四川大学微积分(下)第7章8
- 格式:pdf
- 大小:1.88 MB
- 文档页数:37
大学微积分课件(ppt 版)目录•微积分概述•极限与连续•导数与微分•积分学•微分方程•微积分在实际问题中的应用PART01微积分概述微积分的定义与发展微积分的定义微积分是研究函数的微分与积分的数学分支,微分研究函数在某一点的变化率,而积分则是研究函数在一定区间上的累积效应。
微积分的发展微积分起源于17世纪的物理学和几何学问题,经过牛顿、莱布尼兹等数学家的努力,逐渐发展成为一门独立的数学学科。
微积分的研究对象与意义研究对象微积分的研究对象是函数,包括一元函数和多元函数,主要研究函数的性质、图像、变化率以及函数间的相互关系等。
研究意义微积分在自然科学、工程技术、社会科学等领域有着广泛的应用,如求解物理问题、优化工程设计、分析经济数据等。
微积分的基本思想与方法基本思想微积分的基本思想是通过局部近似来研究函数的整体性质,即“以直代曲”、“以不变应万变”。
基本方法微积分的基本方法包括微分法和积分法。
微分法是通过求导数来研究函数的局部性质,如单调性、极值等;积分法则是通过求原函数来研究函数的整体性质,如面积、体积等。
PART02极限与连续极限的概念与性质01极限的定义:描述函数在某一点或无穷远处的变化趋势。
02极限的性质:唯一性、局部有界性、保号性、四则运算法则。
03无穷小量与无穷大量:定义、性质及比较。
极限的运算法则与存在准则极限的四则运算法则加法、减法、乘法、除法。
极限存在准则夹逼准则、单调有界准则。
连续函数的概念与性质连续函数的定义函数在某一点连续的定义及性质。
间断点及其分类第一类间断点(可去间断点、跳跃间断点)、第二类间断点。
连续函数的性质局部性质(局部有界性、局部保号性)、整体性质(有界性、最值定理、介值定理)。
连续函数的四则运算加法、减法、乘法、除法。
初等函数基本初等函数及其性质,初等函数的连续性。
复合函数的连续性复合函数连续性的判断及证明。
连续函数的运算与初等函数PART03导数与微分导数的概念与几何意义导数的定义导数的几何意义可导与连续的关系描述函数图像在某一点处的局部变化率。
习题课教学大纲(微积分II)(征求意见稿)课程名称:大学数学-微积分II英文名称:Calculus课程性质:必修课程代码:20113830(上册)20112530(下册)面向专业:大学数学II各专业习题课指导丛书名称:高等数学(第五版)出版单位:高等教育出版社出版日期:2002年7月主编:同济大学应用数学系习题课讲义名称:大学数学习题课系列教材--微积分编写单位:四川大学数学学院编写日期:2006年8月主编:四川大学数学学院高等数学教研室第一章函数与极限1.函数与极限2学时(1)基本内容函数的概念,函数的表示,函数的几种特性,复合函数,分段函数,极限的概念及性质,极限存在准则,重要极限,无穷小量与无穷大量,极限的计算,函数的连续与间断,闭区间上连续函数的性质。
(2)基本要求处理作业批改中发现的问题。
通过具体例子讲解极限的计算问题,连续性讨论问题,复合函数定义域及分段函数的复合问题。
第二章导数与微分2学时(1)基本内容:导数及高阶导数的定义;复合函数隐函数参数方程决定的函数和分段函数的求导;微分。
(2)基本要求:处理作业批改中发现的问题;举列说明复合函数隐函数参数方程决定的函数和分段函数的一阶二阶求导;会求微分。
第三章微分中值定理与导数的应用2学时1.中值定理及洛必达法则(1) 基本内容:中值定理的应用;洛必达法则求极限.(2)基本要求:处理作业批改中发现的问题;通过具体例子讲解中值定理的题型和解题步骤;求各种不定形的极限并注意化简和变形技巧.2.不等式的证明和函数曲线(1)基本内容:函数单调性凹凸性的判定;函数的最值;泰勒定理.(2)基本要求:处理作业批改中发现的问题;举例说明函数导数二阶导数曲线关系;举例讲解利用曲线特征证明函数不等式;举例说明函数最值的应用;泰勒中值定理的应用方法.第四章不定积分2学时一、基本内容:复习原函数和不定积分的概念,不定积分的基本性质及基本积分公式,总结换元积分法和分部积分法,有理函数、三角函数的有理式和简单无理函数的积分的计算方法。