电流滞环比较PWM控制方法探析
- 格式:pdf
- 大小:105.45 KB
- 文档页数:1
课程设计(论文)任务书电气与电子工程学院电力牵引与传动专业班一、课程设计(论文)题目:电流滞环跟综PWM(CHBPWM)控制技术的仿真二、课程设计(论文)工作自 2013年6月16日起至2013年6月21日止。
三、课程设计(论文) 地点: 电气学院机房四、课程设计(论文)内容要求:1.本课程设计的目的(1)熟练掌握MATLAB语言的基本知识和技能;(2)熟悉matlab下的simulink和simpowersystems工具箱;(3)熟悉构建三相电流跟踪滞环控制系统的仿真模型;(4)培养分析、解决问题的能力;提高学生的科技论文写作能力。
2.课程设计的任务及要求1)基本要求:(1)要求对主电路和脉冲电路进行封装;(2)仿真参数为:E=100-300V; f=50HZ; 带宽2h; 步长h=0.0001s,其他参数自定;(3)给出调制波原理图、相电压、相电流、线电压、不同器件所承受的电压波形以及频谱图,要求采用subplot作图;(4)选取不同参数进行仿真,比较仿真结果有何变化,给出自己的结论。
2)创新要求:封装使仿真模型更加美观、合理3)课程设计论文编写要求(1)要按照课程设计模板的规格书写课程设计论文(2)论文包括目录、正文、心得体会、参考文献等(3)课程设计论文用B5纸统一打印,装订按学校的统一要求完成4)答辩与评分标准:(1)完成原理分析:20分;(2)完成设计过程:40分;(3)完成调试:20分;(4)回答问题:20分;5)参考文献:(1)刘卫国.MATLAB程序设计与应用(第二版). 北京:高等教育出版社,2008.(2)刘志刚.电力电子学.北京:清华大学出版社、北京交通大学出版社,2004.(3)李传琦. 电力电子技术计算机仿真实验.电子工业出版社,2006.6)课程设计进度安排内容天数地点构思及收集资料2图书馆编程设计与调试1实验室撰写论文2图书馆、实验室学生签名:年月日课程设计(论文)评审意见(1)完成原理分析(20分):优()、良()、中()、一般()、差();(2)设计分析(20分):优()、良()、中()、一般()、差();(3)完成调试(20分):优()、良()、中()、一般()、差();(4)翻译能力(20分):优()、良()、中()、一般()、差();(5)回答问题(20分):优()、良()、中()、一般()、差();(6)格式规范性及考勤是否降等级:是()、否()(7) 总评分数\优()、良()、中()、一般()、差();评阅人:职称:年月日摘要滞环比较跟踪控制是一种非线性砰-砰控制方法,在各类闭环跟踪控制系统中广泛应用。
第6章PWM控制技术第6章 PWM控制技术教学内容:1. 理解PWM控制的基本原理;2. 掌握产生PWM波形的常用方法;3. 掌握PWM逆变电路及其控制方法;4. 掌握PWM跟踪控制技术;教学重点:1. 掌握理解PWM控制的基本原理及常用产生方法;2. 掌握PWM逆变电路及其控制方法6.1 PWM控制的基本原理*PWM(Pulse Width Modulation)技术就是控制半导体开关元件的导通与关断时间比对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效地获得所需形状和幅值的波形。
应该说PWM控制技术应用得最为广泛的是在逆变电路中的,现在大量应用的逆变电路中,绝大部分都是PWM型逆变电路。
面积等效原理——PWM控制技术的重要理论基础(采样控制理论的一个重要结论):冲量相等而形状不同的窄脉冲作用在具有惯性的环节上时,其效果基本相同。
说明:①冲量——窄脉冲的面积,效果基本相同——环节的输出响应波形基本相同,将各输出波形用傅里叶级数分解后,其低频段非常接近,而在高频段略有差异。
②例如图6.24 a、b、c所示为三个面积(即冲量)都等于1的矩形波、三角波、正弦波,而图6.24d所示为单位脉冲函数δ(t),将它们分别作为电压窄脉冲u(t)加在一阶惯性环节(R-L电路)上,那么可以分别得到输出电流i(t)的响应波形,如图6.24e所示。
分析波形可以看出,在i(t)的上升段,脉冲形状不同时i(t)的形状也略有不同,但其下降段则几乎完全相同。
如果脉冲越窄,各i(t)响应波形的差异也越小。
如果周期性地施加上述脉冲,那么i(t)也是周期性的。
用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。
二、SPWM波形(等效正弦波形)的获得将图6.25a所示的正弦半波分成N等份,则正弦半波就可看作是由N个彼此相连、宽度N/π、幅值不等的脉冲序列所组成的波形。
将这些脉冲序列用数量相同的等幅而不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,这些脉冲序列即为PWM波形,如图6.25b 所示。
一、引言PWM开关稳压或稳流电源基本工作原理就是在输入电压变化、内部参数变化、外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压或电流等被控制信号稳定。
PWM的开关频率一般为恒定,控制取样信号有:输出电压、输入电压、输出电流、输出电感电压、开关器件峰值电流。
由这些信号可以构成单环、双环或多环反馈系统,实现稳压、稳流及恒定功率的目的,同时可以实现一些附带的过流保护、抗偏磁、均流等功能。
对于定频调宽的PWM闭环反馈控制系统,主要有五种PWM反馈控制模式。
下面以VDMOS开关器件构成的稳压正激型降压斩波器为例说明五种PWM反馈控制模式的发展过程、基本工作原理、详细电路原理示意图、波形、特点及应用要点,以利于选择应用及仿真建模研究。
二、开关电源PWM的五种反馈控制模式1. 电压模式控制PWM (VOLTAGE-MODE CONTROL PWM):如图1所示为BUCK降压斩波器的电压模式控制PWM反馈系统原理图。
电压模式控制PWM是六十年代后期开关稳压电源刚刚开始发展起就采用的第一种控制方法。
该方法与一些必要的过电流保护电路相结合,至今仍然在工业界很好地被广泛应用。
电压模式控制只有一个电压反馈闭环,采用脉冲宽度调制法,即将电压误差放大器采样放大的慢变化的直流信号与恒定频率的三角波上斜波相比较,通过脉冲宽度调制原理,得到当时的脉冲宽度,见图1A中波形所示。
逐个脉冲的限流保护电路必须另外附加。
主要缺点是暂态响应慢。
当输入电压突然变小或负载阻抗突然变小时,因为有较大的输出电容C及电感L相移延时作用,输出电压的变小也延时滞后,输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。
这两个延时滞后作用是暂态响应慢的主要原因。
图1A电压误差运算放大器(E/A)的作用有三:①将输出电压与给定电压的差值进行放大及反馈,保证稳态时的稳压精度。
PWM整流器及其控制策略的研究一、概述PWM整流器是现代电力电子系统中不可或缺的一部分,它是一种能够将交流电转换为直流电的电力电子装置。
其主要作用是将交流电源中的电能转换为直流电源,以供电力电子系统中的各种负载使用。
PWM整流器的基本原理是利用开关管的开关控制,将交流电源中的电能转换为直流电源。
在PWM整流器中,开关管的开关频率非常高,一般在几千赫兹到几十千赫兹之间,这样可以有效地减小开关管的损耗,提高整流器的效率。
同时,PWM整流器还可以通过控制开关管的占空比来调节输出电压和电流,从而实现对负载的精确控制。
在PWM整流器的控制策略中,最常用的是基于电流控制的方法。
这种方法主要是通过对电流进行反馈控制,来实现对整流器输出电压和电流的精确控制。
在实际应用中,电流控制方法可以分为两种,一种是基于平均电流控制的方法,另一种是基于瞬时电流控制的方法。
还有其他控制策略,如基于电压控制的方法、基于功率控制的方法等。
这些方法各有优缺点,需要根据具体的应用场景来选择合适的控制策略。
随着电力电子技术的发展,PWM整流器在新能源、电力牵引、电力电子变换等领域的应用越来越广泛。
其具有高效率、低谐波、快速响应等优点,但其控制策略的设计是整个系统性能的关键。
对PWM整流器及其控制策略进行研究具有重要意义。
1. PWM整流器概述PWM(脉冲宽度调制)整流器是一种先进的电力电子装置,其主要功能是将交流(AC)电源转换为直流(DC)电源。
与传统的线性整流器相比,PWM整流器具有更高的效率和更好的动态性能。
这种整流器利用PWM技术,通过快速开关电力电子开关(如IGBT或MOSFET)来控制电流的波形,从而实现对输入电流的有效控制。
PWM整流器主要由三相桥式电路、滤波器和控制电路组成。
三相桥式电路负责将AC电源转换为DC电源,滤波器则用于滤除输出电压中的高频谐波,而控制电路则负责根据输入电压和负载条件调整PWM 信号的占空比,从而实现对输出电压和电流的精确控制。
引言采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。
按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。
PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80 年代以前一直未能实现。
直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。
随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。
到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。
1相电压控制PWM1.1等脉宽PWM法[1]VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM ( Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。
等脉宽PWM 法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。
它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。
相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。
1.2随机PWM在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。
为求得改善,随机PWM方法应运而生。
引言采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。
按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。
PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。
直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。
随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。
到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。
1 相电压控制PWM1.1 等脉宽PWM法[1]VVVF(Variable V oltage V ariable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。
等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。
它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。
相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。
1.2 随机PWM在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。
为求得改善,随机PWM方法应运而生。
搞懂这六篇文章,PWMSOEASY 移相全桥PWM ZVS DC-DC变换器拓扑结构简析 移相全桥PWM ZVS类型的DC-DC变换器是目前国内非常常见的一种变换器类型,这种变换器眼下已经被广泛的应用在各类加工和电路系统设计之中。本文将会就该种类型的转换器拓扑结构和工作原理,展开简要分析,帮助工程师更加全面的了解该种变换器的工作特性。 在这里我们以最基础的PWM ZVS型的DC-DC变换器为例子,进行解读。该种变换器的基本拓扑结构如下图所示。在下图中我们可以看到,该种转换器的电路结构与普通双极性PWM变换器类似,都是由T1和T2组成超前桥臂,T3与T4组成滞后桥臂。C1—C4分别是T1—T4的谐振电容,包括寄生电容和外接电容。Lr是谐振电感,包括变压器的漏感。T1和T2分别超前T4和T3一个相位,即移相角,通过调节移相角的大小,调节输出电压。D5、D6是整流二极管,Lf、Cf构成二阶滤波器(Lf足够大,If近似恒定) 图为移相全桥PWM ZVS DC/DC 变换器基本电路 在了解了这种转换器的拓扑结构和基本电路构成情况后,我们再来看一下移相全桥PWM ZVS变换器的工作周期和主要工作波形。该种转换器的主要工作波形如下图所示: 图为移相全桥变换器主要工作波形 从上图的主要工作波形中我们可以比较清晰的看到,在该转换器正常工作的前提下,半个开关周期内电路工作过程分为六个阶段,图中tδ为移相角、td为死区,ip为变压器原边电流…… 原文链接:/article/31091.html 基于UC3637双PWM控制器逆变控制电路的应用 设计要点 基于UC3637的特点,电路组成和基本功能之后,即可具体设计逆变控制电路了。以下仅介绍几个关键电路单元的设计方法。 死区时间td 逆变主电路通常有半桥、单相全桥、三相桥等几种基本形式。功率开关管的开通和关断都需要时间,所以上下桥臂之间必须留有适当的死区时间,这关系到逆变主电路的安全。UC3637的死区设置是相当灵活的,可以在很宽的范围内调整。 图3(a)为死区时间示意图,图3(b)为外围元件的连接电路。经过推导和合理的近似,各参数之间有如下关系: (a) 死区时间示意图 (b) 外 围 电 路 图 图3 双PWM比较器 td=t2-t1=〔( VR/2)-(-VR/2)〕Ts/2VTH (1) Ts=1/fs=Is/2CT〔( VTH)-(-VTH)〕 (2) Is=〔( VTH)-(-VTH)〕/RT (3) VTH=(-Vs) 〔( Vs)-(-Vs)〕(R2 R1)/(R1 R2 R1) (4) -VTH=(-Vs) 〔( Vs)-(-Vs)〕R1/(R1 R2 R1) (5) (6) 在逆变控制设计中,有些参数是可以首先确定下来的。例如开关频率fs,桥臂的死区时间td(根据开关器件的开关特性),三角波的峰值转折电压 VTH和-VTH等。±VTH的范围应限制在±Vs2V之间。实际的±VTH可根据调制波的最大可能值而定,调制波的最大可能值可依据PID的供电状况及动态范围确定。调制波的幅值确定之后,随之可定±VTH。再依据上述各关系式,不难解出其它各参数。若对于一个逆变系统要求:Vs=±15V,td=3μs,fs=30kHz,正弦波调制信号的最大可能值Vsm=4V。 取±VTH=±4V,根据以上各式可算得CT=1.04×10-9F(取CT=1000pF),RT=38kΩ(取 RT=39kΩ),VR=1.44V。当调制正弦波为零时,VR/R4≈(Vs-VR)/R3,取R4=5kΩ,则R3=47kΩ。理论计算的数值在应用中还需进行适当的修正…… 原文链接: /article/26704.html 软开关半桥DC/DC变换器的PWM控制策略分析 0 引 言 半桥DC/DC变换器结构简单,控制方便,非常适用于中小功率场合。硬开关变换器高频时开关损耗很大,严重影响其效率。软开关技术可降低开关损耗和线路的EMI,提高效率和功率密度,提高开关频率从而减小变换器体积和重量。传统半桥变换器有两种控制方法,一种是对称控制,一种是不对称互补控制。本文主要分析实现半桥DC/DC变换器软开关的PWM控制策略。 1 控制型软开关PWM 控制策略 控制型软开关半桥DC/DC变换器不增加主电路元器件(可增加电感电容元件以实现软开关条件),通过合理设计控制电路来实现软开关。图1给出4种控制型软开关半桥DC/DC变换器的PWM 控制策略。 图1 控制型软开关PWM 控制策略 1.1 不对称互补脉冲PWM 控制 开关管的控制脉冲不对称互补,采用此控制策略的传统不对称半桥变换器已广泛应用于中小功率场合。其原边开关管实现ZVS的方式有2种:负载电流ZVS方式和励磁电流ZVS方式。其优点是:两个开关管都可实现ZVS;一些可改善移相全桥变换器滞后臂软开关条件的措施也可用于不对称半桥变换器;不存在硬开关中的震荡问题;与移相全桥变换器相比,无循环能量。其缺点是:开关管电压应力和开关管软开关条件不一致,上管较难实现软开关;整流管电压应力不一致,且随占空比变化,一些应用场合一个整流管电压很高,器件较难选择;轻载时会失去软开关条件;变压器直流偏磁,负载越重占空比越小,偏磁越严重;非常不适用于宽输入或宽输出电压的应用场合。 1.2 移相脉冲PWM 控制 采用此控制策略的半桥也称为双有源半桥。 此控制策略与传统的移相全桥拓扑类似,区别在于移相的两个桥臂分布在变压器的原副边。此拓扑中,变压器的漏感是中间储能元件。原副边半桥各产生一个占空比为50%的方波,通过调节输出两个桥之间的移相来控制变压器漏感的能量从而调节输出电压。此拓扑可实现全负载范围的软开关,同时输出又能获得同步整流。其缺点是:循环能量非常大,输出电流纹波大。为了改善输出电流纹波大的缺点,移相ZVS半桥电路被提出。 1.3 脉冲移位PWM 控制 脉冲移位PWM 控制策略。上管下降沿与下管前沿互补,脉宽相同。可实现下管的ZVS开通,上管仍然是硬开关。其优点是:可减少部分开关损耗;变压器不存在直流偏磁;整流管电压应力对称;宽范围输入上优于不对称半桥。增加辅助电路可实现上管的ZVS。 1.4 不对称脉冲PWM 控制 不对称脉冲PWM控制,其下管下降沿与上管的前沿互补,上管可实现ZVS,只要设计的占空比较小,无需其它措施即使工作在较高频率下开关损耗也很小。变压器直流偏磁,除占空比端点外,偏磁电流小于不对称半桥。宽范围适用性优于传统的不对称半桥。低压大电流的应用场合有一定的优势。 2 缓冲型软开关对称PWM 控制策略 对称控制半桥变换器磁心双向磁化,利用率高,且不存在偏磁。控制方便,控制特性线性。功率管上电压应力低,适用于高输入电压场合,但此种半桥变换器较难实现软开关,变换器效率难以得到提高…… 原文链接: /article/26696.html 解析高效PC电源的集成式PFC/PWM组合解决方案 电源工程师一直都在寻找既能实现一系列电路保护功能,又可以使电源符合愈来愈严格效率规范的简单设计方法。本文将探讨一个结合了boost功率因数校正转换器与双管正激式脉宽调控转换器的高集成度半导体解决方案,只需极少数外部元件,就可以拥有多种电路保护功能与补偿功能,并符合IEC- 1000-3-2规范。 PFC PWM控制 FAN480X是由功率因数校正((PFC)和脉宽调控(PWM)两种平均电流模式控制器组成,其中PFC级采用的开关充电式乘法器技术,可以获得较高的功率因数与较低的总谐波失真(THD);而PWM可以选择采用电流模式控制或是电压模式控制。PFC调控为上升沿调制,而PWM则采用下降沿调制,因为采用不同触发的调制可以降低PFC输出电容上的纹波电压。另外,FAN480X增加可编程的两段式PFC输出功能,可以提高低压输入且轻载时的系统效率。 FAN480X具有多种保护功能,包括PWM与PFC的软启动、PFC过压/欠压、逐周期电流限制、PFC输入欠压等,确保电源与后级设备不受损坏。使用者可以利用本篇所述的方程,选择所需的关键组件。图1为FAN480X ATX的应用线路图,其中输出功率为300W(10W为待机电源),交流输入电压范围是75VAC~264VAC,PFC电路提供380V输出电压作为后级双管正激转换器的输入,两部分的开关频率均为65kHz。 图1. PFC/PWM 集成解决方案双管正激转换器的原理图 FAN480X 的PFC部份工作在连续电流模式,可以帮助降低升压电感电流的变化率,适用于较大功率的应用。增益调节器可以为电源提供较高的功率因数与较低的总谐波失真,是PFC级的核心,可以针对不同的输入电压、频率,有效值电压和PFC输出电压对电流环做出响应,如(1)式所示.。增益调节器的功能是产生控制信号给PFC级,控制其占空比使输出电压维持稳定;VRMS平方的倒数可以为高压和低压提供恒定功率,图2与图3分别显示FAN480x的增益调节器的工作原理与应用电路。 图2. 增益调节器工作原理 图3. FAN480x增益调节器应用电路 PFC的电流回路补偿 FAN480X在PFC部份有两个控制回路,一个为电流控制回路,另一个为电压控制回路。电流控制回路会基于由IAC所产生的基准信号来控制电流。电压控制回路则稳定输出电压,维持总谐波失真的平衡。图4为一个简化的电流回路示意图,图中PWM模块部分包含了比较器、触发器和MOSFET驱动输出。电压控制电压源结合了输入电压源、整流器、MOSFET和升压二极管…… 原文链接:
几种PWM调制法引言采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。
按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。
PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。
直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。
随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。
到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。
1 相电压控制PWM1.1 等脉宽PWM法[1]VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。
等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。
它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。
相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。
1.2 随机PWM在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。