两种聚丙烯腈原丝结构与性能的对比研究
- 格式:pdf
- 大小:156.23 KB
- 文档页数:6
聚丙烯腈纤维的预氧化及性能研究王永【摘要】According to long pre-oxidation time and high cost of pre-oxidation equipment at home and abroad,a new type of pre-oxidation equipment was designed,and its construction and pre-oxidation principle was introduced.The pre-oxidation process of PAN fiber was described systematically and the relevant process parameters were obtained.The fineness,strength,elongation and fire-re-tardant performance of the fiber were tested.The feasibility of new pre-oxidation equipment was proven.Suggestions on the optimiza-tion of the equipment were presented through data analysis.According to the results of the relevant performance testing and the relat-ed literature analysis,the reasons and influencing factors of the performance change of pre-oxidized fiber were obtained.These studies played a positive role in the research and application of new pre-oxidation equipment.%针对国内外预氧化设备的预氧化时间过长、成本过高等缺点,设计了一种新型预氧化设备,并介绍了其构造及预氧化原理.对聚丙烯腈(PNA)纤维的预氧化过程进行了系统的描述,得到了相关工艺参数,并且对预氧化后的纤维进行细度、强力、伸长及阻燃等性能的测试,确定了新型预氧化设备的可行性.通过数据分析对此设备的一些优化提出了修改意见,并且根据性能测试的结果和相关文献对预氧丝进行分析,得出变化的原因和影响因素等,对新型的预氧化设备的研究和应用起到积极的作用.【期刊名称】《纺织科技进展》【年(卷),期】2018(000)004【总页数】3页(P19-21)【关键词】聚丙烯腈纤维;预氧化;性能测试【作者】王永【作者单位】宿迁市纤维检验所,江苏宿迁223800【正文语种】中文【中图分类】TS102.52关于PAN纤维预氧化的研究,起始于20世纪50、60年代。
提高聚丙烯腈基碳纤维原丝质量的研究进展马向军,张裕卿(天津大学化工学院,天津300072)聚丙烯腈(PAN)基碳纤维是20世纪60年代迅速发展起来的新型材料,既具有碳材料的固有本性,又具有纺织纤维的柔软可加工性,是新一代军民两用新材料。
因其具有质量轻、强度高、模量高、耐高温、耐腐蚀、耐磨、耐疲劳、抗蠕变、导电、导热、热膨胀系数小等优异性能,被广泛应用于卫星、运载火箭、战术导弹、飞机、宇宙飞船等尖端领域,已成为航天航空工业中不可缺少的材料,而且广泛应用于民用领域,如体育器材、建筑材料、医疗器械、运输车辆、机械工业等。
高性能碳纤维原丝是生产高性能碳纤维的前提。
我国研制碳纤维已有30多年历史,至今未能产业化的关键因素之一就是国产碳纤维原丝的质量没有真正过关。
国内学者指出聚丙烯腈原丝是制约我国碳纤维工业化生产的“瓶颈”之处,攻坚已是当务之急。
这既有技术方面的原因,也有设备方面的原因,还有管理、决策等多方面的原因。
1主要的PAN基碳纤维公司原丝工艺路线及质量状况在碳纤维的研究与生产上,日本和美国一直走在世界的前列[1,2]。
日本在宇航级小丝束(ST)碳纤维生产上占绝对优势。
宇航级小丝束碳纤维占其总生产能力的3/4,工业级大丝束(LT)碳纤维约占1/4。
从小丝束碳纤维来看:日本东丽(Toray)和东邦(Toho)的碳纤维生产能力占世界的首位和第二位,三菱人造丝(MitsubishiRayonCo.)占第三位;另外还有美国的赫克塞尔(Hexcel),英国石油-阿莫科公司(BP-Amoco)及中国台湾省的台塑公司。
工业级大丝束(LT)碳纤维生产商主要有美国的阿克苏-福塔菲尔公司(AKZO-Fortafil)、卓尔泰克(Zoltek)、阿尔迪拉(Aldila)及德国的爱斯奇爱尔(SGL)公司。
2004年日本东丽公司小丝束碳纤维生产能力达9100t/a,东邦人造丝公司5700t/a,三菱人造丝公司4700t/a。
日本这三家公司碳纤维的生产销售额占全球碳纤维市场的75%左右。
聚丙烯腈的结构简式-概述说明以及解释1.引言1.1 概述聚丙烯腈是一种重要的合成纤维材料,也是丙烯腈单体聚合得到的聚合物。
它具有优异的物理性质和化学性质,广泛应用于纺织、化工等领域。
聚丙烯腈的化学结构中含有酰胺基团,使得其具有良好的强度、耐久性、抗静电性和抗皱性等特点。
此外,聚丙烯腈还可以通过进一步的化学反应和处理获得其他功能性纤维,如碳纤维,增加了其应用的多样性。
本文将对聚丙烯腈的化学结构、物理性质以及应用领域进行详细介绍,并展望其未来可能的发展方向。
1.2文章结构1.2 文章结构本文将以聚丙烯腈(Polyacrylonitrile,简称PAN)为研究对象,探讨它的结构简式、物理性质及应用领域。
具体而言,文章将分为三个主要部分。
第一部分为引言部分,包括概述、文章结构和目的三个小节。
在概述中,将简单介绍聚丙烯腈的基本情况,以及其在化学和材料领域的重要性。
文章结构一节将解释整篇文章的组织框架,说明各部分的主要内容。
目的一节将明确本文的主要研究目标和意义。
第二部分为正文部分,主要包括聚丙烯腈的化学结构、物理性质及应用领域三个小节。
在聚丙烯腈的化学结构一节中,将详细介绍聚丙烯腈的分子结构、化学键以及聚合方式。
聚丙烯腈的物理性质一节将涵盖其热力学性质、力学性能、光学性质等方面的内容。
在聚丙烯腈的应用领域一节中,将探讨聚丙烯腈在纺织、医药、电子等领域的广泛应用和发展前景。
第三部分为结论部分,将主要包括总结聚丙烯腈的结构简式、对聚丙烯腈的未来发展进行展望以及结束语。
总结聚丙烯腈的结构简式一节将回顾本文中所提及的聚丙烯腈的化学结构,并概括其主要特点。
对聚丙烯腈的未来发展进行展望一节将探讨聚丙烯腈在新材料、新技术等方向的发展前景,并提出相关建议和展望。
最后,结束语将对本文的研究进行总结,并提出对读者的期望。
通过以上结构的安排,本文将全面介绍聚丙烯腈的结构简式、物理性质及其应用领域,为读者提供一份关于聚丙烯腈的综合性参考文献。
聚丙烯腈原丝结构与性能的研究
张旺玺;彭洪修
【期刊名称】《合成技术及应用》
【年(卷),期】2000(015)003
【摘要】采用日本聚丙烯腈原丝及国产聚丙烯腈原丝,通过纤维强度、伸长率、
线密度、纤维相对分子质量和溶液性能等常规分析,以及DSC、TG、IR分析,C、N、H元素分析,X射线和扫描电镜分析,找出日本原丝与为产原丝在强伸度、分子质量、地元素含量、结晶度及其表面形貌等结构与性能的差别,从而为深入了解其结构与性能的关系和进一步提高我国原丝的质量提供依据。
研究结果表明:日本原丝较之国产原丝具有较高的断裂强度、较低的断
【总页数】4页(P5-8)
【作者】张旺玺;彭洪修
【作者单位】山东大学;山东大学
【正文语种】中文
【中图分类】TQ342.31
【相关文献】
1.聚丙烯腈原丝中毛丝的结构与性能研究 [J], 欧阳琴;陈友汜;王雪飞;王微霞;皇静;李德宏
2.两种聚丙烯腈原丝结构与性能的对比研究 [J], 陈厚
3.聚丙烯腈原丝取向结构和力学性能研究 [J], 徐强;吴丝竹;徐梁华;曹维宇;吴刚
4.AMPS氨化对四元聚丙烯腈原丝结构和性能的影响 [J], 赵晓莉;齐暑华;刘建军;
韩笑
5.聚丙烯腈原丝氧化过程中结构与性能变化规律研究 [J], 樊淑芳
因版权原因,仅展示原文概要,查看原文内容请购买。
不同纺丝法制备的聚丙烯腈纤维的结构与性能田银彩;韩克清;余木火【摘要】对购买的由不同厂家采用溶液纺丝制得的3种商用聚丙烯腈(PAN)原丝和采用增塑熔融纺丝法自制的PAN纤维的结构与性能进行对比研究.试验结果表明:增塑熔融纺丝法制备的PAN纤维发生了环化、脱氢反应,放热峰宽化,放热焓较低,玻璃化转变温度较高,纤维的拉伸断裂强度均高于3种商用PAN原丝,达到7.38 cN/dtex;采用Ruland法和逐次切线法计算发现,增塑熔纺PAN纤维沿纤维[方向微孔的半径和取向偏离度较小,微孔长度较大.%The structure and properties of polyacrlonitrile (PAN) fibers,both plasticized melt-spun ones and three different commercial ones prepared by solution spinning method,were studied.The results indicated that cyclization and dehydrogenation reactions occurred on plasticized melt-spun PAN fibers,and the exothermic peak of which were wider and the exothermic enthalpy became lower.In addition,the glass transition temperature was higher.The tensile strength was higher than that of there commercial PAN fibers,reached 7.38cN/pared with those commercial PAN fibers,microvoid radius and orientation deviation along the direction of fiber axis were smaller and microvoid length was larger for plasticized melt-spun PAN fibers,calculated by Ruland method and gradual tangent method.【期刊名称】《东华大学学报(自然科学版)》【年(卷),期】2017(043)003【总页数】7页(P322-327,334)【关键词】聚丙烯腈;溶液纺丝;增塑熔融纺丝;性能【作者】田银彩;韩克清;余木火【作者单位】河南工程学院材料与化学工程学院,河南郑州450007;东华大学材料科学与工程学院,上海201620;东华大学材料科学与工程学院,上海201620;东华大学材料科学与工程学院,上海201620【正文语种】中文【中图分类】TQ342+.3聚丙烯腈(PAN)纤维是制备高性能碳纤维的一种主要的前驱体, 由于氰基之间存在强极性相互作用, 使得PAN的分解温度低于熔融温度. 因此, 商用的PAN基碳纤维原丝主要采用湿法或干湿法进行制备. 与熔融纺丝法相比, 溶液纺丝法必须进行溶剂的回收, 存在一定环境污染. 因此, PAN熔融纺丝的研究引起了国内外的广泛关注. PAN熔融纺丝的方法主要有非溶剂(主要是水)增塑法、溶剂(二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、乙腈与V-丁内酯混合溶剂)增塑法和共聚法(丙烯腈与能形成柔性链的单体共聚, 可以有效降低熔点)[1], 而采用水增塑的研究比较多[2-6].水增塑法由于难以对气压室进行连续控制, 所以在工业化生产时失败了. 因此, 有必要寻找一种具有低蒸气压, 不易挥发, 热稳定性良好, 易于回收且绿色环保的增塑剂. 近年来, 随着绿色化学的兴起, 离子液体的研究正在蓬勃发展, 最主要是由于离子液体可以满足上述对增塑剂提出的要求, 且离子液体还具有可设计性.笔者课题组采用离子液体作为增塑剂研究了PAN的熔融可纺性, 通过对增塑熔纺工艺、萃取牵伸工艺的优化, 获得了拉伸强度为7.38 cN/dtex的PAN纤维[7-9]. 该增塑熔融纺丝与干法纺丝类似, 但是通过低温冷却固化成形(传热), 没有溶剂的蒸发扩散, 工作条件好, 且设备比干法纺丝的简单;该法同时还具有干湿法纺丝的优点, 即挤出胀大效应与在凝固浴中发生的双扩散所引起的体积收缩效应分开进行.为了进一步优化增塑熔纺的纺丝和牵伸工艺, 提高PAN纤维的性能, 本文主要采用红外光谱仪(IR)、差示扫描量热仪(DSC)、X射线衍射(XRD)、小角X射线散射(SAXS)等方法对购买的由不同厂家采用溶液纺丝法制得的3种商用PAN原丝和采用增塑熔融纺丝法(简称熔纺)自制的PAN纤维进行结构和性能的比较.1.1 原料增塑熔纺所用的PAN粉末是丙烯腈 (AN)/丙烯酸甲酯 (MA)/衣康酸 (IA)共聚物, 上海金山石化, 黏均相对分子质量为=7.8×104;离子液体(ILs) 为1-甲基-3-丁基咪唑氯盐([BMIM]Cl), 上海成捷化学有限公司;购买的采用溶液纺丝法制备的PAN纤维分别编号为1#、 2#和3#.1.2 测试与表征采用美国Thermo Fisher公司Nicolet Nexus 670型红外光谱仪, 使用金刚石晶体单点衰减全反射附件对薄膜进行室温红外光谱测试, 扫描范围为4 000~500 cm-1.采用美国TA公司Q -20型差示扫描量热仪对不同公司的3个商用和1个自制的PAN纤维进行热分析. 以空的铝质坩埚作为参照物, 取5~10 mg样品放置于铝质坩埚中, 在氮气气氛下, 以10 ℃/min的升温速率从30 ℃升至380 ℃, 得到关于PAN样品的DSC曲线.采用美国TA公司的Q -800型动态热机械分析仪测试PAN纤维的玻璃化转变温度, 夹具类型选取薄膜夹具, 扫描模式为 Multi-Frequency Srain Temp Ramp, 温度范围为30~200 ℃, 升温速率为3 ℃/min, 频率为1 Hz,得到PAN样品的DMA曲线.采用东华大学制造的XD -1型纤维纤度仪测量纤维的线密度, 每个纤维样品取20个样测试, 并取平均值. 采用东华大学制造的XQ-1型纤维强伸度仪测量纤维的力学性能, 在对纤维施加0.1 cN的张力条件下进行测试, 上下夹持器之间的距离为20 mm, 牵伸速度为10 mm/min, 每种纤维样品测试20个样取平均值, 并得到其变异系数.在一束排列整齐的PAN纤维上涂上胶棉液待其风干后即完成制样. 将样品贴到样品台上, 然后采用日本RIGAKU的D/Max-2550 PC型X射线衍射仪来获得PAN 纤维样品的X射线衍射数据, 最后采用式(1)计算PAN纤维的取向度[10].其中: H 为赤道线上的Debye环(常用最强环)的强度分布曲线的半高宽, (°).将PAN纤维剪碎, 采用X射线衍射仪来获得PAN纤维的X射线衍射数据, 通过Peakfit软件进行分峰处理, 采用衍射峰的面积来表示非晶区和晶区的相对含量, 然后采用式(2)通过峰面积法[11]来计算其结晶度.其中: Wc为结晶度;Sc为结晶峰的面积;Sa为非晶峰的面积.在一束排列整齐的PAN纤维上涂上胶棉液待其风干后即完成制样. 将样品贴到样品台上, 在上海光源BL16B1实验站采集PAN纤维的二维X射线小角散射(SAXS)数据, 其中小角探测器采用Mar165型CCD, X射线的波长为0.124 nm, 曝光时间为40 s, 利用牛筋标定的探测器到样品的距离为5 050 mm. 最后采用FIT2D软件对数据进行处理.2.1 PAN纤维的化学结构不同PAN纤维样品的红外图谱如图1所示. 由图1可知, 聚合物中存在以下特征吸收峰: 波数在2 937 cm-1附近归属于CH2伸缩振动吸收峰, 在2 242 cm-1附近归属于腈基C≡N伸缩振动吸收峰, 在1 732 cm-1附近归属于饱和酯的O伸缩振动吸收峰, 在1 628 cm-1附近归属于N伸缩振动吸收峰, 在1 575 cm-1附近归属于C伸缩振动吸收峰, 在1 453 cm-1附近归属于CH2弯曲振动吸收峰, 在1 360 cm-1附近归属于CH弯曲振动吸收峰, 在1 071 cm-1附近归属于C-C单键的骨架振动吸收峰 [12-13].因此, 4种样品均为丙烯腈和甲基丙烯酸酯的共聚物, 而2#在波数1 732 cm-1附近出现归属于饱和酯的O伸缩振动吸收峰的强度较弱,表明该样品中丙烯腈的含量相对较高. 增塑熔纺PAN纤维在1 575 cm-1附近出现了C伸缩振动吸收峰. 文献[14-15]研究表明在100~250 ℃, PAN纤维内部氧化反应速率很低, 主要以环化、脱氢反应为主, 而增塑熔纺的温度为180~220 ℃, 这表明PAN纤维在增塑熔纺过程中发生了环化、脱氢反应.2.2 PAN纤维的热性能不同PAN纤维样品的DSC曲线如图2所示, 表1列出了PAN纤维特征放热峰的起始温度(ti)、放热峰温度(tp)、放热峰的终止温度(te)、放热峰起始温度与终止温度差(Δt).随着温度的升高, PAN纤维在预氧化过程中由于氰基的热聚合作用[16], 在这个过程中会释放出大量的热. 因此, 从图2可以看出, 在230~310 ℃出现一个放热峰. 但是由于组分和纺丝方法的不同, 放热峰的形状和大小也有一定的差别. 从表1可以看出, 增塑熔纺PAN纤维的起始放热峰温度(225 ℃)较低, 峰形比较宽, 起始和终止温度差(95 ℃)较大, 而且放热量较低, 这表明在预氧化过程中放热缓和, 易于控制. 1#和3#的起始温度分别为235和245 ℃, 起始温度与终止温度之间的温差都为75 ℃, 而2#的放热峰形比较尖锐, 起始和终止温度差为55 ℃. 这主要是因为2#中丙烯腈的含量相对较高, 含氧基团的含量较低, 热解反应属于自由基引发, 一旦引发, 反应瞬间完成[17]. 而对于丙烯腈共聚物, 其中含有酸类共聚单体, 所以热解反应属于阴离子引发, 反应一旦进行, 必经异构化形成亚胺结构, 所以这一过程使得整个反应的速度较慢[18].不同PAN纤维样品的DMA曲线如图3所示. 从图3可以看出, 增塑熔纺制得的PAN纤维的玻璃化转变温度要高于溶液纺丝制得的PAN纤维, 2#和熔纺PAN纤维的DMA曲线不同于其他2种PAN纤维, 分别在160和150 ℃左右出现一个肩峰. 出现这种现象的原因众说纷纭, 其中文献[19]认为115和160 ℃分别对应着有序区和无定型区的分子链段运动所需的温度, 无定型区分子链段运动所需的温度要高于有序区, 这主要是因为无定型区的分子链缠结密度较高.2.3 PAN纤维的力学性能不同PAN纤维样品的力学性能参数如表2所示. 从表2可以看出, 增塑熔纺制得的PAN纤维平均拉伸断裂强度高于其他3种商用PAN原丝的平均拉伸断裂强度.2.4 PAN纤维的微孔不同PAN纤维样品的二维SAXS花样图如图4所示. 从图4可以看出, 4幅图都没有明显的周期性散射, 沿赤道方向散射图形的长度大于沿子午线方向的长度, 而1#和增塑熔纺PAN纤维的散射图在赤道方向上呈现出比3#拉长且尖锐的散射条纹, 这表明纤维中微孔在轴向的长度较大且沿纤维轴向的取向程度也比较大.采用Ruland法来计算沿纤维轴方向微孔的长度和取向偏离度.具体操作部骤采用Wang等[20]的方法:(1)对PAN纤维的二维SAXS花样图进行空气背景的扣除;(2)沿垂直于赤道方向即平行子午线方向做切片,得到曲线,根据曲线求出半峰宽,即积分宽度;(3)采用公式(3)对积分宽度和赤道散射矢量进行线性拟合,求出斜率和截距.其中:BS3为积分宽度,nm-1; S12为散射矢量,nm-1;L为微孔长度,nm;Bf为沿纤维轴方向微孔的取向偏离度,(°).不同PAN纤维沿赤道方向积分宽度与散射矢量的关系如图5所示.具体结果列于表3. 从表3中可以看出, 2#中的微孔长度大于其他3种纤维, 而取向偏离度最小, 说明纤维的取向度较高, 与XRD测试的结果吻合. 与其他3个样品相比, 3#中微孔长度最小, 主要是由于其取向度低于其他3种PAN纤维.在处理数据时将微孔近似看为圆形, 采用逐次切线法获得的log I-q2的关系曲线图如图6所示. 从图6可以看出, 在最大散射角处对曲线做切线, 经过5次处理曲线近似变为一条直线, 这表明PAN纤维中微孔呈典型的多级分布, 然后将各条切线的斜率代入式(4)求出各级尺寸对应的回转半径,将微孔看作圆形,再采用式(5)求出微孔半径(r1, r2, r3, r4, r5), 具体结果如表3所示.从表3中可以看出, 增塑熔纺PAN纤维截面的微孔具有多级分布的特征, 微孔半径大约为1.0, 1.5, 2.6, 和4.0 nm, 较其他3种PAN纤维, 增塑熔纺PAN纤维的微孔半径最小. 这说明增塑熔纺PAN纤维横截面上的缺陷较少, 所承受拉伸力的有效横截面积增大, 纤维的断裂强度增大. PAN纤维中微孔的存在被认为是影响PAN 基碳纤维性能的重要因素. 因此, 为了提高材料的性能,对微孔结构的研究就显得尤为重要[20].(1) 4种PAN纤维样品均为丙烯腈和甲基丙烯酸酯的共聚物,而PAN纤维在增塑熔纺过程中发生了部分环化.(2) 增塑熔纺PAN纤维玻璃化温度高于其他3种PAN纤维, 放热峰型宽, 且起始放热温度低.(3) 增塑熔纺PAN纤维的拉伸断裂强度达到并超过3种商用PAN原丝的拉伸断裂强度;(4) 采用Ruland法计算沿纤维轴方向微孔的长度和取向偏离度, 采用逐次切片法计算微孔的半径, 结果表明,增塑熔纺PAN纤维中微孔的长度较大, 取向偏离度和微孔的半径尺寸较小.【相关文献】[1] 何翼云, 施祖培. 聚丙烯腈熔融纺丝技术进展[J]. 合成纤维工业, 1997, 20(6): 32-36.[2] MASSON J C. 腈纶生产工艺及应用[M]. 北京: 中国纺织出版社, 2004: 82-113.[3] FRUSHOUR B G. A new thermal analytical technique for acrylic polymers[J]. Polym Bull, 1981, 4(5): 305-314.[4] FRUSHOUR B G. Water as a melting point depressant for acrylic polymers[J]. Polym Bull, 1982, 7(1): 1-8.[5] FRUSHOUR B G. Melting behavior of polyacrylonitrile copolymers[J]. Polym Bull, 1984,11(4): 375-382.[6] MIN B G, SON T W, KIM B C, et al. Plasticization behavior of polyacrylonitrile and characterization of acrylic fiber prepared from the plasticized melt[J]. Polym J, 1992, 24(9): 841-848.[7] TIAN Y C, HAN K Q, YU M H, et al. Rheological behaviors of polyacrylonitrile melt using ionic liquids as a plasticizer[J]. Adv Mater Res, 2012, 476/477/478: 2151-2157.[8] TIAN Y C, HAN K Q, YU M H, et al. Influence of residence time on the structure of polyacrylonitrile in ionic liquids during melt spinning process[J]. Mater Lett, 2013, 92: 119-121.[9] TIAN Y C, HAN K Q, YU M H, et al. Influence of melt temperature on structure of polyacrylonitrile in ionic liquids during plasticized melt spinning process[J]. Appl Mech Mater, 2013, 268/269/270: 483-486.[10] 莫志深. 晶态聚合物结构和X射线衍射[M]. 北京: 科学出版社, 2010: 235-238 .[11] HINRICHSEN G. Structural changes of drawn polyacrylonitrile during annealing [J]. J Polym Sci, Part C: Polym Symp, 1972, 38 (1): 303-314.[12] VARMA S P, LAL B B. IR study on preoxidized PAN fiber[J]. Carbon, 1976, 14(4): 207-209[13] KAKIDA H, TASHIRO K, KOBAYASHI M. Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers[J]. Polym J, 1996, 28(1): 30-34.[14] 侯志凌. PAN基碳纤维热氧化过程结构变化研究[J]. 科技创新与生产力, 2014(242): 109-110.[15] 张利珍, 吕春祥, 吕永根, 等. 聚丙烯腈纤维在预氧化过程中的结构和热性能转变[J]. 新型炭材料, 2005, 20(2): 144-150.[16] TURNER W N, JOHNSON F C. Pyrolysis of acrylic fiber in inert atmosphere[J]. J Appl Polym Sci, 1969, 13(10): 2073-2084.[17] AVILES M A, GINES J M. Thermal analysis of acrylonitrile polymerization and cyclization in the presence of N, N-dimethylformamide[J]. J Therm Anal Calorim, 2002,67(1): 177-188.[18] RYU Z, ZHENG J, WANG M, et al. Nitrogen adsorption studies of PAN-based activated carbon fibers prepared by different activation methods[J]. J Colloid and Interface Sci, 2000, 230(2): 312-319.[19] BASHIR Z. The hexagonal mesophase in atactic polyacrylonitrile: A new interpretation of the phase transitions in the polymer[J]. J Macromol Sci-Physics, 2001, B40(1): 41-67. [20] 盛毅, 张彩虹, 徐耀, 等. 二维小角X射线散射法研究PAN基炭纤维内部微孔结构[J]. 新型炭材料, 2009, 24(3): 270-276.。
聚丙烯腈基碳纤维性质及其性能方面研究王立楠100201班摘要:汇述了碳纤维应用领域、世界碳纤维市场、世界碳纤维制造、聚丙烯腈(PAN)基碳纤维生产商与制造工艺以及中国碳纤维发展现状与趋势,尤其近年来在大飞机重大专项的牵引下,我国各地争上千吨级碳纤维项目,而形成“碳纤维热”。
同时,为缩小与国外先进水平的较大差距,提出“突破PAN原丝关键技术瓶颈,避免重复引进和重复研究,加快提升自主创新能力”3项发展建议。
关键词:碳纤维;应用领域;市场需求;产能;生产Study on polyacrylonitrile based carbon fiber properties and performanceLi’nan Wang class:100201Abstract: The carbon fiber application fields, world’s market, capacities of foreign producers and their extending plan, production technologies and the development situation & trend of carbon fiber in China are illustrated, especiallyin the drawing of China’s big airplane important project, several 1 000 t/a carbon fiber programs were constructed all over the country, forming “overheat”in carbon fiber in recent years. In the same time, three suggestions are put forward in order to shorten the distances with foreign companies, they are “making a breakthrough at the bottleneck of PAN precursor key technologies, avoiding the repeated imports of foreign equipment and re -searches, accelerating and raising the ability of innovation ”.Key words: carbon fiber; application territory; market demand; production capacity; advance1、聚丙烯腈(PAN)基碳纤维的用途PAN碳纤维是军事工业用量大、使用面广、地位极为重要的关键性高性能纤维材料,是各类军用高强、高模、高强高模型复合材料的原料及技术基础。