聚丙烯腈基碳纤维及原丝
- 格式:pdf
- 大小:1.05 MB
- 文档页数:41
聚丙烯腈基碳纤维原丝的湿法纺丝制备方法聚丙烯腈基碳纤维是一种具有高强度、高模量和优良的导电性能的碳纤维材料,在航天航空、汽车、船舶和体育器材等领域有广泛的应用。
湿法纺丝是制备聚丙烯腈基碳纤维原丝的一种常用方法,下面将介绍湿法纺丝制备聚丙烯腈基碳纤维原丝的详细步骤。
首先,制备聚丙烯腈溶液。
将聚丙烯腈与溶剂(如N,N-二甲基甲酰胺、N-甲基吡咯烷酮等)按一定比例加入反应釜中,加热搅拌使其溶解均匀。
然后,将溶解好的聚丙烯腈溶液过滤去除杂质,得到纯净的聚丙烯腈溶液。
接下来,进行复合纤维基体的制备。
将聚丙烯腈溶液泵入湿法纺丝机的纺丝头中。
湿法纺丝机是由一个旋转鼓和纺丝头组成的,旋转鼓上面覆有微孔的滤网,纺丝头下面有充湿设备。
当纺丝头接触到纤维基体水槽里的水时,聚丙烯腈溶液中的溶剂会被快速稀释和溶解,形成聚丙烯腈纤维基体。
然后,进行原丝的浸渍处理。
将湿法纺丝得到的聚丙烯腈纤维基体浸入含有聚维酰胺-6溶液的浸渍槽中,使聚丙烯腈纤维基体充分吸收聚维酰胺-6溶液。
聚维酰胺-6是一种常用的硫氮共聚物,用来增强聚丙烯腈基碳纤维的力学性能和导电性能。
完成浸渍后,将浸渍的聚丙烯腈纤维基体放入预氧化炉中进行预氧化处理。
预氧化是通过加热将聚丙烯腈纤维中的一部分结构能定型成均一分散的胺基腈结构,为后续的碳化反应做准备。
预氧化的温度和时间会影响聚丙烯腈基碳纤维的热稳定性和结晶程度。
最后,进行碳化和石墨化处理。
将预氧化后的聚丙烯腈纤维基体放入高温炉中进行碳化和石墨化处理。
碳化是通过加热将胺基腈结构分解生成纯碳结构,形成聚丙烯腈基碳纤维。
碳化的温度和时间会影响碳纤维的晶体结构和导电性能。
石墨化是在碳化的基础上进一步提高纤维的石墨化程度,使纤维具有更好的导电性能和力学性能。
以上就是湿法纺丝制备聚丙烯腈基碳纤维原丝的详细步骤。
这种方法制备的聚丙烯腈基碳纤维原丝具有一定的机械性能和导电性能,适用于多种应用场景。
聚丙烯腈(PAN)基碳纤维复合材料及其在大飞机上的应用徐志鹏北京化工研究院摘要自2007年国务院公布国产大飞机战略以来,这一领域的发展获得了持续的关注。
然而当今的国际大飞机市场被波音和空客两大公司所垄断,国产大飞机想要赢得市场面临多方面的挑战,其中之一就是高性能复合材料的应用。
聚丙烯腈基碳纤维复合材料诞生五十多年以来,发展迅猛,已经从传统的航空航天领域逐渐向汽车、风电等领域拓展市场,未来市场潜力巨大。
而目前中国仅能生产相当于T300,T700性能的碳纤维,不仅无法满足国产大飞机的材料需求,而且该领域的技术短板也限制了很多行业的发展。
本文在综合了前人研究成果的基础上,介绍了碳纤维的发展历程,PAN基碳纤维的关键技术和碳纤维复合材料在商用大飞机上的应用情况。
笔者认为,有市场竞争力的国产大飞机必须大量使用高质量的碳纤维复合材料,而突破PAN基碳纤维复合材料技术壁垒的关键在于生产高质量的碳原丝,其技术突破点在于干喷湿纺和凝胶纺丝生产技术的掌握与改进。
关键字:PAN基碳纤维,大飞机,碳原丝,干喷湿纺, 凝胶纺丝ABSTRACTLarge Plane Project has been fascinating Chinese public for years since its first announcement by State Council in 2007. China-made large plane is now facing varieties of challenge, while Boeing and Airbus are on the monopoly of market, one of the main challenge is the application of carbon fiber composite material. PAN based carbon fiber composite has witnessed a boost since it’s born in the past 50years, and now is expanding its application from space project to automobile and wind power generation projects. Carbon fiber industry in China cannot satisfy the demand of large plane project and many other industrial demands, because we can only made carbon fiber as well as T300 and T700 by our self. This article introduced the history of carbon fiber, key technology of PAN based carbon fiber and how PAN based carbon fiber is used in commercial large aircrafts. The author of this article believes the China-made large plane must use plenty of carbon fiber based composite to win the market and the key technology we need to break through is dry-wet spinning and gel spinning technique to make high performance PAN-based carbon fiber precursor.Key words: PAN based carbon fiber, large plane, carbon fiber precursor前言国产大飞机战略自发布以来,引发了广泛的关注。
聚丙烯腈基(PAN)碳纤维复合材料2010136103徐铭华摘要:对PAN基碳纤维的发展历程、现状以及以其为增强体的复合材料进行了综述,并对PAN基碳纤维增强复合材料在航天领域的主要使用情况进行了介绍,最后对我国高性能碳纤维复合材料的现状及发展重点进行了探讨。
关键词:PAN基碳纤维;复合材料;航天领域;使用Abstract:In this article, the development of PAN-based carbon fiber, its character and composites reinforced by it is overviewed. The main application of carbon fiber reinforced composites on aerospace is also introduced here .Finally, the status and future development of PAN-based carbon fiber is discussed.Key words: PAN-based carbon fiber; composites; aerospace; application1.前言随着科技的发展和进步以及各国对空间光学遥感器的进一步需求,空间遥感器必然向高分辨率、长焦距、大口径、大视场、大体积而质量更轻的方向发展[1],然而,发展质量更轻的空间光学遥感器,必须采用性能优异的轻质结构材料,碳纤维复合材料(CFRP)的使用是实现这一要求的最好途径之一。
CFRP是以树脂为基体,碳纤维为增强体的复合材料[2]碳纤维具有碳材料的固有本征特性,又有纺织纤维的柔软可加土性,是新一代军民两用的增强纤维。
它优异的综合性能是任何单一材料无法和其比拟的,现在己经成为先进复合材料的主要增强纤维之一。
CFRP是20世纪60年代中期崛起的一种新型结构材料,一经问世就显示了强大的生命力[3,4]。
聚丙烯腈基碳纤维的制备5.1聚丙烯腈纤维碳化碳化是聚丙烯腈纤维由有机高分子向无机碳结构转变的一个重要的工艺过程。
聚丙烯腈纤维的碳化一般由低温碳化和高温碳化两个工艺阶段组成,其中低温碳化的温度通常为300-1000℃,高温碳化的温度通常为1000-1600℃。
碳化是在高纯惰性气体保护下对PAN预氧化纤维作进一步高温处理的过程,在这个过程中,PAN预氧化纤维中直链状分子和预氧化所形成的环状分子进一步交联、环化及缩聚,使形成的环化和芳香结构向二维芳香层状结构转变,N、H、O等含量逐渐减少,C含量增加,最终C含量达90%以上。
PAN纤维在预氧化过程形成的梯形结构经过低温和高温碳化后逐步转变为折叠的乱层石墨结构,同时纤维直径变细,密度提高,强度和模量大幅度提高。
最终碳纤维的性能与碳化工艺密切相关,其中最高处理温度对纤维强度模量等性能影响最大。
5.1.1 碳化工艺聚丙烯腈原丝经过预氧化后形成具有耐热梯形结构的不溶不熔的预氧化纤维,随后进入以高纯惰性气体(通常为氮气)保护的低温碳化和高温碳化炉中进行碳化处理。
在碳化阶段,影响最终碳纤维性能的主要工艺因素包括温度、时间和张力。
另外,由于在碳化阶段纤维碳含量由预氧化纤维的63%左右提高到90%以上,纤维发生大量的裂解反应,裂解废气的排放也对碳纤维的性能产生很大影响。
聚丙烯腈纤维的碳化一般由低温碳化和高温碳化两个部分组成,其中低温碳化温度一般为300-1000℃,高温碳化为1000-1600℃。
低温碳化一般在由3-6个逐渐升高的温度区间的低温碳化炉中进行,第一段起始温度一般为300-350℃,然后以100-200℃温度间隔逐渐提高到700-900℃。
低温碳化温度很少超过1000℃。
高温碳化则是在低温碳化之后进行,一般是在一个与低温碳化炉独立的高温碳化炉中进行,高温碳化炉由1-5个温区组成,通常中段温度最高,两端温度相对较低,起到维持中段高温的作用。
对于生产制备通用型碳纤维,最高碳化温度一般在1200-1400℃。
碳纤维生产工艺介绍与设备介绍碳纤维生产工艺介绍与设备介绍.日新高温技术有限公司为您解答。
合肥日新高温技术有限公司成立于1998年是专业设计、研发、生产、销售高温热处理设备的民营高新技术企业。
碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。
生产工艺:(1)原丝制备,聚丙烯腈和粘胶原丝主要采用湿法纺丝制得,沥青和酚醛原丝则采用熔体纺丝制得。
制备高性能聚丙烯腈基碳纤维需采用高纯度、高强度和质量均匀的聚丙烯腈原丝,制备原丝用的共聚单体为衣康酸等。
制备各向异性的高性能沥青基碳纤维需先将沥青预处理成中间相、预中间相(苯可溶各向异性沥青)和潜在中间相(喹啉可溶各向异性沥青)等。
作为烧蚀材料用的粘胶基碳纤维,其原丝要求不含碱金属离子。
(2)预氧化(聚丙烯腈纤维200到300℃)、不融化(沥青200到400℃)或热处理(粘胶纤维240℃),以得到耐热和不熔的纤维,酚醛基碳纤维无此工序。
(3)碳化,其温度为:聚丙烯腈纤维1000到1500℃,沥青1500到1700℃,粘胶纤维400到2000℃。
(4)石墨化,聚丙烯腈纤维为2500到3000℃,沥青2500到2800℃,粘胶纤维3000到3200℃。
(5)表面处理,进行气相或液相氧化等,赋予纤维化学活性,以增大对树脂的亲和性。
(6)上浆处理,防止纤维损伤,提高与树脂母体的亲和性。
所得纤维具有各种不同的断面结构。
主要设备:①碳纤维预氧化炉:碳纤维预氧化炉设计应用于高性能碳纤维(粘胶基碳纤维、沥青基碳纤维、PAN基碳纤维)材料在350℃以下进行热处理之用。
主要设备:②碳纤维低温碳化炉:碳纤维低温碳化炉设计应用于高性能碳纤维(粘胶基碳纤维、沥青基碳纤维、PAN基碳纤维)材料在1000℃以下的低温碳化之用。
主要设备:③碳纤维高温碳化炉:碳纤维高温碳化炉设计应用于高性能碳纤维(粘胶基碳纤维、沥青基碳纤维、PAN基碳纤维)材料在1600℃以下的高温碳化之用。