机构学和机器人学
- 格式:ppt
- 大小:9.16 MB
- 文档页数:43
机构学与机器人学的几何基础和旋量代数是它们的重要组成部分。
几何学为机构学和机器人学提供了基本的空间建模和运动分析方法,因此是机构学和机器人学中不可或缺的学科。
在几何学中,三维空间中的物体可以用位置向量、旋转矩阵和其他几何变换来描述。
旋量代数是一种用于表示旋转和运动的数学方法,广泛应用于机构学和机器人学。
在旋量代数中,旋转可以用旋量来表示,这种表示方法具有许多优秀的性质,如运算的简洁性和不变性。
因此,几何学和旋量代数对于理解机构学和机器人学中的空间建模和运动分析是非常重要的。
这些概念在机构学和机器人学中都有广泛的应用,因此掌握这些知识对于研究和应用机构学和机器人学是非常必要的。
机器人工程专业介绍机器人工程是一门涵盖机械工程、电子工程、计算机科学和控制理论等多个领域知识的综合性学科。
它致力于设计、制造和控制自动化机器人系统,为现代工业、农业、医疗和服务领域提供智能化解决方案。
本文将从机器人工程专业的背景和发展、专业课程设置和就业前景来介绍这一专业。
一、机器人工程专业背景与发展随着工业4.0和人工智能的快速发展,机器人在工业生产、服务领域的应用愈发广泛。
机器人工程专业应运而生,成为全球高等教育领域的重要专业之一。
机器人工程专业一般包括机器人系统与控制、机构学与机械设计、电气与电子技术、计算机科学与智能控制等核心学科。
学生在学习过程中,需要通过理论与实践相结合的方式,掌握机器人的结构设计、运动控制、传感器应用、人机交互技术等基础知识和技能。
目前,机器人工程专业在全球范围内的相关课程设置和研究机构日益完善。
许多知名大学和科研机构设立了机器人实验室,并开展了相关研究。
同时,机器人工程专业也积极引入先进的人才培养模式,包括跨学科综合培养、产学研结合等,旨在培养具备全面素质和创新能力的机器人专业人才。
二、机器人工程专业课程设置机器人工程专业的课程设置主要分为基础课程和专业课程两个方面。
1. 基础课程基础课程包括数学、物理、计算机编程等内容,为学生打下坚实的理论基础。
这些课程旨在培养学生的数理思维能力和计算机应用能力,为后续的专业学习打下坚实的基础。
2. 专业课程专业课程包括机器人学、机构学与机械设计、自动控制理论、传感器技术、人机交互等内容。
这些课程涵盖了机器人工程专业的核心知识,通过理论与实践相结合的教学方法,学生可以掌握机器人的结构设计与控制、感知与决策、人机交互等技术。
除了专业课程之外,还有一些选修课程供学生选择,如计算机视觉、机器学习、自主导航等。
这些选修课程可以帮助学生深入了解机器人领域的前沿技术和发展趋势。
三、机器人工程专业的就业前景机器人工程专业毕业生的就业前景广阔。
机构学与机器人动力学分析随着现代工业的发展,机器人已成为自动化制造过程的一部分。
机器人不仅能够提高生产效率,还能够减少人力资源的需求以及生产中潜在的安全风险。
然而,机器人的设计和制造并不容易。
在机器人设计过程中,机构学和机器人动力学分析是两个十分重要的领域。
机构学是研究机构的运动和力学属性的分支学科。
机构是由多个零部件组成的系统,通过这些零部件的相互连接和相对运动来实现特定的运动。
在机器人中,机构是机器人的框架和机构间连接系统的总称。
机构学可以帮助工程师设计出更加可靠和高效的机构系统,从而提高机器人的运动精度和运动速度。
机器人动力学是探究机器人在不同动力学条件下的运动状态和行为的研究。
机器人动力学是机器人控制系统中的关键因素。
通过对机器人动力学的分析,机器人的精细控制和运动可以进一步发展,从而使其能够更好地适应其工作环境和应用场景。
机器人动力学的分析包括机器人的运动和反应时间、力和力矩等。
机器人的设计、制造和运动控制都需要机构学和机器人动力学的知识。
机器人的运动控制需要计算机程序来控制机器人的动作,这就需要工程师对机构学和机器人动力学的知识有深入的理解。
当机器人接收到指令后,它必须能够快速准确地完成特定的运动。
这就要求机器人的机构和动力学系统必须能够对外界条件做出反应,并保持平衡和稳定。
机器人的运动控制必须要能够持续准确地响应外界干扰,这就需要机器人的机构和动力学系统具有高度的鲁棒性,能够承受外界的各种变化和影响。
如果机器人的鲁棒性比较弱,它在遇到外界干扰时就会产生较大的姿态误差和失控风险。
机器人的动作也需要考虑终端执行器和控制系统的响应时间。
如果机器人的执行器和控制系统响应时间较长,机器人就会响应不及时,产生慢反应的现象。
在制造过程中,这样的现象会导致生产率下降,甚至会对生产设备的安全性产生风险。
总之,机器人的设计和制造是一个复杂而繁琐的过程。
机构学和机器人动力学的知识是机器人设计和制造过程中的关键因素,它们对机器人的有效性和性能产生了巨大的影响。
第三章 机器人的机型与结构3.1 串联机器人机械手的形态与自由度机械手的动作形态是由三种不同的单位动作——旋转、回转、伸缩组合而成的。
如图3-1所示,旋转或回转是指运动机构产生相对转动,两者的不同仅在于转动部件的轴线与转动轴线是否同轴,因而常常把它们笼统地称为转动。
伸缩是指运动机构产生直线运动,这在人臂的动作中是不存在的,但机械手引入了伸缩动作,运动范围就可以得到扩大。
根据单位动作组合方式的不同,机械手的动作形态一般归纳为以下四种类型:(1)直角坐标型(2)圆柱坐标型(3)极坐标型(4)多关节型。
(1)直角坐标机器人。
如图3-2所示,直角坐标型机器人可以在三个相互正交的方向上作直线伸缩运动,机器人的手爪位于一个笛卡尔坐标系内。
有的机器人还利用旋转关节控制手爪的姿态。
这类机器人手各个方向的运动是独立的,计算比较方便,末端位置和精度也是一定的,但由于占地面积大,往往限于特定的应用场合。
(2)圆柱坐标机器人。
圆柱坐标机器人主要由垂直柱子、水平手臂(或机械手)和底座构成。
水平机械手装在垂直柱子上,能自由伸缩,并可沿垂直柱子上下运动。
垂直柱子安装在底座上,并与水平机械手一起(作为一个部件)能在底座上移动。
这样,这种机器人的工作包迹(区间)就形成一段圆柱面,如图3-3所示。
因此,把这种机器人叫做圆柱坐标机器人。
(3)极坐标机器人。
这种机器人如图3-4所示。
它像坦克的炮塔一样。
机械手能够作里外伸缩运动、在垂直平面上摆动以及绕底座在水平面上转动。
因此,这种机器人的工作包迹形成球面的一部分,并被称为球面坐标机器人。
(4)多关节型机器人。
这种机器人主要由底座(或躯干)、上臂和前臂构成。
上臂和前臂可在通过底座的垂直(c)伸缩(a)旋转(b)回转图3-3 圆柱坐标机器人 图3-4 极坐标机器人 图3-2 直角坐标机器人平面上运动,如图3-5所示。
在前臂和上臂间,机械手有个肘关节;而在上臂和底座之间,有个肩关节。
在水平平面上的旋转运动,既可由肩关节进行,也可以绕底座旋转来实现。