEH =90°,∴△BCE ≌△AHE(A .S .A .).∴AH =BC.又∵AB =AC ,AD ⊥BC ,∴BC =2BD ,∴AH =2BD.5.证明:如图,延长CB 至E ,使BE =BA ,则∠BAE =∠E.∵∠ABC =2∠C =2∠E ,∴∠E =∠C ,∴AE =AC.∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠BAE =∠E ,∠E =∠C ,∴∠BAE =∠C.又∵∠EAD =∠BAE +∠BAD ,∠EDA =∠C +∠DAC ,∴∠EAD =∠EDA.∴AE =DE.∴AC =DE =BE +BD =AB +BD.(第5题)(第6题)6.证明:如图,在AB 上截取AE ,使AE =AC ,连接PE.∵AD 是∠BAC 的平分线,∴∠BAD =∠CAD.在△AEP 和△ACP 中,⎩⎨⎧AE =AC ,∠BAD =∠CAD ,AP =AP ,∴△AEP ≌△ACP(S .A .S .),∴PE =PC.在△PBE 中,BE >PB -PE ,∴AB -AC >PB -PC.专训二1.证明:如图,过点B 作BG ⊥BC 交CF 的延长线于点G.∵∠ACB =90°,∴∠2+∠ACF =90°.∵CE ⊥AD ,∴∠AEC =90°,∴∠1+∠ACF =180°-∠AEC =180°-90°=90°.∴∠1=∠2.在△ACD 和△CBG 中,⎩⎨⎧∠1=∠2,AC =CB ,∠ACD =∠CBG =90°,∴△ACD ≌△CBG(A .S .A .).∴∠ADC =∠G ,CD =BG.∵点D 为BC 的中点,∴CD =BD.∴BD =BG.又∵∠DBG =90°,∠DBF =45°,∴∠GBF =∠DBG -∠DBF =90°-45°=45°.∴∠DBF =∠GBF.在△BDF 和△BGF 中,⎩⎨⎧BD =BG ,∠DBF =∠GBF ,BF =BF ,∴△BDF ≌△BGF(S .A .S .).∴∠BDF =∠G.∴∠ADC =∠BDF.点拨:本题运用了构造基本图形法,通过作辅助线构造△CBG 、△BGF 是解题的关键.(第1题)(第2题)2.证明:如图,延长AD 交BC 于点F.(相当于将AB 边向下翻折,与BC 边重合,A 点落在F 点处,折痕为BE)∵BE 平分∠ABC ,∴∠ABE =∠CBE.∵BD ⊥AD ,∴∠ADB =∠BDF =90°.在△ABD 和△FBD 中,⎩⎨⎧∠ABD =∠FBD ,BD =BD ,∠ADB =∠FDB =90°,∴△ABD ≌△FBD(A .S .A .).∴∠2=∠DFB.又∵∠DFB =∠1+∠C ,∴∠2=∠1+∠C.(第3题)3.解:如图,延长CB 到点H ,使得BH =DF ,连接AH.∵∠ABE =90°,∠D =90°,∴∠ABH =∠D =90°.在△ABH 和△ADF 中,⎩⎨⎧AB =AD ,∠ABH =∠D =90°,BH =DF ,∴△ABH ≌△ADF.∴AH =AF ,∠BAH =∠DAF.∴∠BAH +∠BAF =∠DAF +∠BAF ,即∠HAF =∠BAD =90°. ∵BE +DF =EF ,∴BE +BH =EF ,即HE =EF.在△AEH 和△AEF 中,⎩⎨⎧AH =AF ,AE =AE ,EH =EF ,∴△AEH ≌△AEF.∴∠EAH =∠EAF.∴∠EAF =12∠HAF =45°.点拨:图中所作辅助线,相当于将△ADF 绕点A 顺时针旋转90°,使AD 边与AB 边重合,得到△ABH.4.证明:过点O 作OD ∥BC 交AB 于点D ,∴∠ADO =∠ABC. ∵∠BAC =60°,∠C =40°,∴∠ABC =80°.∴∠ADO =80°.∵BQ 平分∠ABC ,∴∠QBC =40°.∴∠AQB =∠C +∠QBC =80°.∴∠ADO =∠AQB.易知∠DAO =∠QAO ,OA =OA ,∴△ADO ≌△AQO.∴OD =OQ ,AD =AQ.∵OD ∥BP ,∴∠PBO =∠DOB ,又∵∠PBO =∠DBO ,∴∠DBO =∠DOB.∴BD =OD.∴BD =OQ.∵∠BAC =60°,∠ABC =80°,BQ 平分∠ABC ,AP 平分∠BAC , ∴∠BAP =30°,∠ABQ =40°,∴∠BOP =70°.∵∠BAP =30°,∠ABC =80°,∴∠APB =70°.∴∠BOP =∠APB ,∴BO =BP.∴AB +BP =AD +DB +BP =AQ +OQ +BO =BQ +AQ.5.解:在DC 上截取DE =BD ,连接AE ,∵AD ⊥BC ,BD =DE ,∴AD 是线段BE 的垂直平分线,∴AB =AE ,∠B =∠AEB.∵AB +BD =CD ,DE =BD ,∴AB +DE =CD.而CD =DE +EC ,∴AB =EC ,∴AE =EC.故设∠EAC =∠C =x ,∵∠AEB 为△AEC 的外角,∴∠AEB =∠EAC +∠C =2x ,∴∠B =2x ,∠BAE =180°-2x -2x =180°-4x.∵∠BAC =120°,∴∠BAE +∠EAC =120°,即180°-4x +x =120°,解得x =20°,则∠C =20°.6.证法一:用截长法,如图①所示,在BC 上截取BF =AB ,连接EF.(第6题)因为BE 平分∠ABC ,CE 平分∠BCD ,所以∠ABE =∠FBE ,∠FCE =∠DCE.在△ABE 和△FBE 中,因为⎩⎨⎧AB =FB ,∠ABE =∠FBE ,BE =BE ,所以△ABE ≌△FBE.所以∠A =∠EFB.因为AB ∥CD ,所以∠A +∠D =180°.因为∠BFE +∠EFC =180°,所以∠EFC =∠D.在△EFC 和△EDC 中,因为⎩⎨⎧∠FCE =∠DCE ,∠EFC =∠D ,EC =EC ,所以△EFC ≌△EDC.所以FC =DC.所以BC =BF +FC =AB +CD.证法二:用补短法,如图②所示,延长BE 交CD 的延长线于点G.因为AB ∥CD ,所以∠ABE =∠G.因为BE 平分∠ABC ,所以∠ABE =∠CBE.所以∠CBE =∠G.因为CE 平分∠BCD ,所以∠BCE =∠GCE.在△BEC 和△GEC 中,因为⎩⎨⎧∠CBE =∠G ,∠BCE =∠GCE ,CE =CE ,所以△BEC ≌△GEC.所以BC =GC ,BE =GE.在△ABE 和△DGE 中,因为⎩⎨⎧∠ABE =∠G ,∠AEB =∠DEG ,BE =GE ,所以△ABE ≌△DGE.所以AB =DG.所以BC =CG =GD +DC =AB +CD.专训三1.D 2.C 3.32°4.C 5.23或25 6.257.解:设等腰三角形ABC 中,AB =AC ,BD ⊥AC 于D.(1)当高与底边的夹角为25°时,高一定在△ABC 的内部,如图①,∵∠DBC =25°,∴∠C =90°-∠DBC =90°-25°=65°,∴∠ABC =∠C =65°,∠A =180°-2×65°=50°.(第7题)(2)当高与另一腰的夹角为25°时,如图②,高在△ABC 的内部时,∵∠ABD =25°,∴∠A =90°-∠ABD =65°,∴∠C =∠ABC =(180°-∠A)÷2=57.5°;如图③,高在△ABC 的外部时,∵∠ABD =25°,∴∠BAD =90°-∠ABD =90°-25°=65°,∴∠BAC=180°-65°=115°,∴∠ABC=∠C=(180°-115°)÷2=32.5°,故三角形各内角的度数为:65°,65°,50°或65°,57.5°,57.5°或115°,32.5°,32.5°.点拨:由于题目中的“另一边”没有指明是“腰”还是“底边”,因此必须进行分类讨论,另外,还要结合图形,分高在三角形内还是在三角形外.8.解:此题分两种情况:(1)如图①,AB边的垂直平分线与AC边交于点D,∠ADE=40°,则∠A=50°,∵AB=AC,∴∠B=(180°-50°)÷2=65°.(2)如图②,AB边的垂直平分线与CA的延长线交于点D,∠ADE=40°,则∠DAE=50°,∴∠BAC=130°.∵AB=AC,∴∠B=(180°-130°)÷2=25°.故∠B的大小为65°或25°.(第8题)9.解:∵BD为AC边上的中线,∴AD=CD.(1)当(AB+AD)-(BC+CD)=3 cm时,则AB-BC=3 cm,∵BC=5 cm,∴AB=8 cm;(2)当(BC+CD)-(AB+AD)=3 cm时,则BC-AB=3 cm,∵BC=5 cm,∴AB=2 cm;但是当AB=2 cm时,三边长为2 cm,2 cm,5 cm,而2+2<5,不符合三角形三边关系,故舍去,故腰长为8 cm.10.B11.解:(1)当点D,E在点A的同侧,且都在BA的延长线上时,如图①,(第11题)∵BE=BC,∴∠BEC=(180°-∠ABC)÷2,∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,∵∠DCE=∠BEC-∠ADC,∴∠DCE=(180°-∠ABC)÷2-∠BAC÷2=(180°-∠ABC-∠BAC)÷2=∠ACB÷2=40°÷2=20°.(2)当点D,E在点A的同侧,且点D在D′的位置,点E在E′的位置时,如图②,与(1)类似地可以求得∠D′CE′=∠ACB÷2=20°.(3)当点D,E在点A的两侧,且点E在E′的位置时,如图③,∵BE′=BC,∴∠BE′C=(180°-∠CBE′)÷2=∠ABC÷2,∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,又∵∠DCE′=180°-(∠BE′C+∠ADC),∴∠DCE′=180°-(∠ABC+∠BAC)÷2=180°-(180°-∠ACB)÷2=90°+∠ACB÷2=90°+40°÷2=110°.(4)当点D,E在点A的两侧,且点D在D′的位置时,如图④,∵AD′=AC,∴∠AD′C=(180°-∠BAC)÷2,∵BE=BC,∴∠BEC=(180°-∠ABC)÷2,∴∠D′CE=180°-(∠D′EC+∠ED′C)=180°-(∠BEC+∠AD′C)=180°-[(180°-∠ABC)÷2+(180°-∠BAC)÷2]=(∠BAC+∠ABC)÷2=(180°-∠ACB)÷2=(180°-40°)÷2=70°.综上所述,∠DCE的度数为20°或110°或70°.专训四1.C 2.C 3.A 4.C5.证明:∵AM=2MB,AN=2NC,∴AM=23AB,AN=23AC.又∵AB=AC,∴AM=AN.∵AD平分∠BAC,∴∠MAD=∠NAD.又∵AD=AD,∴△AMD≌△AND(S.A.S.).∴DM=DN.6.D7.38.15 cm9.证明:∵AD∥BC,∴∠DBC=∠ADB.又∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB =AD.10.C 11.D 12.D(第13题)13.解:∠1与∠2互补.理由:作CF ⊥AN 于F(如图),∵AC 平分∠MAN ,∴∠3=∠4,又∵CE ⊥AM ,CF ⊥AN ,∴CF =CE ,∠CFA =∠CEA =90°,∴Rt △ACF ≌Rt △ACE ,∴AF =AE.∵AE =12(AD +AB)=12(AF -DF +AE +BE)=AE +12(BE -DF),∴BE -DF =0,∴BE =DF ,又CE =CF ,∠CEB =∠CFD ,∴△DFC ≌△BEC(S .A .S .),∴∠5=∠2,∵∠1+∠5=180°,∴∠1+∠2=180°.即∠1与∠2互补.14.70°或40° 点拨:本题运用了分类讨论思想,将已知条件外角等于110°分为底角处的外角和顶角处的外角两种情况进行讨论,解题时要防止漏解.15.A 点拨:∵2a -3b +5+(2a +3b -13)2=0,∴⎩⎨⎧2a -3b +5=0,2a +3b -13=0,解得⎩⎨⎧a =2,b =3. 当a 为底边长时,三角形的三边长为2,3,3,则周长为8;当b 为底边长时,三角形的三边长为2,2,3,则周长为7.综上所述,此等腰三角形的周长为7或8.16.解:设∠ABD 的度数为x.∵AD =DE =EB ,∴∠A =∠AED =2∠ABD =2x.∵BC =BD ,∴∠C =∠BDC =∠ABD +∠A =3x.∵AB =AC ,∴∠ABC =∠C =3x.∴∠A +∠C +∠ABC =8x =180°.∴x =22.5°.∴∠A =2x =45°.17.证明:如图,延长BE 交AC 于F.∵AD 是∠BAC 的平分线,∴∠BAE =∠FAE.(第17题)在△ABE 和△AFE 中,⎩⎨⎧∠BAE =∠FAE ,AE =AE ,∠AEB =∠AEF =90°,∴△ABE ≌△AFE(A .S .A .).∴∠ABF =∠AFB ,BE =FE ,AB =AF.∴BE =12BF.∠ABC =∠ABF +∠FBC=∠AFB +∠FBC =∠C +∠FBC +∠FBC =∠C +2∠FBC ,又∵∠ABC =3∠C ,∴3∠C =∠C +2∠FBC.∴∠C =∠FBC.∴BF =CF.∴BE =12CF.∵CF =AC -AF =AC -AB ,∴BE =12(AC -AB).点拨:本题运用了转化思想,通过添加辅助线构造等腰三角形,然后利用等腰三角形的性质将AC 与AB 的差转化为AC 与AF 的差是解题的关键.。
全等三角形的判定方法五种
1.边边边:三边对应相等的两个三角形全等;
2.边角边:两边和它们夹角对应相等的两个三角形全等;
3.角边角公理(ASA):两角和它们的夹角对应相等的两个三角形全等;
4.角角边:两个角和其中一角的对边对应相等的两个三角形全等;
5.斜边直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
全等三角形的运用
1、性质中三角形全等是条件,结论是对应角、对应边相等。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
2、当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。
3、用在实际中,一般我们用全等三角形测相等的距离。
以及相等的角,可以用于工业和军事。
4、三角形具有一定的稳定性,所以我们用这个原理来做脚手架及其他支撑物体。
初中数学教案:全等三角形的性质与应用全等三角形的性质与应用一、全等三角形的基本性质1. 定义:当两个三角形的对应边长相等,对应角度相等时,我们称这两个三角形为全等三角形。
2. 全等三角形的性质:a. 对应边长相等:如果两个三角形是全等的,那么它们三条边的长度相等。
b. 对应角度相等:如果两个三角形是全等的,那么它们三个内角的大小相等。
c. 对应边角相等:如果两个三角形是全等的,那么它们对应的边与对应的角相等。
3. 全等三角形的判定:可以使用以下方法进行判定。
a. SSS 判定法:如果两个三角形的三边分别相等,则这两个三角形全等。
b. SAS 判定法:如果两个三角形的两边和夹角分别相等,则这两个三角形全等。
c. ASA 判定法:如果两个三角形的两角和边分别相等,则这两个三角形全等。
d. AAS 判定法:如果两个三角形的两角和对应边分别相等,则这两个三角形全等。
二、全等三角形的应用1. 证明性质:全等三角形可以用于证明其他几何性质和定理。
示例:如何证明垂直平分线与中位线重合?解析:假设有一个三角形ABC,BD是边AC的中线,BE是边AC的垂直平分线,需要证明D、E两点重合。
我们可以通过下列步骤进行证明:a. 通过边BD和边BE构造两个全等三角形。
b. 证明全等三角形的对应边和对应角相等。
c. 证明D、E两点重合。
2. 问题解决:全等三角形可以帮助我们解决实际生活中的几何问题。
示例:如何测量一个高不易到达的物体的高度?解析:假设有一个高不易到达的物体AB,我们可以通过以下步骤测量其高度:a. 找到一个与物体AB高度相等的物体CD。
b. 测量物体CD的高度。
c. 通过全等三角形的原理,CD与AB全等,所以可以用已知的CD的高度来代替AB的高度。
3. 题目设计:全等三角形的性质可以应用于数学题目的设计和解答。
示例:已知三角形ABC,边AC=8 cm,边BC=10 cm,∠ABC=45°,求∠ACB的大小。
全等三角形的运用原理全等三角形的运用原理是基于三角形的一系列性质和定理。
所谓全等三角形,指的是具有相同形状和大小的三角形,它们的对应的三边长度和对应的三个角度都是相等的。
全等三角形的运用原理主要有以下几个方面:1. SSS(边边边)判定法:如果两个三角形的三边分别相等,则它们是全等的。
这个原理可以通过两个三角形的对应边的长度是否相等来判定,如果所有边的长度都相等,则两个三角形是全等的。
2. SAS(边角边)判定法:如果两个三角形的两边和夹角分别相等,则它们是全等的。
这个原理可以通过两个三角形的一个夹角和两边的长度是否相等来判定,如果夹角和两边的长度都相等,则两个三角形是全等的。
3. ASA(角边角)判定法:如果两个三角形的两个角和一边分别相等,则它们是全等的。
这个原理可以通过两个三角形的两个角和一边的长度是否相等来判定,如果两个角和一边的长度都相等,则两个三角形是全等的。
4. RHS(直角边斜边)判定法:如果两个三角形的一个角度是直角,并且两个直角边的长度分别相等,则它们是全等的。
这个原理可以通过两个三角形的一个直角和两个直角边的长度是否相等来判定,如果一个直角和两个直角边的长度都相等,则两个三角形是全等的。
全等三角形的运用原理可以应用在解决各种几何问题中,比如计算不规则图形的面积、证明两个三角形是全等的、解决三角形的边长和角度等。
在解题过程中,我们可以根据题目给出的条件,利用全等三角形的运用原理来推导解题的过程。
例如,当我们需要计算一个不规则图形的面积时,可以通过将该图形切分成一系列全等的三角形,然后计算每个三角形的面积,最后将这些三角形的面积相加得到最终结果。
通过使用全等三角形的原理,我们可以避免复杂的计算和推导,简化计算过程。
另外,全等三角形的运用原理也可以用于证明两个三角形是全等的。
以SSS判定法为例,如果我们知道两个三角形的三边分别相等,我们就可以断定这两个三角形是全等的。
通过这个原理,我们可以证明两个三角形的全等关系,从而得出更多的结论和定理。
典中点全等三角形专训3 全等三角形判定的六种应用◐名师点金◑一般三角形全等的判定方法有四种:SSS,SAS,ASA,AAS,直角三角形是一种特殊的三角形,它除了上述四种判定方法之外,还有一种特殊的方法,即“HL”.具体到某一道题目时,要根据题目所给出的条件进行观察、分析,选择合适的、简单易行的方法来解题。
类型1:已知一边一角型应用1:一次全等型1.如图,在△ACD中,AB⊥CD于点B,BD=AB,∠DEB=∠ACB求证:(1)DE=AC;(2)DE⊥AC2.如图,在△ABC中,D是BC边上一点,连结AD,过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F,且BE=CF求证:AD是△ABC的中线应用2:两次全等型3.如图,∠C=∠D,AC=AD,求证:BC=BD4.如图,D是△ABC中BC边上一点,E是AD上一点EB=EC,∠BAE=∠CAE求证:∠ABE=∠ACE类型2:已知两边型应用3:一次全等型5.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在1异侧测得AB=DE,AC=DF BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.应用4:两次全等型6.如图,AB=CB,AD=CD,E是BD上任意一点.求证:AE= CE7.如图,已知AD=AE,AB=AC.求证:BF=FC类型3:已知两角型应用5:一次全等型8.如图,已知∠BDC=∠CEB=90°,BE,CD交于点O,且A0平分∠BAC.求证:OB=OC应用6:两次全等型9.如图,在△ABC与△DCB中,AC与BD交于点E,且∠BAC=∠CDB,∠ACB=∠DBC,分别延长BA与CD 交于点F.求证:BF=CF。
三角形全等的判定方法压轴题五种模型全攻略【考点导航】目录【典型例题】【考点一用SAS证明两三角形全等】【考点二用ASA证明两三角形全等】【考点三用AAS证明两三角形全等】【考点四用SSS证明两三角形全等】【考点五添一个条件使两三角形全等】【过关检测】【典型例题】【考点一用SAS证明两三角形全等】1(2023春·江苏苏州·七年级校联考阶段练习)如图,在△ABC中,AC>AB,射线AD平分∠BAC,交BC 于点E,点F在边AB的延长线上,AF=AC,连接EF.(1)求证:△AEC≌△AEF.(2)若∠AEB=50°,求∠BEF的度数.【答案】(1)证明见解析(2)80°【分析】(1)由射线AD平分∠BAC,可得∠CAE=∠FAE,进而可证△AEC≌△AEF SAS;(2)由△AEC≌△AEF SAS,可得∠C=∠F,由三角形外角的性质可得∠AEB=∠CAE+∠C=50°,则∠FAE+∠F=50°,根据∠FAE+∠F+∠AEB+∠BEF=180°,计算求解即可.【详解】(1)证明:射线AD平分∠BAC,∴∠CAE=∠FAE,在△AEC和△AEF中,∵AC=AF∠CAE=∠FAEAE=AE,∴△AEC≌△AEF SAS;(2)解:∵△AEC≌△AEF SAS,∴∠C =∠F ,∵∠AEB =∠CAE +∠C =50°,∴∠FAE +∠F =50°,∵∠FAE +∠F +∠AEB +∠BEF =180°,∴∠BEF =80°,∴∠BEF 为80°.【点睛】本题考查了角平分线,全等三角形的判定与性质,三角形外角的性质,三角形内角和定理.解题的关键在于对知识的熟练掌握与灵活运用.【变式训练】1(2023春·云南昭通·九年级校考阶段练习)如图,点A 、C 、F 、D 在同一直线上,AF =DC ,∠A =∠D ,AB =DE .求证:△ABC ≌△DEF.【答案】见解析【分析】由AF =CD ,可求得AC =DF ,利用SAS 可得出结论.【详解】解:∵ AF =CD ,∴AF -FC =CD -FC ,即AC =DF ,在△ABC 和△DEF 中,AB =DE∠A =∠D AC =DF,∴△ABC ≌△DEF (SAS ).【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.2(2023春·四川成都·七年级统考期末)如图在△ABC 中,D 是BC 边上的一点,AB =DB ,BE 平分∠ABC ,交AC 边于点E ,连接DE.(1)求证:△ABE ≌△DBE ;(2)若∠A =100°,∠C =40°,求∠DEC 的度数.【答案】(1)证明见解析(2)60°【分析】(1)根据BE 平分∠ABC ,可得∠ABE =∠DBE ,进而利用SAS 证明△ABE ≌△DBE 即可;(2)根据全等三角形的性质可得∠BDE =∠A =100°,再由三角形外角的性质即可求解.【详解】(1)解:∵BE 平分∠ABC ,∴∠ABE =∠DBE .∵AB=DB,BE=BE,∴△ABE≌△DBE SAS;(2)解:∵△ABE≌△DBE,∴∠BDE=∠A=100°,∴∠DEC=∠BDE-∠C=60°.【点睛】本题主要考查了全等三角形的判定和性质,三角形外角的性质,熟练掌握全等三角形的判定和性质定理是解题的关键.3(2023春·江苏泰州·七年级统考期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连接BD、CE.(1)求证:△ABD≌△ACE.(2)图中BD和CE有怎样的关系?试证明你的结论.【答案】(1)见详解(2)见详解【分析】(1)先证明∠BAD=∠EAC,又因为AB=AC,AD=AE,即可求出三角形全等;(2)根据△ABD≌△ACE,得到∠ACE=∠ABD,进而证得∠ABD+∠DBC+∠ACB=90°,等量代换得∠ACE+∠DBC+∠ACB=90°即∠ECB+∠DBC=90°,再利用内角和,即可证明垂直.【详解】(1)解:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+∠CAD∴∠BAD=∠EAC∵AB=AC,AD=AE∴△ABD≌△ACE.(2)解:如图,设BD和CE交点为F∵△ABD≌△ACE∴∠ACE=∠ABD∵∠BAC=90°∴∠ABD+∠DBC+∠ACB=90°∴∠ACE+∠DBC+∠ACB=90°即∠ECB+∠DBC=90°∴∠BFC=180°-∠ECB+∠DBC=90°∴BD⊥CE.【点睛】此题考查全等三角形的判定和性质,和角与角之间关系,解题的关键是根据SAS三角形全等.4(2023·江苏南通·统考一模)如图,点A,B,C,D在同一条直线上,AB=CD=13BC,AE=DF,AE∥DF.(1)求证:△AEC ≌△DFB ;(2)若S △AEC =6,求四边形BECF 的面积.【答案】(1)见解析(2)9【分析】(1)由AE ∥DF ,得∠A =∠D ,进一步证得AC =DB ,根据边角边求证△AEC ≌△DFB SAS ;(2)以AC 为底作EH 为高,则S △AEC =12EH ∙AC ,S △BCE =12EH ·BC ,由AB =CD =13BC ,求得S △BEC =34S △AEC=4.5;求证△BEC ≌△CFB SAS ,得S △BEC =S △CFB ,所以S 四边形BECF =2S △BEC =9.【详解】(1)证明:∵AE ∥DF ,∴∠A =∠D ,∵AB =CD ,∴AC =DB ,在△AEC 和△DFB 中,AE =DF∠A =∠DAC =DB∴△AEC ≌△DFB SAS ;(2)解:在△AEC 中,以AC 为底作EH 为高,∴S △AEC =12EH ∙AC ,S △BCE =12EH ∙BC ,∵AB =CD =13BC ,∴AC =43BC ,∵S △AEC =6,∴S △BEC =34S △AEC =4.5,∵△AEC ≌△DFB ,∴∠ACE =∠DBF ,EC =FB ,在△BEC 和△CFB 中,EC =FB∠BCE =∠CBF BC =CB,∴△BEC ≌△CFB SAS ,∴S △BEC =S △CFB ,∴S 四边形BECF =2S △BEC =9.【点睛】本题考查平行的性质,全等三角形的判定和性质,三角形面积计算;能够灵活运用全等三角形性质是解题的关键.【考点二用ASA 证明两三角形全等】1(2023春·广东惠州·八年级校考期中)如图,BC ∥EF ,点C ,点F 在AD 上,AF =DC ,∠A =∠D .求证:△ABC ≌△DEF.【答案】见解析【分析】首先根据平行线的性质可得∠ACB =∠DFE ,利用等式的性质可得AC =DF ,然后再利用ASA 判定△ABC ≌△DEF 即可.【详解】证明:∵BC ∥EF ,∴∠ACB =∠DFE ,∵AF =DC ,∴AF +CF =DC +CF ,即AC =DF ,在△ABC 和△DEF 中,∠A =∠DAC =DF ∠ACB =∠DFE,∴△ABC ≌△DEF ASA .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【变式训练】1(2023·校联考一模)如图,点A 、D 、B 、E 在同一条直线上,若AD =BE ,∠A =∠EDF ,∠E =∠ABC .求证:AC =DF.【答案】见解析【分析】由AD =BE 知AB =ED ,结合∠A =∠EDF ,∠E =∠ABC ,依据“ASA ”可判定△ABC ≌△DEF ,依据两三角形全等对应边相等可得AC =DF .【详解】证明:∵AD =BE ,∴AD +BD =BE +BD ,即AB =ED ,在△ABC 和△DEF 中,∠ABC =∠EAB =ED ∠A =∠EDF,∴△ABC≌△DEF ASA,∴AC=DF.【点睛】本题主要考查全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键.2(2023·浙江温州·温州市第八中学校考三模)如图,在△ABC和△ECD中,∠ABC=∠EDC=90°,点B为CE中点,BC=CD.(1)求证:△ABC≌△ECD.(2)若CD=2,求AC的长.【答案】(1)见解析(2)4,见解析【分析】(1)根据ASA判定即可;(2)根据△ABC≌△ECD ASA和点B为CE中点即可求出.【详解】(1)证明:∵∠ABC=∠EDC=90°,BC=CD,∠C=∠C,∴△ABC≌△ECD ASA(2)解:∵CD=2,△ABC≌△ECD ASA,∴BC=CD=2,AC=CE,∵点B为CE中点,∴BE=BC=CD=2,∴CE=4,∴AC=4;【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定条件是解答本题的关键.【考点三用AAS证明两三角形全等】1(2023·广东汕头·广东省汕头市聿怀初级中学校考三模)如图,点E在△ABC边AC上,AE=BC,BC∥AD,∠CED=∠BAD.求证:△ABC≌△DEA【答案】证明见解析【分析】根据平行线的性质,得到∠DAC=∠C,再根据三角形外角的性质,得出∠D=∠BAC,即可利用“AAS”证明△ΑBC≌△DEA.【详解】证明:∵BC∥AD,∴∠DAC=∠C,∵∠CED=∠BAD,∠CED=∠D+∠DAC,∠BAD=∠DAC+∠BAC,∴∠D=∠BAC,在△ABC和△DEA中,∠BAC=∠D ∠C=∠DAC BC=AE,∴△ΑBC≌△DEA AAS.【点睛】本题考查了全等三角形的判定,平行线的性质,三角形外角的性质,熟练掌握全等三角形的判定定理是解题关键.【变式训练】1(2023·浙江温州·统考二模)如图,AB=BD,DE∥AB,∠C=∠E.(1)求证:△ABC≅△BDE.(2)当∠A=80°,∠ABE=120°时,求∠EDB的度数.【答案】(1)见解析(2)40°【分析】(1)根据平行线的性质,利用三角形全等的判定定理即可证明;(2)根据三角形全等的性质和平行线的性质即可求解【详解】(1)解:∵DE∥AB,∴∠BDE=∠ABC,又∵∠E=∠C,BD=AB,∴△ABC≅△BDE.(2)解:∵∠A=80°,△ABC≅△BDE,∴∠A=∠BDE=80°,∵∠ABE=120°,∴∠ABD=40°,∵DE∥AB,∴∠EDB=40°.【点睛】本题考查了平行线的性质,三角形全等的判定和性质,熟练掌握各知识点,利用好数形结合的思想是解本题的关键.2(2023秋·八年级课时练习)如图,已知点C是线段AB上一点,∠DCE=∠A=∠B,CD=CE.(1)求证:△ACD ≌△BEC ;(2)求证:AB =AD +BE .【答案】(1)见解析(2)见解析【分析】(1)由∠DCE =∠A 得∠D +∠ACD =∠ACD +∠BCE ,即∠D =∠BCE ,从而即可证得△ACD ≌△BEC ;(2)由△ACD ≌△BEC 可得AD =BC ,AC =BE ,即可得到AC +BC =AD +BE ,从而即可得证.【详解】(1)证明:∵∠DCE =∠A ,∴∠D +∠ACD =∠ACD +∠BCE ,∴∠D =∠BCE ,在△ACD 和△BEC 中,∠A =∠B∠D =∠BCE CD =EC,∴△ACD ≌△BEC AAS ;(2)解:∵△ACD ≌△BEC ,∴AD =BC ,AC =BE ,∴AC +BC =AD +BE ,∴AB =AD +BE .【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.【考点四用SSS 证明两三角形全等】1(2023·云南玉溪·统考三模)如图,点B ,E ,C ,F 在一条直线上,AB =DF ,AC =DE ,BE =CF ,求证:△ABC ≌△DFC.【答案】见解析【分析】根据题意,运用“边边边”的方法证明三角形全等.【详解】证明:∵BE =CF ,∴BE +CE =CF +CE ,即BC =EF ,在△ABC 和△DFE 中,AB =DFAC =DEBC =FE∴△ABC ≌△DFE (SSS ).【点睛】本题主要考查三角形全等的判定,掌握全等三角形的判定方法解题的关键.【变式训练】1(2023·云南·统考中考真题)如图,C 是BD 的中点,AB =ED ,AC =EC .求证:△ABC ≌△EDC.【答案】见解析【分析】根据C 是BD 的中点,得到BC =CD ,再利用SSS 证明两个三角形全等.【详解】证明:∵C 是BD 的中点,∴BC =CD ,在△ABC 和△EDC 中,BC =CDAB =ED AC =EC,∴△ABC ≌△EDC SSS 【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.2(2023春·全国·七年级专题练习)如图,已知∠E =∠F =90°,点B ,C 分别在AE ,AF 上,AB =AC ,BD =CD.(1)求证:△ABD ≌△ACD ;(2)求证:DE =DF .【答案】(1)见解析(2)见解析【分析】(1)直接根据SSS 证明即可.(2)根据(1)得∠EAD =∠FAD ,然后证明△AED ≌△AFD 即可.【详解】(1)解:证明:在△ABD 和△ACD 中,AB =ACAD =AD BD =CD∴△ABD ≌△ACD (SSS ).(2)解:由(1)知△ABD ≌△ACD (SSS ),∴∠EAD =∠FAD ,在△AED和△AFD中,∠E=∠F∠EAD=∠FAD AD=AD∴△AED≌△AFD(AAS),∴DE=DF.【点睛】本题考查了全等三角形的性质与判定,熟记全等三角形的性质与判定是解题关键.【考点五添一个条件使两三角形全等】1(2023春·宁夏银川·七年级校考期末)如图,在△ABC和△FED中,AD=FC,∠A=∠F,要使△ABC≌△FED,需添加的一个条件是.【答案】AB=EF(∠B=∠E或∠ACB=∠FDE答案不唯一)【分析】要使△ABC≌△FED,现有一边一角分别对应相等,还少一个条件,可结合图形选择利用求解即可.【详解】解:∵AD=FC,∴AC=FD又∵∠A=∠F,∴添加AB=EF,利用SAS可以证明△ABC≌△FED;添加∠B=∠E,利用AAS可以证明△ABC≌△FED;添加∠ACB=∠FDE,利用ASA可以证明△ABC≌△FED故答案为:AB=EF(∠B=∠E或∠ACB=∠FDE(.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.【变式训练】1(2023·北京大兴·统考二模)如图,点B,E,C,F在一条直线上,AC∥DF,BE=CF,只需添加一个条件即可证明△ABC≌△DEF,这个条件可以是(写出一个即可).【答案】AC=DF或∠A=∠D或∠ABC=∠DEF或AB∥DE(答案不唯一).【分析】根据SAS,AAS或ASA添加条件即可求解.【详解】解:∵AC∥DF,∴∠ACB=∠DFE,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,则有边角AS两个条件,要添加一个条件分三种情况,(1)根据“SAS”,则可添加:AC=DF,(2)根据“ASA”,则可添加:∠ABC=∠DEF或AB∥DE,(3)根据“AAS”,则可添加:∠A=∠D,故答案为:AC=DF或∠ABC=∠DEF或AB∥DE或∠A=∠D(答案不唯一).【点睛】本题考查了全等三角形的判定,解此题的关键是熟练掌握全等三角形的几种判断方法.2(2023春·山东青岛·七年级统考期末)如图,点E,F在BC上,BE=CF,∠AFB=∠DEC,请你添加一个条件(不添加字母和辅助线),使得△ABF≌△DCE,你添加的条件是.【答案】AF=DE或∠ABF=∠DCE或∠A=∠D【分析】本题要判定△ABF≌△DCE,已知∠AFB=∠DEC,由BE=CF可得BF=CE,那么只需添加一个条件即可.添边可以是AF=DE或添角可以是∠ABF=∠DCE或∠A=∠D.【详解】解:所添加条件为:AF=DE或∠ABF=∠DCE或∠A=∠D,∵BE=CF,∴BE+EF=CF+EF,即BF=CE,添加:AF=DE,在△ABF和△DCE中,AF=DE∠AFB=∠DECBF=CE,∴△ABF≌△DCE SAS;添加:∠ABF=∠DCE,在△ABF和△DCE中,∠ABF=∠DCEBF=CE∠AFB=∠DEC,∴△ABF≌△DCE ASA添加:∠A=∠D,在△ABF和△DCE中,∠A=∠D∠AFB=∠DECBF=CE,∴△ABF≌△DCE AAS.故答案为:AF=DE或∠ABF=∠DCE或∠A=∠D.【点睛】本题考查三角形全等的判定方法,解题的关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3(2023秋·八年级课前预习)如图,AB=AC,D,E分别是AB,AC上的点,要使△ABE≌△ACD,则还需添加的条件是.(只需填写一个合适的条件即可,图中不能再添加其他点或线)【答案】AE=AD或∠B=∠C或∠AEB=∠ADC(答案不唯一)【分析】根据全等三角形的判定方法即可求解.【详解】解:①∵AB=AC,∠A=∠A,AE=AD,∴△ABE≌△ACD(SAS),∴添加的条件为AE=AD;②∵∠B=∠C,AB=AC,∠A=∠A,∴△ABE≌△ACD(ASA),∴添加的条件为∠B=∠C;③∵∠A=∠A,∠AEB=∠ADC,AB=AC,∴△ABE≌△ACD(ASA),∴添加的条件为∠AEB=∠ADC;综上所述,添加的条件为AE=AD或∠B=∠C或∠AEB=∠ADC,故答案为:AE=AD或∠B=∠C或∠AEB=∠ADC(答案不唯一).【点睛】本题主要考查全等三角形的判定,掌握以上知识是解题的关键.【过关检测】一、单选题1(2023春·四川达州·七年级四川省大竹中学校考期末)如图,已知BE=DF,AF∥CE,不能使△ABF≌△CDE的是()A.BF=DEB.AF=CEC.AB∥CDD.∠A=∠C【答案】A【分析】根据BE =DF ,可得BF =DE ,根据AF ∥CE ,可得∠AFE =∠CEF ,由等角的补角相等可得∠AFB =∠CED ,然后根据全等三角形的判定定理逐一判断即可.【详解】解:∵BE =DF ,∴BF =DE ,∵AF ∥CE ,∴∠AFE =∠CEF ,∴∠AFB =∠CED .A 、添加BF =DE 时,不能判定△ABF ≌△CDE ,故选项符合题意;B 、添加AF =CE ,根据SAS ,能判定△ABF ≌△CDE ,故选项不符合题意;C 、由AB ∥CD 可得∠B =∠D ,所以添加AB ∥CD ,根据ASA ,能判定△ABF ≌△CDE ,故选项不符合题意;D 、添加∠A =∠C ,根据AAS ,能判定△ABF ≌△CDE ,故选项不符合题意;故选:A .【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2(2023秋·河南漯河·八年级校考期末)如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O ,若∠1=42°,则∠BDE 的度数为()A.71°B.69°C.67°D.65°【答案】B【分析】证明△BED ≌△AEC ,得到DE =CE ,∠C =∠BDE 等边对等角,求出∠C 的度数,即可.【详解】解:∵∠A =∠B ,∠BOE =∠AOD ,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴∠BED =∠AEC ,又AE =BE ,∴△BED ≌△AEC ,∴DE =CE ,∠C =∠BDE ,∴∠CDE =∠C =12180°-∠1 =69°,∴∠BDE =69°.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质.解题的关键是证明三角形全等.3(2023春·辽宁丹东·八年级校考期中)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为()A.42°B.74°C.84°D.96°【答案】D【分析】根据等腰三角形的性质得出两个底角相等,根据三角形全等的判定定理得出∠AMK=∠BKN,根据三角形的外角性质得出∠A的度数,即可得答案.【详解】解:∵PA=PB,∴∠A=∠B,∵AM=BK,BN=AK,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=42°,∴∠P=180°-2×42°=96°.故选:D.【点睛】本题考查等腰三角形的性质、全等三角形的判定与性质、三角形内角和定理及三角形外角性质,熟练掌握相关判定定理及性质是解题关键.二、填空题4(2023春·山东青岛·七年级统考期末)如图,∠l=∠2,现要添加一个条件使△ABD≌△ACD,可以添加.(只添一个即可).【答案】CD=BD(答案不唯一)【分析】根据三角形全等的判定方法进行解答即可.【详解】解:∵∠l=∠2,∴180°-∠1=180°-∠2,即∠ADC =∠ADB ,∵AD =AD ,∴添加条件CD =BD ,根据SAS 证明△ABD ≌△ACD ;添加条件∠C =∠B ,根据AAS 证明△ABD ≌△ACD ;添加条件∠CAD =∠BAD ,根据ASA 证明△ABD ≌△ACD .故答案为:CD =BD (答案不唯一).【点睛】本题主要考查了三角形全等的判定,解题的关键是熟练掌握三角形全等的判定方法,SAS ,AAS ,ASA ,HL ,SSS .5(2023秋·湖南娄底·八年级统考期末)如图,∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D .下面四个结论:①∠ABE =∠BAD ;②△CBE ≌△ACD ;③AB =CE ;④AD -BE =DE ,其中正确的有.【答案】①②④【分析】由BE ⊥CE 于E ,AD ⊥CE 于D ,得BE ∥AD ,则∠ABE =∠BAD ,可判断①正确;根据“同角的余角相等”推导出∠BCE =∠CAD ,即可证明△CBE ≌△ACD ,可判断②正确;由垂线段最短可证明AB >BC ,BC >CE ,则AB >CE ,可判断③错误;由CE =AD ,BE =CD ,且CE -CD =DE ,得AD -BE =DE ,可判断④正确,于是得到问题的答案.【详解】∵BE ⊥CE ,AD ⊥CE ,∴AD ∥BE ,∴∠ABE =∠BAD ,故①正确;∵∠E =∠ADC =∠ACB =90°,∴∠BCE =∠CAD =90°-∠ACD ,在△CBE 和△ACD 中,∠E =∠ADC∠BCE =∠CAD BC =CA,∴△CBE ≌△ACD AAS ,故②正确;∵BC ⊥AC ,CE ⊥BE ,∴AB >BC ,BC >CE ,∴AB >CE ,故③错误;∵△CBE ≌△ACD ,∴CE =AD ,BE =CD ,∵CE -CD =DE ,∴AD -BE =DE ,故④正确;故答案为:①②④.【点睛】此题考查了同角的余角相等、垂线段最短、平行线的判定与性质、全等三角形的判定与性质等知识,证明∠BCE =∠CAD 及△CBE ≌△ACD 是解题的关键.6(2023秋·江苏淮安·八年级淮安市浦东实验中学校考开学考试)如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.如果点P在线段BC上以4cm/s的速度由B点向C点运动.同时,点Q在线段CD上以acm/s的速度由C点向D点运动.当a=时,△EBP和△PCQ全等.【答案】4或24 5【分析】分两种情况:当△EBP≌△PCQ时和当△EBP≌QCP时,根据边对应相等,分别求出a的值即可.【详解】解:当△EBP≌△PCQ时,此时BE=CP,BP=CQ,则有BP=4t=at,CP=BC-BP=10-4t=6,此时t=1,a=4,当△EBP≌QCP时,此时BE=CQ,BP=CP,则有CQ=at=6,CP=BC-BP=10-4t=4t,此时t=54,a=245,综上所述,a的值为4或24 5,故答案为:4或24 5.【点睛】本题主要考查了全等三角形的性质,熟练掌握全等三角形的性质,采用分类讨论的思想是解题的关键.三、解答题7(2023春·上海嘉定·七年级校考期末)如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)求证:△ABD≌△ECB;(2)如果∠BDC=75°,求∠ADB的度数.【答案】(1)见解析(2)∠ADB=30°【分析】(1)由平行线性质可得∠ADB=∠CBE,再由ASA可证△ABD≌△ECB;(2)由全等三角形的性质可得BD=BC,由等腰三角形的性质可求出∠DBC=30°,再由两直线平行内错角相等即可求解.【详解】(1)证明∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,∠A=∠BECAD=BE∠ADB=∠CBE,∴△ABD≌△ECB ASA;(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=75°,∴∠DBC=180°-∠BDC-∠BCD=30°,∵AD∥BC,∴∠ADB=∠DBC=30°.【点睛】本题考查了全等三角形的判定和性质,平行线的性质,三角形内角和,熟练掌握两直线平行内错角相等是解答本题的关键.8(2023秋·江苏·八年级校考周测)如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)试说明AE=CD;(2)若AC=12cm,求BD的长.【答案】(1)见解析(2)BD=6cm【分析】(1)由题意可得∠D+∠DCB=90°,∠DCB+∠AEC=90°,即∠D=∠AEC,根据“AAS”可证△DBC≌△ECA,可得;(2)先求出,然后根据全等三角形的性质即可求解.【详解】(1)∵,,∴,,∴,∵,,∴,∴;(2)∵,,∴.∵是边上的中线,∴.∵,∴.【点睛】本题考查了全等三角形的判定与性质,熟练运用全等三角形的判定是本题的关键.9(2023秋·湖南长沙·八年级长沙市开福区青竹湖湘一外国语学校校考开学考试)如图所示,在中,于D,于E,与交于点F,且.(1)求证:;(2)已知,求的长.【答案】(1)见解析(2)【分析】(1)根据垂直的定义得出,再根据同角的余角相等得出,然后由证明即可;(2)由全等三角形的性质得出,再根据线段的和差即可解决问题.【详解】(1)证明:∵,,∴,∴,∴,在和中∴,(2)解:∵,∴,∵,∴,∴;【点睛】此题考查了全等三角形的判定与性质的应用,证明三角形全等是解决问题的关键,属于中考常考题型.10(2023春·四川成都·七年级成都实外校考期末)已知:如图,点是等边三角形内一点,且,外一点满足,平分.(1)求证:;(2)求的度数.(3)若,试判断与的位置关系,并说明理由.【答案】(1)见解析(2)(3),理由见解析【分析】(1)由三角形是等边三角形和可得,由角平分线的性质可得,由“”即可证明;(2)由三角形是等边三角形和可得,,由“”证明,从而得到,再由,;(3)由全等三角形的性质可得,由等腰三角形的性质可得,令交于点,通过计算得出,最后由三角形内角和定理可得出,从而得到答案.【详解】(1)证明:三角形是等边三角形,,,,平分,,在和中,,;(2)解:三角形是等边三角形,,,在和中,,,,,,由(1)得,,;(3)解:,理由如下:由(1)得,,,由(2)得,,,,,,如图,令交于点,,则,,,.【点睛】本题主要考查了等边三角形的性质、三角形全等的判定与性质、等腰三角形的性质、三角形内角和定理、角平分线的性质,熟练掌握等边三角形的性质、三角形全等的判定与性质、等腰三角形的性质、三角形内角和定理、角平分线的性质,是解题的关键.11(2023春·四川达州·七年级校考期末)如图,在中,,,点在线段上运动(不与、重合),连接,作,交线段于.(1)当时,,;点从向的运动过程中,逐渐变(填“大”或“小”);(2)当等于多少时,,请说明理由.(3)在点的运动过程中,与的长度可能相等吗?若可以,请直接写出的度数,请说明理由.【答案】(1);;小;(2),理由见解析;(3)可能相等,,理由见解析【分析】(1)现根据邻补角的定义,得到,进而得到,然后利用三角形内角和定理,得到,,又因为点从向的运动过程中,逐渐增大,所以逐渐变小;(2)利用三角形内角和定理,得到,根据平角的性质,得到,进而得到,再根据“”证明,即可得到答案;(3)根据等边对等角的性质,得到,再利用三角形内角和定理,得出,由三角形外角的性质,得到,进而得到,最后利用邻补角,即可求出的度数.【详解】(1)解:,,,,,,,,点从向的运动过程中,逐渐增大,逐渐变小,故答案为:;;小;(2)解:当时,,理由如下:,,又,,,,当时,,,在和中,,,即当时,,;(3)解:在点的运动过程中,与的长度可能相等,理由如下:,,,,,,,,.【点睛】本题考查了邻补角,三角形内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,三角形外角的性质,灵活运用相关知识解决问题是解题关键.12(2023春·广东梅州·八年级校考开学考试)在四边形中.(1)如图1,,,,分别是,上的点,且,探究图中,,之间的数量关系.小林同学探究此问题的方法是:延长到点,使.连接,先对比与结论是;(2)如图2,在四边形中,,,、分别是,上的点,且,则上述结论是否仍然成立,请说明理由.(3)如图3,在四边形中,,,若点在的延长线上,点在的延长线上,若,请写出与的数量关系,并给出证明过程.【答案】(1),理由见解析(2)成立,理由见解析(3),证明见解析【分析】(1)延长到点,使,连接,可判定,进而得出,,再判定,可得结论;(2)延长到点,使,连接,先判定,进而得出,,再判定,可得结论;(3)在延长线上取一点,使得,连接,先判定,再判定,得出,最后根据,推导得到【详解】(1)解:结论:.理由:如图1,延长到点,使,连接,在和中,,,,,,,,在和中,,,.故答案为:;(2)解:仍成立,理由:如图2,延长到点,使,连接,,,,在和中,,,,,,,,在和中,,,;(3)解:结论:.理由:如图3,在延长线上取一点,使得,连接,,,,在和中,,,,,在和中,,,,,,,即,.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定以及全等三角形的性质的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.。
专训1 全等三角形判定的六种应用
名师点金:一般三角形全等的判定方法有四种:SSS,SAS,ASA,AAS.具体到某一道题目时,要根据题目所给出的条件进行观察、分析,选择合适的、简单易行的方法来解题. 已知一边一角型 应用1 一次全等型 1.如图,在△ABC中,BD=DC,∠1=∠2.求证:AD平分∠BAC. (第1题) 2.如图,在△ABC中,D是BC边上一点,连接AD,过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F,且BE=CF. 求证:AD是△ABC的中线. (第2题) 应用2 二次全等型 3.如图,在△ABC中,BD=DC,ED⊥DF. 求证:BE+CF>EF. (第3题) 4.如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠BAE=∠CAE.求证:∠ABE=∠ACE. (第4题) 已知两边型 应用3 一次全等型 5.【中考·河北】如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC. (1)求证:△ABC≌△DEF; (2)指出图中所有平行的线段,并说明理由. (第5题) 应用4 两次全等型 6.如图,AB=CB,AD=CD,E是BD上任意一点.求证:AE=CE. (第6题) 7.如图,已知AD=AE,AB=AC.求证:BF=FC. (第7题) 已知两角型 应用5 一次全等型 8.如图,已知∠BDC=∠CEB=90°,BE,CD交于点O,
且AO平分∠BAC.求证:OB=OC.
(第8题)
应用6
两次全等型
9.如图,在△ABC与△DCB中,AC与BD交于点E,
且∠BAC=∠CDB,∠ACB=∠DBC,分别延长BA与CD交
于点F.求证:BF=CF.
(第9题)
答案
1.证明:∵BD=DC,
∴∠DBC=∠DCB.
又∵∠1=∠2,
∴∠1+∠DBC=∠2+∠DCB,
即∠ABC=∠ACB.
∴AB=AC.
在△ABD和△ACD中,
AB=AC,
∠1=∠2,
BD=CD,
∴△ABD≌△ACD(SAS).
∴∠BAD=∠CAD.
∴AD平分∠BAC.
2.证明:∵BE⊥AD,CF⊥AD,
∴∠BED=∠CFD=90°. 又∵∠BDE=∠CDF,BE=CF, ∴△DBE≌△DCF. ∴BD=CD. ∴D是BC的中点,即AD是△ABC的中线. 3.证明:如图,延长FD至点G,使DG=DF,连接BG,EG. (第3题) 在△BDG和△CDF中, BD=CD,∠BDG=∠CDF,DG=DF, ∴△BDG≌△CDF(SAS).∴BG=CF. ∵ED⊥DF, ∴∠EDG=∠EDF=90°. 在△EDG和△EDF中, DG=DF,∠EDG=∠EDF,DE=DE, ∴△EDG≌△EDF(SAS).∴EG=EF. 在△EBG中,BE+BG>EG, ∴BE+CF>EF. 4.证明:过E作EF⊥AB于F,EG⊥AC于G, 则∠AFE=∠AGE=90°. 在△AFE和△AGE中, ∠AFE=∠AGE,∠FAE=∠GAE,AE=AE, ∴△AFE≌△AGE(AAS), ∴EF=EG. 又∵EB=EC, 此时△BFE可看作由△CGE翻折得到,即△CGE翻折可与△BFE重合. ∴△CGE≌△BFE,∴∠ABE=∠ACE. 5.(1)证明:∵BF=EC, ∴BF+FC=EC+CF,即BC=EF. 又∵AB=DE,AC=DF, ∴△ABC≌△DEF. (2)解:AB∥DE,AC∥DF. 理由如下:∵△ABC≌△DEF, ∴∠ABC=∠DEF,∠ACB=∠DFE. ∴AB∥DE,AC∥DF. 6.证明:在△ABD和△CBD中, AB=CB,AD=CD,BD=BD, ∴△ABD≌△CBD(SSS). ∴∠ABE=∠CBE. 在△ABE和△CBE中, AB=CB,∠ABE=∠CBE,BE=BE, ∴△ABE≌△CBE(SAS). ∴AE=CE. 7.证明:在△ACD和△ABE中, AD=AE,∠A=∠A,AC=AB, ∴△ACD≌△ABE(SAS), ∴∠B=∠C. 又∵AD=AE,AB=AC, ∴AB-AD=AC-AE,即BD=CE. 在△DBF和△ECF中,
∠B=∠C,
∠BFD=∠CFE,
BD=CE,
∴△DBF≌△ECF(AAS),∴BF=FC.
8.证明:在△DOB和△EOC中,
∵∠BDC=∠CEB=90°,
∠DOB=∠EOC,
∴∠B=∠C.
又∵AO平分∠BAC,
∴∠BAO=∠CAO.
在△ABO和△ACO中,
∠BAO=∠CAO,
∠B=∠C,
AO=AO,
∴△ABO≌△ACO(AAS).
∴OB=OC.
9.证明:在△ABC和△DCB中,
∠BAC=∠CDB,
∠ACB=∠DBC,
BC=CB,
∴△ABC≌△DCB(AAS).
∴AC=DB.
又∵∠BAC=∠CDB,
∴∠FAC=∠FDB.
在△FAC和△FDB中,
∠F=∠F,
∠FAC=∠FDB,
AC=DB,
∴△FAC≌△FDB(AAS).
∴BF=CF.