四川大学《大学数学-微积分》期末考试试卷B(末尾含答案解析)
- 格式:pdf
- 大小:282.69 KB
- 文档页数:9
微积分期末试卷 一、选择题(6×2)1~6 DDBDBD二、填空题1 In 1x + ;2 322y x x =-;3 2log ,(0,1),1xy R x =-; 4(0,0)5解:原式=11(1)()1mlim lim 2(1)(3)3477,6x x x x m xm x x x m b a →→-+++===-++∴=∴=-= 三、判断题1、 无穷多个无穷小的和是无穷小( )2、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )3、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFFFT四、计算题1用洛必达法则求极限2120lim x x x e →解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞-2 若34()(10),''(0)f x x f =+求解:33223333232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴= 3 240lim(cos )x x x →求极限4 (3y x =-求5 3tan xdx ⎰6arctan x xdx ⎰求五、证明题。
1、 证明方程310x x +-=有且仅有一正实根。
证明:设3()1f x x x =+-2、arcsin arccos 1x 12x x π+=-≤≤证明() 六、应用题1、 描绘下列函数的图形3.4.补充点7179(2,).(,).(1,2).(2,)2222---50lim (),()0x f x f x x →=∞∴=有铅直渐近线 6如图所示:2.讨论函数22()f x x Inx =-的单调区间并求极值 由上表可知f(x)的单调递减区间为(,1)(0,1)-∞-和单调递增区间为(1,0)1-+∞和(,)且f(x)的极小值为f(-1)=f(1)=1。
1、已知22(,)f x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x21___________.π=⎰∞+∞--dx e x 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________. 6 知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是( c ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( b ).(A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( a). (A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( d ). (A) b ax y += (B) x e b ax y 3)(+=(C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( d ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 一、填空题(每小题3分,共15分)1、2(1)1x y y -+. 23、)32,31(-. 4、1. 5、"6'0y y y -+=. 11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x =的函数为23,0x y y =>。
经济数学-微积分期末测试及答案(B)经济数学--微积分期末测试第一学期期末考试试题 ( B )一.选择题(每小题只有一个正确答案,请把正确答案前的字母填入括号,每题2分,共30分)1. 函数⎪⎩⎪⎨⎧<<-≤-=43939)(22x x x x x f 的定义域是(A );(A))4,3[- (B) )4,3(- (C)]4,3(- (D))4,4(-2. 函数214y x =-的渐近线有(A);3(A )条(B )2条(C )1条(D )0条3. 设函数)1,0()1(log 2≠>++=a a x x y a ,则该函数是(A )(A) 奇函数 (B) 偶函数 (C) 非奇非偶函数 (D) 既奇又偶函数4. 下列函数中,与3y x =关于直线y x =对称的函数是(A );33()()()()A y B x C y x D x y ===-=-5.若()f x =2x =是函数()f x 的(B);()A 左连续点()B 右连续点()C 驻点()D 极值点6. 已知点(1,3)是曲线23bx ax y +=的驻点,则b a ,的值是(B )(A ) 9,3=-=b a (B ) 9,6=-=b a (C ) 3,3=-=b a (D )3,6=-=b a7. 当0x →时,下列函数极限不存在的是(C );1sin 11()()sin()()tan 1xxA B x C D xxxe +8. 极限 =-→x x x 1ln lim 0(C ); ()1()0()1()A B C D -不存在9.下列函数中在[-3,3]上满足罗尔定理条件的是(C );2221()()()2()(3)A x B C x D x x -+10.若函数()f x 在点x 处可导,则极限x x x f x x f x x ∆∆--∆+→2)2()2(lim000=(C );00001()4()()3()()2()()()2A f xB f xC f xD f x '''' 11. 0x →时,下列函数中,与x 不是等价无穷小量的函数是(C ) (A) xtan (B))1ln(x + (c)xx sin - (D)x sin12.下列极限中,极限值为e的是(D);11001()lim (1)()lim (1)()lim(1)()lim (1)xxxxx x x x A x B x C D x x+→∞→∞→→++++13.若ln x y x =,则dy =(D );222ln 11ln ln 11ln ()()()()x x x xA B C dx D dx xx xx---- 14.函数2()f x x =,在区间[0,1]内,满足拉格朗日中值定理的条件,其中ξ=(D);1121()()()()4332A B C D15.若函数()f x 在(,)-∞+∞内连续,则2()x f x dx '⎡⎤=⎣⎦⎰(D). 2222()[2()()]()2()()()()()()A xf x x f x dxB xf x x f xC x f x dxD x f x ''++二.计算题(每小题7分,共56分)1.xex x y -+-=1121,求y '解:)11()1(1)()1(1122112'-+'-+-='+'-='--xex x x ex xy xx2112211222)1(1)1(1221x e x x e xxx xx--+-=--+--+-=-- 2. 求极限xx x 12)1(lim +∞>-解:1lim )1(lim 012lim)1ln(lim)1ln(12222=====++++∞→∞→∞→∞→e ee exx xx x xx x xx x x3.求曲线1204=+-y xx y 在1=x 对应的点处的切线方程.22577解:0x =时,代入方程得 1y =;方程两边对x 求导得2041194203='++-'y y x y x y ,将01x y ==与代入,得011x y y =='=, 故所求的切线方程为1y x -=,即1y x =+4. 设函数221()1ax x f x x b x -≥⎧=⎨-<⎩在1x =处可导,求常数a和b解:由已知()f x 在1x =连续,且21111lim ()lim()1lim ()lim(2)2x x x x f x x b b f x ax a --++→→→→=-=-=-=- 可得3b a =- ①又因()f x 在1x =处可导,且221111232(1)lim lim lim 1211(2)2()lim 1x x x x x b a x a a f x x x ax a f x ax -+++-→→→+→--+-+-+'===+=----+'==-又得2a = 代入① 得1b =故21a b ==5. 求函数2ln(14)y x =+的上凸区间、下凸区间与拐点.解:222288(14)1,,0,14(14)2x x y y y x xx -'''''====++令得 列表讨论如下:25736726. 求⎰dx xx tan解: ⎰⎰⎰+-=-==cx x d xx d xx dx x x cos ln 2cos cos 12cos sin2tan7. 求 ⎰xdx e x sin解:⎰⎰⎰⎰-=-==xx x x xxxde x e xdx e x e xdexdx e cos sin cos sin sin sin⎰--=xdxe x e x e x x x sin cos sin移项可得c e x x xdx e x x +-=⎰)cos (sin 21sin8. 已知2xxe 是(2)f x 的一个原函数,求()2xx f edx -⎰22222222222222(2)()2(12)()(1)()(1)22()(1)(1)2(1)22222[(1)()]2[(1)]2222(2)(4)2x x x x x ux x xx x x x x xx xf x xe exee x x xf u e u f e x x x x f e dx e e dx e dx dex x x e e d e e c x e c x e c----------'==+=+∴=+∴=+∴=+=+=-+=-++-=-+++=-++=-++⎰⎰⎰⎰⎰解:三.证明题(本题6分)2767247572设函数()f x 在区间[0,]c 上连续,其导数()f x '在(0,)c 内存在且单调减少,又(0)0f =,证明不等式:()()()f a b f a f b +≤+ (其中,a b 是常数且满足:0a b a b c≤≤≤+≤)证明:0a =时,(0)0f = ()()()()f a b f b f a f b ∴+==+ 0a > 时,在区间[0,]a 和[,]b a b +上,()f x 满足拉格朗日定理条件,1122()(0)()()((0,)()()()()()((,)f a f f a f a a af b a f b f b a f b f b a b b a b aξξξξ-'∴==∈+-+-'==∈++-有有又()f x 在[0,]c 上单调减少,而12ξξ<21()()f f ξξ''∴<即()()()f b a f b f a a a+-< 故有()()()f a b f a f b +≤+ (其中,a b 是常数且满足:0a b a b c≤≤≤+≤)四.应用题(本题8分)设生产t 个产品的边际成本为t t C 2100)(+=',其固定成本(即0=t 时的成本)为100元,产品单价规定为500=P 元,假定生产出的产品都能完全销售,求生产量为多少时利润最大?最大利润是多36少?解:由已知,边际成本ct tdtt dt t C t C ++=+='=⎰⎰100)2100()()(2由固定成本为100,可得100100)(02=--==t tt t C c于是有: 成本函数:100100)(2++=t tt C收入函数:t t R 500)(= 利润函数:100400)100100(500)()()(22-+-=++-=-=t t t tt t C t R t L由04002)(=+-='t t L ,得唯一驻点200=t,又由2)(<-=''t L ,可知,驻点0t 是极大值点,同时也是最大值点。
第1页,共2页四川大学半期考试试题(闭卷)(2016-2017学年第2学期)课程号:201138040课序号:课程名称:微积分(I )-2任课教师:成绩:适用专业年级:学生人数:印题份数:学号:姓名:考生承诺我已认真阅读并知晓《四川大学考场规则》和《四川大学本科学生考试违纪作弊处分规定(修订)》,郑重承诺:1、已按要求将考试禁止携带的文具用品或与考试有关的物品放置在指定地点;2、不带手机进入考场;3、考试期间遵守以上两项规定,若有违规行为,同意按照有关条款接受处理。
考生签名:一、填空题(每小题4分,共20分)1.曲线220y x z ⎧=⎪⎨=⎪⎩绕y 轴旋转一周所成的曲面方程为__________.2.设(01)y z x x x =>≠,,则__________.dz =3.改变二次积分130()y y dy f x y d x ⎰⎰,的积分顺序为__________.4.函数2()f x y x y =,在点(11),处方向导数的最大值为__________.5.曲线3z xy x y z =⎧⎪⎨++=⎪⎩上点(111),,处的切线方程为__________. 二、解答题(每小题10分,共60分)1.设()()z z x y y x ==,由方程组()1z f y z x x y z =+⎧⎪⎨++=⎪⎩,确定,求. dz dy dx dx ,2.求由曲面222z x y =+及2262z x y =--所围成的立体的体积.3.求极限24301lim ln(4)rr xy dv r →Ω++⎰⎰⎰,其中2222. r x y z r Ω++≤:4.求过曲面2226x y z ++=上一点的切平面,且该切平面垂直于直线2. 2x y z x z --=⎧⎪⎨+=⎪⎩第2页,共2页。