当前位置:文档之家› 三态准PWM电流滞环控制逆变器分析与实现

三态准PWM电流滞环控制逆变器分析与实现

三态准PWM电流滞环控制逆变器分析与实现
三态准PWM电流滞环控制逆变器分析与实现

基于SPWM控制的电压_电流双环逆变器建模及其仿真_图文(精)

第4卷 中国舰船研究第4卷第5期2009年10月中国舰船研究Chinese Journal of Ship Research Vol .4No.5 Oct.2009收稿日期:2008-09-03 作者简介:朱承邦(1963-,男,高级工程师。研究方向:雷达应用 1引言 现代科技发展日新月异,各类电气设备对电源的品质要求也越来越高。逆变供电作为一种有效的电力供应形式,已广泛应用于生产生活的各个领域。 为了不断改善逆变器输出性能,人们发展出了多种逆变器控制方法,常见的有:电压瞬时值控 制、电流滞环控制、电流预测控制、鲁棒控制[1]、重复控制[2,3]、滑模控制[4]及SPWM 电流控制等。就各种逆变器控制策略的特点来看,基于SPWM 的电压电 流双环逆变器控制是一种较好的控制方法[5,6]。 本文针对电压电流双环逆变器控制模型,设计了电流内环和电压外环的控制参数,对设计的双环控制逆变器模型进行了仿真分析,分析结果 基于SPWM 控制的电压、电流双环 逆变器建模及其仿真 朱承邦1 李 乐2 王晓鹏2

1大连船舶重工集团有限公司军事代表室,辽宁大连1160052中国舰船研究设计中心,湖北武汉430064 摘 要:基于SPWM 的电压电流双环逆变器控制相对其他逆变器控制策略具有一定优越性,但其控制器参数设 计却是一个重点和难点。针对逆变器的SPWM 电压电流双环控制策略,建立了系统的控制模型,设计了电流内环和电压外环的控制器参数,并根据经典控制理论的判据,分别对控制器电流内环和电压外环参数进行了理论验证。最后根据设计的控制器参数,对SPWM 电压电流双环控制系统模型进行了仿真分析,结果表明,系统设计合理,效果满意。 关键词:SPWM ;逆变器;电压电流双环;仿真中图分类号:TM743 文献标志码:A 文章编号:1673-3185(200905-54-05 Modeling and Si mulation of Voltage and Current Double Loop Control Based on SPWM Inverters Zhu Cheng-bang 1Li Le 2Wang Xiao -p eng 2 1The Naval Representative Office ,Dalian Shipbuilding Heavy Industry Co.,Dalian 116005,China 2China Ship Development and Design Cent er ,Wuhan 430064,China Abstract :Comparing with other inverters control strategy ,voltage and current double loop control based on SPWM inverters are superior in capabilities though the controller parameters design is significant and difficult.In this paper ,the system control

滞环控制

电流滞环跟踪PWM(CHBPWM)控制技术的仿真 桂寒 120100068 摘要:电流滞环跟踪PWM(CHBPWM)控制技术的仿真所采用的器件简单,利用simulink 工具分析了在电流跟踪控制中采用滞环宽度并讨论了滞环宽度与开关频率和控制精度之间的关系,给出了各波形。 关键词:电流滞环控制 脉宽控制 滞环宽度控制法 1. 前言 2. 应用PWM 控制技术的变压变频器一般都是电压源型的,它可以按需要方便地控制其输出电压,为此前面两小节所述的PWM 控制技术都是以输出电压近似正弦波为目标的。但是,在电流电机中,实际需要保证的应该是正弦波电流,因为在交流电机绕组中只有通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值,不含脉动分量。因此,若能对电流实行闭环控制,以保证其正弦波形,显然将比电压开环控制能够获得更好的性能。 2. 电流滞环跟踪控制原理 2.1 单相电流滞环控制原理 常用的一种电流闭环控制方法是电流滞环跟踪 PWM (Current Hysteresis Band PWM ——CHBPWM )控制,具有电流滞环跟踪 PWM 控制的 PWM 变压变频器的A 相控制原理如1图所示。 图1 电流滞环跟踪控制的A 相原理图 图中,电流控制器是带滞环的比较器,环宽为2h 。将给定电流 *a i 与输出电流 a i 进行比较,电流偏差 ? a i 超过时 ±h ,经滞环控制器HBC 控制逆变器 A 相上(或下)桥臂的功率器件动作。B 、C 二相的原理图均与此相同。采用电流滞环跟踪控制时,变压变频器的电流波形与PWM 电压波形示于图6-23。

? 如果, a i < *a i , 且*a i - a i ≥ h ,滞环控制器 HBC 输出正电平,驱动上桥臂功 率开关器件V1导通,变压变频器输出正电压,使a i 增大。当增长到与*a i 相等时,虽然滞环比较器的输入信号的符号发生了变化,但HBC 仍保持正电平输出,保持导通,使a i 继续增大 ? 直到达到a i = *a i + h , a i = –h ,使滞环翻转,HBC 输出负电平,关断V1 ,并经过延时后驱动V4,直到电流的负半周V4才能导通。 但此时未必能够导通,由于电机绕组的电感作用,电流不会反向,而是通过二极管续流,使受到反向钳位而不能导通。此后,逐渐减小,直到时ia=ia*-h ,到达滞环偏差的下限值,使HBC 再翻转,又重复使V1导通。这样,与交替工作,使输出电流给定值之间的偏差保持在范围内,在正弦波上下作锯齿状变化。从图 2 中可以看到,输出电流是十分接近正弦波的。 图2 电流滞环跟踪控制时的电流波形 图2给出了在给定正弦波电流半个周期内的输出电流波形和相应的相电压波形。可以看出,在半个周期内围绕正弦波作脉动变化,不论在的上升段还是下降段,它都是指数曲线中的一小部分,其变化率与电路参数和电机的反电动势有关。 2.2 三相电流滞环控制原理 图3 三相电流跟踪型PWM 逆变电路

光伏并网逆变器控制与仿真设计

光伏并网逆变器控制与仿真设计 为了达到提高光伏逆变器的容量和性能目的,采用并联型注入变换技术。根据逆变器结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏并网逆变器结构,并在仿真软件PSCAD中搭建光伏电池和逆变器模型,最后通过仿真与实验验证了理论的正确性和控制策略的可行性。 ?近年来,应用于可再生能源的并网变换技术在电力电子技术领域形成研究热点。并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT)功能;并网逆变器输出电流的相位、频率与电网电压同步,波形畸变小,满足电网质量要求;具有孤岛检测保护功能;逆变效率高达92%以上,可并机运行。逆变器的主电路拓扑直接决定其整体性能。因此,开发出简洁、高效、高性价比的电路拓扑至关重要。 ?1 逆变器原理 ?该设计为大型光伏并网发电系统,据文献所述,一般选用工频隔离型光伏并网逆变器结构,如图1所示。光伏阵列输出的直流电由逆变器逆变为交流电,经过变压器升压和隔离后并入电网。光伏并网发电系统的核心是逆变器,而电力电子器件是逆变器的基础,虽然电力电子器件的工艺水平已经得到很大的发展,但是要生产能够满足尽量高频、高压和低EMI的大功率逆变器时仍有很大困难。所以对大容量逆变器拓扑进行研究是一种具有代表性的解决方案。作为太阳能光伏阵列和交流电网系统之间的能量变换器,其安全性,可靠性,逆变效率,制造成本等因素对于光伏逆变器的发展有着举足轻

SPWM波控制单相逆变器双闭环PID调节器的Simulink建模与仿真

SPWM波控制单相逆变器双闭环PID调节器的Simulink 建模与仿真 随着电力行业的快速发展,逆变器的应用越来越广泛,逆变器的好坏 会直接影响整个系统的逆变性能和带载能力。逆变器的控制目标是提高逆变器 输出电压的稳态和动态性能,稳态性能主要是指输出电压的稳态精度和提高带 不平衡负载的能力;动态性能主要是指输出电压的THD(Total Hannonic Distortion)和负载突变时的动态响应水平。在这些指标中对输出电压的THD 要 求比较高,对于三相逆变器,一般要求阻性负载满载时THD 小于2%,非线性满载(整流性负载)的THD 小于5%.这些指标与逆变器的控制策略息息相关。文中主要介绍如何建立电压双环SPWM 逆变器的数学模型,并采用电压有效值外 环和电压瞬时值内环进行控制。针对UPS 单模块10 kVA 单相电压型SPWM 逆变器进行建模仿真。通过仿真,验证了控制思路的正确性以及存该控制策略 下的逆变器所具有的鲁棒性强,动态响应快,THD 低等优点。并以仿真为先导,将其思想移植到具体开发中,达到预期效果。 1 三电平逆变器单相控制模型的建立 带LC 滤波器的单相逆变器的主电路结构如图1 所示。图1 中L 为输出 滤波电感,C 为滤波电容,T1,T2,T3,T4 分别是用来驱动IGBT 的三电平的SPWM 波,U0 为输出负载两端的电压。在建立控制系统的仿真模型时,需要 采集负载两端的电压与实际要求的电乐值做比较,然后通过调节器可以得到所 需要调节的值。在此仿真模型中,驱动波形采用的是三电平的SPWM 波形, 具体的产生原理在这不做详细描述。在Matlah 的Simlink 库中SPWM 波的产 生如图2 所示,这里调制比设为0.8.

电流滞环跟踪PWM(CHBPWM)控制技术的仿真要点

目录 摘要 (1) 关键词 (1) 一、电流滞环跟踪控制原理 (2) 二、三相电流滞环跟踪控制系统的仿真 (5) 1、建立系统仿真模型 (5) 2、模块参数设置 (6) 3、电路封装 (8) 4、作图程序设计 (10) 三、仿真波形及频谱分析 (12) 四、仿真结果分析与总结 (18) 1、仿真波形比较 (18) 2、电流频谱分析比较 (19) 3、相电压、线电压频谱分析比较 (19) 4、总结 (19) 五、课设心得体会 (20) 六、参考文献 (21)

摘要: 滞环控制是一种应用很广的闭环电流跟踪控制方法,通常以响应速度快和结构简单而著称。在各种变流器控制系统中,滞环控制单元一般同时兼有两种职能,一则作为闭环电流调节器,二则起着PWM调制器的作用,将电流参考信号转换为相应的开关指令信号。然而,滞环控制的开关频率一般具有很大的不定性,高低频率悬殊,其开关频率范围往往是人们在进行滞环控制系统设计师比较关心的重要方面,只有明确开关频率的计算方法,才便于进行开关器件、滤波参数及滞环控制参数的选择。 电流跟踪型逆变器输出电流跟随给定的电流波形变化,这也是一种PWM控制方式。电流跟踪一般都采用滞环控制,即当逆变器输出电流与给定电流的偏差超过一定值时,改变逆变器的开关状态,使逆变器输出电流增加或减小,将输出电流与给定电流的偏差控制在一定范围内。 关键词:电流滞环跟踪PWM、闭环控制、滞环控制器HBC、环宽、电流偏差、开关频率、响应波形、频谱图

一、电流滞环跟踪控制原理 常用的一种电流闭环控制方法是电流滞环跟踪PWM(Current Hysteresis Band PWM ——CHBPWM)控制,具有电流滞环跟踪PWM 控制的PWM 变压变频器的A相控制原理如1图所示。 图1 电流滞环跟踪控制的A相原理图 图中,电流控制器是带滞环的比较器,环宽为2h。将给定电流i*a 与输出电流i a进行比较,电流偏差?i a超过时±h,经滞环控制器HBC 控制逆变器A相上(或下)桥臂的功率器件动作。B、C二相的原理图均与此相同。采用电流滞环跟踪控制时,变压变频器的电流波形与PWM 电压波形示于图4。 ?如果,i a < i*a ,且i*a - i a ≥h,滞环控制器HBC输出正电平, 驱动上桥臂功率开关器件V1导通,变压变频器输出正电压,使增 大。当增长到与相等时,虽然,但HBC仍保持正电平输出,保持 导通,使继续增大 ?直到达到i a= i*a+ h,?i a = –h,使滞环翻转,HBC输出负电 平,关断V1 ,并经延时后驱动V4 但此时未必能够导通,由於电机绕组的电感作用,电流不会反向,而

电流滞环跟踪spwm

课程设计(论文)任务书 电气与电子工程学院电力牵引与传动专业班一、课程设计(论文)题目:电流滞环跟综PWM(CHBPWM)控制技术的仿真 二、课程设计(论文)工作自 2013年6月16日起至2013年6月21日止。 三、课程设计(论文) 地点: 电气学院机房 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)熟练掌握MATLAB语言的基本知识和技能; (2)熟悉matlab下的simulink和simpowersystems工具箱; (3)熟悉构建三相电流跟踪滞环控制系统的仿真模型; (4)培养分析、解决问题的能力;提高学生的科技论文写作能力。2.课程设计的任务及要求 1)基本要求: (1)要求对主电路和脉冲电路进行封装; (2)仿真参数为:E=100-300V; f=50HZ; 带宽2h; 步长h=0.0001s,其他参数自定; (3)给出调制波原理图、相电压、相电流、线电压、不同器件所承受的电压波形以及频谱图,要求采用subplot作图; (4)选取不同参数进行仿真,比较仿真结果有何变化,给出自己的结论。2)创新要求: 封装使仿真模型更加美观、合理 3)课程设计论文编写要求 (1)要按照课程设计模板的规格书写课程设计论文 (2)论文包括目录、正文、心得体会、参考文献等 (3)课程设计论文用B5纸统一打印,装订按学校的统一要求完成 4)答辩与评分标准: (1)完成原理分析:20分; (2)完成设计过程:40分; (3)完成调试:20分; (4)回答问题:20分; 5)参考文献: (1)刘卫国.MATLAB程序设计与应用(第二版). 北京:高等教育出版社,2008. (2)刘志刚.电力电子学.北京:清华大学出版社、北京交通大学出版社,2004.

双环反馈控制的SPWM逆变电源中电流环的设计(精)

双环反馈控制的 SPWM 逆变电源中电流环的设计 陈元娣,朱忠尼,林 洁 (空军雷达学院电子对抗系, 武汉 430019 摘要:针对目前电流环的设计方法不明确的问题, 通过建立 DC/AC系统的动态模型并对该模型进行理 论上的推导和分析得出了电流环的设计方法. 该方法在系统参数不完全明确的情况下, 电流内环尽量采取 PI 调节器, 将使系统的稳定性更好, 参数调整比较方便, 能满足一定的带宽和动态特性. 通过仿真实验验证了理论推导的正确性. 关键词:逆变器 ; 双环反馈 ; 电流环中图分类号:TM464 文献标识码:A 近年来, SPWM 正弦波逆变器的反馈控制技术发生 2个较大变化, ①单环控制变为多环控制, ②有效值恒定反馈变为“瞬时” 值反馈, 目的是为了提高系统的动态响应速度和改善并控制在任意负载, 特别是非线性负载下的输出波形 . 对于双环 系统, 一般采取电压外环, 电流内环的设计. 电压环的作用是跟踪和稳定输出电压,它的设计大多采取 PI 调节器模式. 电流环的作用是使逆变器的动态响应加快, 负载适应能力加强, 并具有输出电流限制能力, 可提高系统的可靠性, 因此, 电流环的设计是双环反馈控制的关键技术之一.对于电流环的设计, 常见有 P 和 PI 2种设计方法 , 在实际应用中到底选哪种方法合适,目前还没有成熟的结论. 本文通过建立 DC/AC系统的动态模型, 对该模型进行理论上的简化和特性分析.理论分析表

明:在系统参数不完全明确的情况下, 电流内环尽量采取 PI 调节器; 当系统参数基本明确或系统的惯性较小 (如大功率逆变器情况下, 可以考虑采取 P 调节器, 可以降低系统的调节难度, 提高系统的响应速度.通过对实际系统的仿真验证了本文结论的正确性. 1系统动态模型的简化设计原则 图 1是 SPWM 正弦波逆变器的功率电路原理 框图. 图 2是其等效模型, 图中 T 1=L /r 为滤波器电感的时间常数, r 为滤波电感直流电阻, T 为电压检测电路 的延迟时间常数, LT 为电流环, SPWM 控制器加逆 变器的等效模型为 G 1= K PWM U ab s Ls +r s s

电流滞环跟踪PWM仿真

题目七电流滞环跟踪PWM(CHBPWM)控制技术 的仿真 摘要:电流滞环跟踪PWM(CHBPWM)控制技术的仿真所采用的器件简单,利用simulink工具分析了在电流跟踪控制中采用滞环宽度并讨论了滞环宽度与开关频率和控制精度之间的关系,给出了各波形。 关键词:电流滞环控制脉宽控制滞环宽度控制法 一、前言 应用PWM控制技术的变压变频器一般都是电压源型的,它可以按需要方便地控制其输出电压,为此前面两小节所述的PWM控制技术都是以输出电压近似正弦波为目标的。但是,在电流电机中,实际需要保证的应该是正弦波电流,因为在交流电机绕组中只有通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值,不含脉动分量。因此,若能对电流实行闭环控制,以保证其正弦波形,显然将比电压开环控制能够获得更好的性能。 二、电流滞环跟踪控制原理 常用的一种电流闭环控制方法是电流滞环跟踪PWM(Current Hysteresis Band PWM ——CHBPWM)控制,具有电流滞环跟踪PWM 控制的PWM 变压变频器的A相控制原理如1图所示。 图1 电流滞环跟踪控制的A相原理图

图中,电流控制器是带滞环的比较器,环宽为2h。将给定电流i*a 与输出电流i a进行比较,电流偏差?i a超过时±h,经滞环控制器HBC 控制逆变器A相上(或下)桥臂的功率器件动作。B、C二相的原理图均与此相同。采用电流滞环跟踪控制时,变压变频器的电流波形与PWM 电压波形示于图6-23。 ?如果,i a < i*a ,且i*a - i a ≥h,滞环控制器HBC输出正电平, 驱动上桥臂功率开关器件V1导通,变压变频器输出正电压,使增 大。当增长到与相等时,虽然,但HBC仍保持正电平输出,保持 导通,使继续增大 ?直到达到i a= i*a+ h,?i a = –h,使滞环翻转,HBC输出负电 平,关断V1 ,并经延时后驱动V4 但此时未必能够导通,由於电机绕组的电感作用,电流不会反向,而是通过二极管续流,使受到反向钳位而不能导通。此后,逐渐减小,直到时,,到达滞环偏差的下限值,使HBC 再翻转,又重复使导通。这样,与交替工作,使输出电流给定值之间的偏差保持在范围内,在正弦波上下作锯齿状变化。从图2 中可以看到,输出电流是十分接近正弦波的。 图2 电流滞环跟踪控制时的电流波形 图2给出了在给定正弦波电流半个周期内的输出电流波形和相应的相电压波形。可以看出,在半个周期内围绕正弦波作脉动变化,不论在的上升段还是下降段,它都是指数曲线中的一小部分,其变化率与电路参数和

并网逆变器电流控制方法

并网逆变器的电流控制方法陈敬德,1140319060;杨凯,1140319070;指导老师:王志新(上海交通大学电气工程系,上海,200240) 摘要:并网逆变器是光伏发电系统的一个核心部件,其控制技术一直是研究的热点。其使用的功率器件属于电力电子设备,它们固有特性会对系统产生不利的影响,为了防止逆变器中的功率开关器件处于直通状态,通常要在控制开关管的驱动信号中加入死区,这给逆变器输出电压带来了谐波,对电网的电能产生污染。本文对传统的控制方法重复控制、传统的PI控制、dq轴旋转坐标控制、比例谐振控制进行了总结分析,并比较了它们的优缺点。 关键词:并网逆变器,重复控制,传统的PI控制,dq轴旋转坐标控制,比例谐振控制 0引言 随着现代工业的迅速发展,近年来全球范围内包括煤、石油、天然气等能源日益紧缺,全球将再一次面临能源危机,同时,这些燃料能源的应用对我们所生活的周围环境产生了严重的影响。环境问题受到了人们的广泛关注,为了解决能源紧缺以及环境污染问题,寻找可再生能源是解决这一问题的有效方式。太阳能因其清洁,无污染的优势受到了人们的青睐,太阳能光伏发电是目前充分利用太阳能资源的主要方式之一。太阳能发电主要有单独运行和并网运行两种模式,其中并网运行发展速度越来越快,应用的规模也愈来愈大[1]。逆变器是光伏发电系统中的关键部件,逆变器的工作原理是通过IGBT、GTO、GTR等功率开关管的导通和关断,把直流蓄电池电能、太阳能电池能量等变换为电能质量较高的交流电能,可以把它看成是一种电能转换设备。功率开关管的开关频率一般都比较高,因此利用它们进行电能转换的效率也比较高,但有一个很大的缺点是由它们组成的逆变系统的输出电能却不理想,其输出的波形中包含了很多对电能质量产生不利的方波,而很多场合都要求其输出的是一定幅值和频率的正弦波,所以要寻找更好的控制策略来提高逆变器的电能质量,让其输出各项性能指标都满足要求的波形。目前所用的逆变器可以分为以下两类:一类是恒压恒频逆变器,这类逆变器在各种电源持续供电的领域应用广泛,它能够输出电压幅值和频率都是特定值的交流正弦波,简称CVCF 逆变器。第二类是变压变频逆变器,这种逆变器主要用在电动机的调速系统中,它能够输出特定的幅值电压和频率,简称VVVF 逆变器[2]。 本文将对并网逆变器的几种常见控制方法进行总结,如传统的PI控制、基于dq 旋转坐标系的控制、重复控制及比例谐振控制。给出了框图和数学模型,并指出了它们各自的优缺点。 1重复控制 1.1重复控制思想 重复控制是基于内模原理的一种控制方法。所谓内模原理,即在一个闭环调节系统中,在其反馈回路中设置一个内部模型,使该内部模型能够很好的描述系统的外部特性,通过该模型的作用可使系统获得理想的指令跟踪特性,具有很强的抗干扰能力

电流滞环控制pwm

电流滞环控制的三相PWM逆变器仿真 11级三班8号XX 摘要 针对传统的SPWM电压型逆变器的不足,提出采用电流滞环跟踪PWM的逆变器控制方式。介绍了电流滞环跟踪PWM逆变器的控制原理,对其开关频率进行了数学分析,最后构建模型并进行仿真。仿真结果表明,此方法效果明显,动态性能好,可保证电流波形好的正弦性。 关键词:电流滞环控制、三相PWM逆变器、开关频率、simulink 一、引言 三相PWM逆变器中的滞环电流控制因其控制方式简单、易于硬件实现、工作可靠、无跟踪误差、动态响应快等优点,得到了广泛的重视与应用。PWM(Pulse Width Modulation)控制技术的变压变频器一般都是电压源型的,它可以按需要方便地控制其输出电压,但是在电流电机中,实际需要保证的应该是正弦波电流,因为在交流电机绕组中只有通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值,不含脉动分量。因此,若能对电流实行闭环控制,以保证其正弦波形,显然将比电压开环控制能够获得更好的性能。 电流滞环跟踪控制方法的精度高,响应快,且易于实现。但受功率开关器件允许开关频率的限制,仅在电机堵转且在给定电流峰值处才发挥出最高开关频率,在其他情况下,器件的允许开关频率都未得到充分利用。为了克服这个缺点,可以采用具有恒定开关频率的电流控制器,或者在局部范围内限制开关频率,但这样对电流波形都会产生影响。 二、电流滞环跟踪控制原理 2.1电流滞环控制原理 常用的一种电流闭环控制方法是电流滞环跟踪PWM(Current Hysteresis Band PWM ——CHBPWM)控制,具有电流滞环跟踪PWM 控制的PWM 变压变频器的A相控制原理如1图所示。

并网逆变器的控制系统及控制方法与制作流程

图片简介: 本技术介绍了一种并网逆变器的控制系统及控制方法,所述的控制系统包括:检测单元、锁相单元、计算单元、乘法器、复位积分器、比较器、RS触发器以及选择开关,选择开关对RS触发器的信号经过选择后得到逆变系统中开关S1、S2、S3、S4的驱动信号g(S1)、g(S2)、g(S3)、g(S4),其中,选择的依据由电网电压ug提供,通过在每个开关周期保持输入电路的能量与输出能量和电路中消耗及储存的能量相等来实现并网逆变器的控制。本技术实现了对可再生能源等直流源不稳定,且电网存在波动情况的并网系统的控制,能够抑制直流侧电源不稳定对并网电流的影响,且提高了并网电流对于电网波动的动态响应速度。 技术要求 1.一种并网逆变器的控制系统,其特征在于,所述的控制系统包括:检测单元、锁相单元、计算单元、乘法器、复位积分器、比较器、RS触发器以及选择开关,其中, 所述的检测单元和选择开关与逆变系统相连,所述的检测单元检测得到逆变系统的并网电压ug、逆变器输出侧A、B点之间的电压uAB和电感电流il,所检测到的信号发送给计算单元以及经过乘法器后送入复位积分器; 所述的锁相单元与所述的检测单元相连,用于对所检测的并网电压的相位和频率进行锁定,用以确定给定并网电流的相位和频率;所述的计算单元、乘法器和复位积分器用于计算及处理所述的检测单元和锁相单元所得到的信号,所述的计算单元和所述的复位积分器的输出端分别与所述的比较器的两个输入端相连; 所述的比较器用于对所述的计算单元和复位积分器处理得到的信号进行对比,用于提供所述的RS触发器 的R端信号,R端为RS触发器的复位端;RS触发器的S端连接时钟信号,RS触发器的输出Q端和端与所述的选择开关相连,所述的选择开关对RS触发器的信号经过选择后得到逆变系统中开关S1、S2、S3、S4的驱动信号g(S1)、g(S2)、g(S3)、g(S4)。

PWM逆变电源双环控制技术研究

华中科技大学 硕士学位论文 PWM逆变电源双环控制技术研究 姓名:何俊 申请学位级别:硕士 专业:电力电子与电力传动 指导教师:彭力 20070209

摘要 逆变器作为UPS系统的核心部分,要求它能够输出高质量的电压波形,尤其是在非线性负载情况下仍能够得到接近正弦的输出波形,因此各种各样的逆变器波形控制技术得以发展。其中瞬时值反馈控制技术是根据当前误差对逆变器输出波形进行有效 的实时控制,如果控制器设计合理,则既可以保证系统具有较好的稳态性能,同时可 以保证系统具有较快的响应速度。本文主要研究内容是PWM逆变电源电流内环电压外环双环控制技术,对逆变器双环控制进行了理论分析,并结合仿真和实验对其控制 性能进行了深入的研究。 基于状态空间平均法给出了PWM逆变器的传递函数形式和状态方程形式的数学模型,详细分析了死区效应、过调制和非线性负载对单相全桥逆变器输出电压的影响,指出减小输出阻抗是增强系统非线性负载适应能力的合理方案。 分析比较了电感电流内环电压外环和电容电流内环电压外环两种双环控制方式, 提出了带负载电流前馈补偿的电感电流内环电压外环双环控制方式,重点研究了逆变器电容电流内环电压外环双环控制。依据电流内环所采用调节器的不同,分别讨论了 电流内环采用P调节器、电压外环为PI调节器和电流内环、电压外环均为PI调节器两种双环控制方式。采用极点配置的方法设计控制器参数,在闭环系统配置相同的阻 尼比和自然频率的前提下对两种双环控制方式进行仿真比较。仿真结果表明电流内环和电压外环均采用PI调节器的逆变器双环控制方式能够达到较好的动、静态特性, 特别是其非线性负载带载能力较强;电流内环采用P调节器、电压外环为PI调节器的逆变器双环控制方式稳态性能较好,但其抗非线性负载扰动能力不及电流内环和电压外环均采用PI调节器的双环控制方式,理论分析和仿真结果表明增大双环控制系 统的期望自然频率可以改善系统的抗非线性负载扰动能力。 基于理论分析和计算,在一台样机上进行电容电流内环电压外环的双环模拟控制 实验,实验结果与理论分析相符。 关键词:PWM逆变器双环控制极点配置模拟控制

三相并网逆变器的双环控制策略研究

三相并网逆变器的双环控制策略研究 1引言 随着新能源发电在全世界范围内应用越来越广泛,并网发电技术也成为一个重要的研究方向[1-5]。而新能源如太阳能电池、燃料电池以及小型风力发电都需要采用并网逆变器与电网相连接。通常并网逆变器采用高频PWM调制下的电流源控制,从而导致进入电网的电流中含有大量高次谐波,一般会采用L滤波器进行滤除,但是目前一些研究文献[6-7]提到LCL滤波器具有比和L型滤波器更理想的高频滤波效果。从而常被用于大功率、低开关频率的并网设备,同时基于LCL滤波器的控制技术也成为新的研究热点之一。 尽管LCL滤波器滤除高次谐波效果明显,但是LCL滤波器是一个谐振电路,其谐振峰对系统的稳定性以及并网电流波形质量有很大的影响,如何设计控制器使系统稳定运行是必需解决的问题。在这种情况下基于电流双环的控制策略被提出来,同时文献[8][9]都提出了引入滤波电容电流内环的电流双环控制策略的可行性,并没有提出电流双环控制器的设计方案以及分析内外环的比例参数对系统的系统稳定性以及谐波阻抗的影响。与逆变器控制为电压源采用电压电流双环控制策略的设计方法不同。由于电流双环内外环控制器的带宽频带相差不大,所以不能按照电压源型逆变器的电压电流双环分开设计思路来确定控制器参数,此外电流双环控制策略应用于并网电流的波形控制,被控对象为工作在并网模式下采用LCL三阶滤波器的三相逆变器,其开环情况下系统的三个极点离虚轴很近,如何合理设计控制器参数使闭环控制系统具备一定的稳定裕度和快速动态响应速度需要进一步研究。 基于以上分析本文针对三相并网发电系统的运行特点以及LCL滤波器的工作特性,研究基于LCL 滤波器的电流双环控制的少自由度问题,并提出了基于高阶极点配置的实用新方法设计电流双环控制器参数,并配合劳思-赫尔维茨稳定判据验证控制系统稳定性,同时验证控制器参数和系统参数在一定范围内变化的情况下系统的鲁棒性,并最终将该设计方法得到的控制器参数应用于三相并网发电系统的实验平台,通过实验结果验证本文所提出的基于电流双环控制的三相并网逆变器具备一定的稳定裕度和快速动态响应速度。 2并网逆变器的状态空间数学模型 2.1 主电路拓扑 如图1所示三相并网发电系统的拓扑结构图,在图中i dc1代表直流输入电源,C1代表输入直流母线滤波电容、T1~T6代表三相逆变桥的6个IGBT开关管,R1代表滤波电感L1的内阻和由每相桥臂上、下管互锁死区所引起的电压损失,R2代表滤波电感L2的内阻,L1、C2、L2组成三阶LCL滤波器。 图1三相并网发电系统拓扑结构图

变频器电流跟踪PWM控制

摘要 本设计中采用得最多的是控制技术是脉冲宽度调制(PWM),其基本思想是:控制逆变器中电力电子器件的开通或关断,输出电压为幅值相等、宽度按一定规律变化的脉冲序列,用这样的高频脉冲序列代替期望的输出电压。传统的PWM技术是用正弦波来调制等腰三角波,称为正脉冲宽度调制,随着控制技术的发展,产生了电流跟踪PWM(CFPWM)控制技术。CFPWM的控制方法是:在原来主回路的基础上,采用电流闭环控制,使实际电流快速跟随给定值,在稳态时,尽可能使实际电流接近正弦波。 最后利用利用Matlab/Simulink对整个系统进行仿真,并对仿真结果进行分析。 关键词:异步电机;电流控制;脉宽调制;CFPWM。

目录 摘要.......................................................................................................... Ι1 设计任务和要求 (3) 1.1 设计任务 (3) 1.2 任务要求 (3) 2 总体设计 (4) 2.1 系统组成框图 (4) 2.2 电流滞环跟踪控制原理 (5) 2.3 滞环宽度分析 (6) 2.4 电流滞环跟踪控制的特点 (8) 3 电流的滞环跟踪控制的simulink的仿真 (9) 3.1 仿真软件介绍 (9) 3.2 单相电流跟踪控制逆变器仿真 (9) 3.3 三相电流跟踪滞环控制仿真 (12) 3.4 仿真结果分析 (16) 4.总结 (16) 参考文献 (17)

1 设计任务和要求 1.1 设计任务 设计一通用型变频器的主电路和控制电路组成系统,对异步电机进行变频调速,完成变频器主电路设计,主电路可选用交-直-交结构,进行参数计算和器件选型。完成变频器控制电路设计,对逆变部分控制方式采用电流跟踪控制(CFPWM)。利用Matlab/Simulink对整个系统进行仿真,并对仿真结果进行分析。 1.2 任务要求 (1)主电路选择、参数计算及器件选型。 (2)控制电路选择、参数计算及器件选型。 (3)运用MA TLAB/Simulink软件进行仿真,校验。

电流滞环控制

摘要 脉冲宽度调制(PWM),其基本思想是:控制逆变器中电力电子器件的开通或关断,输出电压为幅值相等、宽度按一定规律变化的脉冲序列,用这样的高频脉冲序列代替期望的输出电压。传统的PWM技术是用正弦波来调制等腰三角波,称为正脉冲宽度调制,随着控制技术的发展,产生了电流跟踪PWM(CHBPWM)控制技术。CHBPWM的控制方法是:在原来主回路的基础上,采用电流闭环控制,使实际电流快速跟随给定值,在稳态时,尽可能使实际电流接近正弦波。 关键词:电流控制;脉宽调制; CHBPWM;

1.前言 SPWM控制技术以输入电压接近正弦波为目的,电流波形则因负载的性质及大小而异。然而对于交流电机来说,应该保证为正弦波的是电流,稳态时在绕组中通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值,不产生脉动,因此以正弦波电流为控制目标更为合适。电流跟踪PWM(Current Follow PWM, CHBPWM)的控制方法是:在原来主回路的基础上,采用电流闭环控制,使实际电流快速跟随给定值,在稳态时,尽可能使实际电流接近正弦波形,这就能比电压控制的SPWM获得更好的性能。 电流跟踪控制的精度与滞环的宽度有关,同时还受到功率开关器件允许开关频率的制约。在实际使用中,应在器件开关频率允许的前提下,尽可能选择小的宽度。电流滞环跟踪控制方法的精度高、响应快,且易于实现,但功率开关器件的开关频率不定。为了克服这个缺点,可以采用具有恒定开关频率到的电流控制器,或者局部范围内限制开关频率,但这样对电流波形都会产生影响。 2.原理 2.1.电流滞环跟踪控制原理 现在以A相电流滞环跟踪控制为例,其控制结构图如下图 2-1 所示: 图1-1 电流跟踪控制A相原理图 其中电流控制器是带滞环的比较器,环宽为h,将给定电流ia与输出电流i*a进行比较,电流偏差△ia 超过±0.5h 时,经滞环控制器(HBC)控制逆变器 A 相上、下桥臂的功率开关器件动作。 设比较器的滞环宽度为h,当输出电流i*a比给定电流ia大时,且误差大于0.5h时,滞环比较器输出负电平,驱动开关器件VT1关断,VT2导通,使实际电流减小。当减小到与给定电流相等时,滞环比较器仍保持负电平输出,VT1保持关断,实际电流继续减小,直到误差大于0.5h时,滞环控制器翻转,输出正电平信号,开关器件VT1导通,VT2关断,使实际电流增大,一直增大到带宽的上限。以上过程重复进行,这样交替工作,实际电流与给定电流的偏差保持在-0.5h-+0.5h 之间,并在给定电流上下作锯齿状变化,达到跟踪电流的目的。 2.2.滞环宽度分析 采用电流滞环跟踪控制的PWM波形,如下图 2-2所示:

电流滞环跟踪PWM(CHBPWM)控制技术MATLAB仿真

交流调速系统仿真实验报告——电流滞环跟踪PWM控制技术专业:电气工程及其自动化 班级:11电牵4班 姓名:江流 在班编号:26 指导老师:章勇高 实验日期:2014年10月4日

一、实验名称: 电流滞环跟踪PWM(CHBPWM)控制技术。 二、目的及要求 了解并掌握电流滞环跟踪PWM(CHBPWM)控制电路的工作原理; 2.掌握MATLAB中对Simulink的使用及构建模块; 3.熟悉掌握用MA TLAB绘图的技巧。 三、实验原理 1电流滞环跟踪PWM(CHBPWM)控制电路的原理,如图一所示: 图中,电流控制器是带滞环的比较器,环宽为2h。将给定电流 i*a 与输出电流 ia 进行比较,电流偏差超过时,经滞环控制器HBC控制逆变器 A相上(或下)桥臂的功率器件动作。B、C 二相的原理图均与此相同。 如果, ia < i*a ,且i*a - ia ≥ h,滞环控制器 HBC输出正电平, 驱动上桥臂功率开关器件V1导通,变压变频器输出正电压,使增大。当增长到与相等时,虽然,但HBC仍保持正电平输出,保持导通,使继续增大 直到达到ia = i*a + h , = –h ,使滞环翻转,HBC输出负电 平,关断V1 ,并经延时后驱动V4 但此时未必能够导通,由於电机绕组的电感作用,电流不会反向,而是通过二极管续流,使受到反向钳位而不能导通。此后,逐渐减小,直到时,,到达滞环偏差的下限值,使 HBC 再翻转,又重复使导通。这样,与交替工作,使输出电流给定值之间的偏差保持在范围内,在

正弦波上下作锯齿状变化。从图 2 中可以看到,输出电流是十分接近正弦波的。 图2给出了在给定正弦波电流半个周期内的输出电流波形和相应的相电压波形。可以看出,在半个周期内围绕正弦波作脉动变化,不论在的上升段还是下降段,它都是指数曲线中的一小部分,其变化率与电路参数和电机的反电动势有关。

相关主题
文本预览
相关文档 最新文档