2012年高考数学百所名校备考(新课标)_模拟试题09
- 格式:pdf
- 大小:1.76 MB
- 文档页数:13
专题12 导数与函数的单调性问题【高考地位】在近几年的高考中,导数在研究函数的单调性中的应用是必考内容,它以不但避开了初等函数变形的难点,定义法证明的繁杂,而且使解法程序化,优化解题策略、简化运算,具有较强的工具性的作用. 导数在研究函数的单调性中的应用主要有两方面的应用:一是分析函数的单调性;二是已知函数在某区间上的单调性求参数的取值范围.在高考中的各种题型中均有出现,其试题难度考查相对较大.类型一 求无参函数的单调区间万能模板 内 容使用场景 知函数()f x 的解析式判断函数的单调性 解题模板第一步 计算函数()f x 的定义域; 第二步 求出函数()f x 的导函数'()f x ;第三步 若'()0f x >,则()f x 为增函数;若'()0f x <,则()f x 为减函数.例1 【河北省衡水市枣强中学2020届高三下学期3月调研】已知函数()ln xx af x e+=. (1)当1a =时,判断()f x 的单调性;【变式演练1】函数,的单调递增区间为__________.【来源】福建省三明第一中学2021届高三5月校模拟考数学试题【变式演练2】已知函数,则不等式的解集为___________.【来源】全国卷地区“超级全能生”2021届高三5月联考数学(文)试题(丙卷)【变式演练3】【黑龙江省哈尔滨六中2020届高三高考数学(文科)二模】已知函数()2sin f x x x =-+,若3(3)a f =,(2)b f =--,2(log 7)c f =,则,,a b c 的大小关系为( ) A .a b c <<B .b c a <<C .c a b <<D .a c b <<【变式演练4】【湖南省湘潭市2020届高三下学期第四次模拟考试】定义在R 上的连续函数()f x ,导函数为()f x '.若对任意不等于1-的实数x ,均有()()()10x f x f x '+->⎡⎤⎣⎦成立,且()()211x f x f x e -+=--,则下列命题中一定成立的是( )A .()()10f f ->B .()()21ef f -<-C .()()220e f f -<D .()()220e f f ->类型二 判定含参数的函数的单调性万能模板 内 容使用场景 函数()f x 的解析式中含有参数解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步 讨论参数的取值范围,何时使得导函数'()f x 按照给定的区间大于0或小于0; 第三步 根据导函数的符号变换判断其单调区间.例2 【黑龙江省大庆市第四中学2020届高三下学期第四次检测】已知函数()()2ln 21f x x x ax a R =+-+∈.(1)讨论()f x 的单调性;【变式演练5】(主导函数是一次型函数)【福建省三明市2020届高三(6月份)高考数学(文科)模拟】已知函数()=1,f x nx ax a R -∈.(1)讨论函数f x ()的单调性;()2sin sin 2f x x x =⋅0,2x π⎡⎤∈⎢⎥⎣⎦()()2ln 1x xf x x e e -=+++()()2210f x f x --+≤【变式演练6】(主导函数为类一次型)【山东省威海荣成市2020届高三上学期期中考试】已知函数()x f x e ax -=+.(I )讨论()f x 的单调性;【变式演练7】(主导函数为二次型)【2020届山西省高三高考考前适应性测试(二)】已知函数()2ln af x x a x x=--,0a ≥. (1)讨论()f x 的单调性;【变式演练8】(主导函数是类二次型)【山西省太原五中2020届高三高考数学(理科)二模】已知函数2()(1)x f x k x e x =--,其中k ∈R.(1)当k 2≤时,求函数()f x 的单调区间;【变式演练9】已知函数,若在区间上单调递增,则的取值范围是( )A .B .C .D .【来源】江西省南昌市新建区第一中学2020-2021学年高三上学期期末考试数学(文)试题类型三 由函数单调性求参数取值范围万能模板 内 容使用场景 由函数单调性求参数取值范围解题模板第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 根据题意转化为相应的恒成立问题; 第三步 得出结论.例3.【江苏省南通市2019-2020学年高三下学期期末】若()()21ln 242f x x b x =-++在()2,-+∞上是减函数,则实数b 的范围是( ) A .(],1-∞-B .(],0-∞C .(]1,0-D .[)1,-+∞【变式演练11】(转化为任意型恒成立)【四川省绵阳市2020高三高考数学(文科)三诊】函数2()(2)x f x e x ax b =-++在(1,1)-上单调递增,则2816a b ++的最小值为( )A .4B .16C .20D .18()22ln f x x x =-()f x ()2,1m m +m 1,14⎡⎫⎪⎢⎣⎭1,4⎡⎫+∞⎪⎢⎣⎭1,12⎡⎫⎪⎢⎣⎭[)0,1【变式演练12】(转化为变号零点)【山西省运城市2019-2020学年高三期末】已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是( ) A .[)2,8B .[]2,8C .(][),28,-∞+∞ D .()2,8【变式演练13】(直接给给定单调区间)【辽宁省六校协作体2019-2020学年高三下学期期中考试】已知函数()32113f x x mx nx =+++的单调递减区间是()3,1-,则m n +的值为( ) A .-4B .-2C .2D .4【变式演练14】(转化为存在型恒成立)【四川省仁寿第一中学北校区2019-2020学年高三月考】若f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,则a 的取值范围是( )A .(﹣∞,0]B .(﹣∞,0)C .[0,+∞)D .(0,+∞)【高考再现】1.(2021·全国高考真题(理))设2ln1.01a =,ln1.02b =, 1.041c =-.则( ) A .a b c <<B .b c a <<C .b a c <<D .c a b <<2.(2021·全国高考真题(理))已知且,函数.(1)当时,求的单调区间;(2)若曲线与直线有且仅有两个交点,求a 的取值范围. 3.已知函数. (1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:. 【来源】2021年全国新高考Ⅰ卷数学试题 4.【2017山东文,10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =5.【2017江苏,11】已知函数31()2e ex x f x x x =-+-, 其中e 是自然对数的底数. 若2(1)(2)0f a f a -+≤,0a >1a ≠()(0)a x x f x x a=>2a =()f x ()y f x =1y =()()1ln f x x x =-()f x a b ln ln b a a b a b -=-112e a b<+<则实数a 的取值范围是 ▲ .6.【2020年高考全国Ⅰ卷文数20】已知函数()()e 2xf x a x =-+.(1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.7.【2020年高考全国Ⅰ卷理数21】已知函数()2e xf x ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围. 8.【2020年高考全国Ⅱ卷文数21】已知函数()2ln 1f x x =+. (1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.9.(2018年新课标I 卷文)已知函数f (x )=ae x −lnx −1∈ (1)设x =2是f (x )的极值点.求a ,并求f (x )的单调区间; (2)证明:当a ≥1e 时,f (x )≥0∈10.【2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)】已知函数f(x)=1x −x +alnx ∈ (1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x 1,x 2,证明:f (x 1)−f (x 2)x 1−x 2<a −2.【反馈练习】1.【2020届广东省梅州市高三总复习质检(5月)】已知0x >,a x =,22xb x =-,()ln 1c x =+,则( )A .c b a <<B .b a c <<C .c a b <<D .b c a <<2.【2020届山东省威海市高三下学期质量检测】若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为( )A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭3.【河南省十所名校2019—2020学年高三毕业班阶段性测试】若函数()sin24sin f x x x m x =--在[0,2π]上单调递减,则实数m 的取值范围为( ) A .(2,2)-B .[2,2]-C .(1,1)-D .[1,1]-4.【黑龙江哈尔滨市第九中学2019-2020学年高三阶段验收】函数()3f x x ax =+,若对任意两个不等的实数()1212,x x x x >,都有()()121233f x f x x x ->-恒成立,则实数a 的取值范围是( ) A .()2,-+∞B .[)3,+∞C .(],2-∞-D .(),3-∞5.【湖北省武汉市新高考五校联合体2019-2020学年高三期中检测】若函数3211()232f x x x ax =-++ 在2,3⎡⎫+∞⎪⎢⎣⎭上存在单调增区间,则实数a 的取值范围是_______. 6.【四川省宜宾市2020届高三调研】若对(]0,1t ∀∈,函数2()(4)2ln g x x a x a x =-++在(,2)t 内总不是单调函数,则实数a 的取值范围是______7.【河南省南阳市第一中学校2019-2020学年高三月考】若函数()22ln f x x x =-在定义域内的一个子区间()1,1k k -+上不是单调函数,则实数k 的取值范围______.8.若函数在区间是增函数,则的取值范围是_________.【来源】陕西省宝鸡市眉县2021届高三下学期高考模拟文科数学试题 9.已知函数,若对任意两个不同的,,都有成立,则实数的取值范围是________________【来源】江西省景德镇市2021届高三上学期期末数学(理)试题10.【黑龙江省哈尔滨师范大学附属中学2020-2021学年高三上学期开学考试】(1)求函数()sin cos (02)f x x x x x π=+<<的单调递增区间;()cos 2sin f x x a x =+,62ππ⎛⎫⎪⎝⎭a ()()1ln 1xf x x x+=>1x 2x ()()1212ln ln f x f x k x x -≤-k(2)已知函数2()ln 43f x a x x x =-++在1,22⎡⎤⎢⎥⎣⎦上单调递增,求实数a 的范围.11.【黑龙江省哈尔滨三中2020届高三高考数学(文科)三模】函数()()21ln 1x f x x x -=-+. (1)求证:函数()f x 在()0,∞+上单调递增; (2)若m ,n 为两个不等的正数,求证ln ln 2m n m n m n->-+. 12.【湖北省黄冈中学2020届高三下学期适应性考试】已知函数()()ln 1ln f x ax x a x =-+,()f x 的导数为()f x '.(1)当1a >-时,讨论()f x '的单调性; (2)设0a >,方程()3f x x e =-有两个不同的零点()1212,x x x x <,求证121x e x e+>+. 13.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】已知函数()()()ln 12f x a x x a =+-∈R .(1)讨论()f x 的单调性;(2)当0x ≥时,()1xf x e ≥-,求实数a 的取值范围.14.【2020届山西省高三高考考前适应性测试(二)】已知函数()xf x ae ex =-,()()ln 1xg x x b x e =--,其中,a b ∈R .(1)讨论()f x 在区间()0,∞+上的单调性; (2)当1a =时,()()0f x g x ≤,求b 的值.15.【河南省2020届高三(6月份)高考数学(文科)质检】已知函数2()22ln ()f x x ax x a R =-+∈.(1)讨论函数()f x 的单调性;(2)若()f x 存在两个极值点()1221,x x x x >,求证:()()()2121(2)f x f x a x x -<--. 16.【山东省2020年普通高等学校招生统一考试数学必刷卷】已知实数0a >,函数()22ln f x a x a x x=++,()0,10x ∈.(1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x ,()()22,Q x f x ()12xx <处的切线分别为12,l l ,且12,l l 在y 轴上的截距分别为12,b b .若12//l l ,求12b b -的取值范围.17.【福建省2020届高三(6月份)高考数学(理科)模拟】已知函数()()()2ln 222f x x a x x =++++,0a >.(1)讨论函数()f x 的单调性; (2)求证:函数()f x 有唯一的零点.18.【山东省潍坊市五县2020届高三高考热身训练考前押题】已知函数()f x 满足222(1)()2(0)2x f f x x f x e -'=+-,21()(1)24x g x f x a x a ⎛⎫=-+-+ ⎪⎝⎭,x ∈R . (1)求函数()f x 的解析式; (2)求函数()g x 的单调区间;(3)当2a ≥且1≥x 时,求证:1ln ln x e x e a x x--<+-.19.【陕西省商洛市商丹高新学校2020届高三下学期考前适应性训练】已知函数3()ln ()f x x a x a R =-∈.∈1)讨论函数()f x 的单调性∈∈2)若函数()y f x =在区间(1,]e 上存在两个不同零点∈求实数a 的取值范围.20.【2020年普通高等学校招生全国统一考试伯乐马模拟考试】已知函数()()22xxf x ax a e e =-++.(1)讨论函数()f x 的单调性; (2)若函数()()()2212x x g x f x ax x a e e =-++-存在3个零点,求实数a 的取值范围. 21.【金科大联考2020届高三5月质量检测】已知函数()()()()()22224ln 2144f x x ax x a x a a x a =--+++∈R .(∈)讨论函数()f x 的单调性;(∈)若0a ≤,证明:函数()f x 在区间)1,a e -⎡+∞⎣有且仅有一个零点.22.已知函数.(1)若,求函数的单调区间; (2)求证:对任意的,只有一个零点.【来源】全国Ⅱ卷2021届高三高考数学(理)仿真模拟试题 23.已知函数. (1)当时,判断的单调性;(2)若有两个极值点,求实数的取值范围.【来源】安徽省合肥六中2021届高三6月份高考数学(文)模拟试题 24.已知函数. (1)求的单调性;(2)设函数,讨论的零点个数. 【来源】重庆市高考康德卷2021届高三模拟调研卷数学试题(三) 25.已知函数, (1)讨论的单调性;(2)若,,,用表示,的最小值,记函数,,讨论函数的零点个数.【来源】山东省泰安肥城市2021届高三高考适应性训练数学试题(二) 26.已知() (1)讨论的单调性;(2)当时,若在上恒成立,证明:的最小值为. 【来源】贵州省瓮安中学高三2021届6月关门考试数学(理)试题27.已知函数.(1)讨论的单调性;()321()13f x x a x x =--+2a =-()f x a ∈R ()f x ()21ln 2f x x ax x ax =-+1a =()f x ()f x a ()()cos sin ,0,2f x x x x x π=-∈()f x ()()(01)g x f x ax a =-<<()g x ()ln()xf x x a x a=+-+a R ∈()f x 4a =()1cos (2sin )2g x x x mx x =++0m >}{min ,m n m n }{()min ()()h x f x g x =,[],x ππ∈-()h x ()ln f x x ax =+a R ∈()f x 1a =()()1f x k x b ≤++()0,∞+221k b k +--1e -+2()2ln ,()f x x ax x a R =+++∈()f x(2)若恒成立,求的最大值.【来源】广东省佛山市五校联盟2021届高三5月数学模拟考试试题 28.已知函数. (1)若,证明:在单调递增; (2)若恒成立,求实数的取值范围.【来源】黑龙江省哈尔滨市第三中学2021届高三五模数学(理)试题 29.已知函数. (1)若在上为增函数,求实数a 的取值范围;(2)设,若存在两条相互垂直的切线,求函数在区间上的最小值.【来源】四川省达州市2021 届高三二模数学(文)试题 30.已知函数. (1)如果函数在上单调递减,求的取值范围; (2)当时,讨论函数零点的个数.【来源】内蒙古赤峰市2021届高三模拟考试数学(文)试题 31.已知函数. (1)若在R 上是减函数,求m 的取值范围;(2)如果有一个极小值点和一个极大值点,求证 有三个零点. 【来源】安徽省淮南市2021届高三下学期一模理科数学试题32.已知函数.(1)若函数在上为增函数,求实数的取值范围; (2)当时,证明:函数有且仅有3个零点. 【来源】重庆市第二十九中学校2021届高三下学期开学测试数学试题()xf x e ≤a ()ln x f x xe ax a x =--0a ≤()f x ()0,∞+()0f x ≥a 21()cos 2f x x ax x =++()f x [0,)+∞21()()2g x f x x =-()g x sin ()1()x g x F x x -+=,2ππ⎡⎤⎢⎥⎣⎦1()ln(1)1f x a x x =-+-()()22g x f x x =-+(1,)+∞a 0a >()y f x =21()e 1()2x f x x mx m =+-+∈R ()f x ()f x 1x 2x ()f x ()e sin 1xf x ax x =-+-()f x ()0,∞+a 12a ≤<()()()2g x x f x =-11/ 11。
【金榜高考】高考历史二年名校模拟一年权威预测27 选修4一、选择题1.(2012·湖州模拟)康熙帝一直被誉为康乾盛世的开创者。
但有学者提出应当重新评价他,认为中国之落伍恰恰始自康熙帝,因为他处在剧变的时代却拒绝重大的变革。
下列对历史人物的评价和该学者评价思路相类似的是( )A.秦王嬴政顺应潮流实现统一B.唐太宗奠定大唐盛世C.明太祖废除丞相高度集权D.康熙帝捍卫了国家主权2.(2011·宁波模拟)2011年4月20日至2011年5月11日,泰国孔子学院29名学生在中国天津体验中国文化夏令营活动,孔子本人就是经常向不同的人请教才成为博学的人。
下列不符合史实的是( )A.曾到宋国考察殷礼B.到鲁国太庙考察周的礼仪C.到齐国考察周的典章制度D.到洛邑向老子请教有关周礼的问题3.(2012·武汉模拟)马克思说:他是“古代最伟大的思想家”。
恩格斯说:他是“古代最博学的人物”。
黑格尔说:他是“人类的导师”。
罗素说:他是“第一个像教授一样地著书立说的人”。
以上材料中的“他”是指古希腊文化的集大成者( )A.泰勒斯B.苏格拉底C.柏拉图D.亚里士多德4.(2012·株洲模拟)华盛顿在1787年给友人的一封信中谈道:“新英格兰出现的骚乱,我们商业上的不景气以及笼罩全国的那种低迷消沉情绪,在很大程度上归咎于最高权力机构的无权。
”华盛顿这段话表明美国建国之初所要解决的问题是( )A.平息各地骚乱B.缓和各州之间的矛盾C.发展社会经济D.加强中央政府的权力5.(2012·汝阳模拟)某同学在学习了拿破仑的相关历史后,说:“因为拿破仑的对外战争沉重打击了欧洲的封建势力,所以,拿破仑的对外战争是正义的。
”这个“前提——结论”式推理属于下列哪一种情况( )A.前提正确,结论错误B.前提正确,结论正确C.前提错误,结论正确D.前提错误,结论错误6.(2012·杭州模拟)右下图是20世纪30年代印度国大党使用的党旗。
2019年湖南省百所名校大联考(长郡中学、湖南师大附中等)高考数学冲刺试卷(文科)(4月份)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项1.(5分)全集U=R,A={x|y=log2018(x﹣1)},,则A∩(∁U B)=()A.[1,2]B.[1,2)C.(1,2]D.(1,2)2.(5分)若x,y为共轭复数,且(x+y)2﹣3xyi=4﹣6i,则|x|+|y|等于()A.B.2C.2D.43.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2B.0C.1D.24.(5分)北京市2016年12个月的PM2.5平均浓度指数如图所示.由图判断,四个季度中PM2.5的平均浓度指数方差最小的是()A.第一季度B.第二季度C.第三季度D.第四季度5.(5分)下列四个命题:p1:任意x∈R,2x>0;p2:存在x∈R,x2+x+1<0,p3:任意x∈R,sin x<2x;p4:存在x∈R,cos x>x2+x+1.其中的真命题是()A.p1,p2B.p2,p3C.p3,p4D.p1,p46.(5分)某几何体的三视图如图,则该几何体的体积是()A.4B.C.D.27.(5分)已知函数f(x)=sin(x+),以下结论错误的是()A.函数y=f(x)的图象关于直线x=对称B.函数y=f(x)的图象关于点(π,0)对称C.函数y=f(x+π)在区间[﹣π,]上单调递增D.在直线y=1与曲线y=f(x)的交点中,两交点间距离的最小值为8.(5分)已知,给出下列四个命题:P1:∀(x,y)∈D,x+y≥0;P2:∀(x,y)∈D,2x﹣y+1≤0;;;其中真命题的是()A.P1,P2B.P2,P3C.P3,P4D.P2,P49.(5分)已知△ABC是边长为2的正三角形,点P为平面内一点,且||=,则)的取值范围是()A.[0,12]B.[0,]C.[0,6]D.[0,3]10.(5分)已知定义在R上的奇函数f(x)满足当x≥0时,f(x)=1og2(x+2)+x+b,则|f(x)|>3的解集为()A.(﹣∞,﹣2)∪(2,+∞)B.(﹣∞,﹣,4)∪(4,+∞)C.(﹣2,2)D.(﹣4,4)11.(5分)直线y=k(x+2)(k>0)与抛物线C:y2=8x交于A,B两点,F为C的焦点,若sin∠ABF=2sin∠BAF,则k的值是()A.B.C.1D.12.(5分)已知函数,若x=2是函数f(x)的唯一极值点,则实数k的取值范围是()A.B.C.(0,2]D.[2,+∞)二、填空题:本题共4小题,每小题5分,共20分.13.(5分)执行如图的程序框图,若,则输出n的值为.14.(5分)已知P为抛物线C:y=x2上一动点,直线l:y=2x﹣4与x轴、y轴交于M,N 两点,点A(2,﹣4)且=+,则λ+μ的最小值为.15.(5分)锐角三角形ABC中,∠A=30°,BC=1,则△ABC面积的取值范围为.16.(5分)已知A,B,C,D四点均在以点O1为球心的球面上,且AB=AC=AD=2,BC=BD=4,CD=8.若球O2在球O1内且与平面BCD相切,则球O2直径的最大值为三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(12分)已知数列{a n}满足:a1+a2+a3+…+a n=n﹣a n,(n=1,2,3,…)(Ⅰ)求证:数列{a n﹣1}是等比数列;(Ⅱ)令b n=(2﹣n)(a n﹣1)(n=1,2,3,…),如果对任意n∈N*,都有b n+t≤t2,求实数t的取值范围.18.(12分)如图,在三棱锥V﹣ABC中,∠ABC=45°,VB=2,,BC=1,,且V在平面ABC上的射影D在线段AB上.(Ⅰ)求证:DC⊥BC;(Ⅱ)设二面角V﹣AC﹣B为θ,求θ的余弦值.19.(12分)近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表l所示:表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,y=a+bx与y=c•d x(c,d均为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:x i y i x i u i其中参考公式:对于一组数据(u1,υ1),(u2,υ2),…,(u n,υn),其回归直线的斜率和截距的最小二乘估计公式分别为:.20.(12分)已知抛物线C:x2=﹣2py(p>0)的焦点到准线的距离为,直线l:y=a(a <﹣1)与抛物线C交于A,B两点,过这两点分别作抛物线C的切线,且这两条切线相交于点D.(1)若D的坐标为(0,2),求a的值;(2)设线段AB的中点为N,点D的坐标为(0,﹣a),过M(0,2a)的直线l′与线段DN为直径的圆相切,切点为G,且直线l′与抛物线C交于P,Q两点,求的取值范围.21.(12分)已知函数(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设g(x)=e x+mx2﹣2e2﹣3,当a=e2+1时,对任意x1∈[1,+∞),存在x2∈[1,+∞),使g(x2)≤f(x1),求实数m的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C1的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2sinθ.(1)写出C1的极坐标方程和C2的直角坐标方程;(2)已知点M1、M2的极坐标分别为和(2,0),直线M1M2与曲线C2相交于P,Q两点,射线OP与曲线C1相交于点A,射线OQ与曲线C1相交于点B,求的值.[选修4-5:不等式选讲]23.已知函数f(x)=+.(1)求f(x)≥f(4)的解集;(2)设函数g(x)=k(x﹣3),k∈R,若f(x)>g(x)对任意的x∈R都成立,求k的取值范围.2019年湖南省百所名校大联考(长郡中学、湖南师大附中等)高考数学冲刺试卷(文科)(4月份)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项1.(5分)全集U=R,A={x|y=log2018(x﹣1)},,则A∩(∁U B)=()A.[1,2]B.[1,2)C.(1,2]D.(1,2)【解答】解:A={x|y=log2018(x﹣1)}={x|x﹣1>0}={x|x>1},={y|y=≥2},则∁U B={x|x<2},则A∩(∁U B)={x|1<x<2},故选:D.2.(5分)若x,y为共轭复数,且(x+y)2﹣3xyi=4﹣6i,则|x|+|y|等于()A.B.2C.2D.4【解答】解:x,y为共轭复数,可设x=a+bi,y=a﹣bi(a,b∈R).∵(x+y)2﹣3xyi=4﹣6i,∴4a2﹣3(a2+b2)i=4﹣6i,∴,解得a2=b2=1.∴|x|+|y|=2=2.故选:C.3.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2B.0C.1D.2【解答】解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,故选:A.4.(5分)北京市2016年12个月的PM2.5平均浓度指数如图所示.由图判断,四个季度中PM2.5的平均浓度指数方差最小的是()A.第一季度B.第二季度C.第三季度D.第四季度【解答】解:根据图中数据知,第一季度的数据是72.25,43.96,93.13;第二季度的数据是66.5,55.25,58.67;第三季度的数据是59.36,38.67,51.6;第四季度的数据是82.09,104.6,168.05;观察得出第二季度的数据波动性最小,所以第二季度的PM2.5平均浓度指数方差最小.故选:B.5.(5分)下列四个命题:p1:任意x∈R,2x>0;p2:存在x∈R,x2+x+1<0,p3:任意x∈R,sin x<2x;p4:存在x∈R,cos x>x2+x+1.其中的真命题是()A.p1,p2B.p2,p3C.p3,p4D.p1,p4【解答】解:p1:任意x∈R,2x>0,由指数函数的性质得命题p1是真命题;p2:存在x∈R,x2+x+1<0,由x2+x+1=(x+)2+≥,得命题p2是假命题;p3:任意x∈R,sin x<2x,由x=﹣时,sin x>2x,得命题p3是假命题;p4:存在x∈R,cos x>x2+x+1.命题p4是真命题.故选:D.6.(5分)某几何体的三视图如图,则该几何体的体积是()A.4B.C.D.2【解答】解:根据三视图,得直观图是三棱锥,底面积为=2,高为;所以,该棱锥的体积为V=S底面积•h=×2=.故选:B.7.(5分)已知函数f(x)=sin(x+),以下结论错误的是()A.函数y=f(x)的图象关于直线x=对称B.函数y=f(x)的图象关于点(π,0)对称C.函数y=f(x+π)在区间[﹣π,]上单调递增D.在直线y=1与曲线y=f(x)的交点中,两交点间距离的最小值为【解答】解:对于函数f(x)=sin(x+),令x=,求得f(x)=,为函数的最大值,可得它的图象关于直线x=对称,故A正确;令x=,求得f(x)=0,可得它的图象关于点(,0)对称,故B正确;函数y=f(x+π)=sin(x+π+)=﹣sin(x+),在区间[﹣π,]上,x+∈[﹣,],故f(x+π)单调递减,故C错误;令f(x)=1,求得sin(x+)=,∴x+=2kπ+,或x+=2kπ+,k∈Z,故在直线y=1与曲线y=f(x)的交点中,两交点间距离的最小值为,故D正确,故选:C.8.(5分)已知,给出下列四个命题:P1:∀(x,y)∈D,x+y≥0;P2:∀(x,y)∈D,2x﹣y+1≤0;;;其中真命题的是()A.P1,P2B.P2,P3C.P3,P4D.P2,P4【解答】解:作出集合D表示的平面区域如图所示:设P(x,y)为平面区域内的任意一点,则P在△ABC内部或边上.显然当P为(﹣2,0)时,x+y=﹣2<0,故而命题p1为假命题;作出直线2x﹣y+1=0,由图象可知△ABC在直线2x﹣y+1=0的上方,故而对于任意一点P,都有2x﹣y+1≤0,故命题p2为真命题;取点M(1,﹣1),连结MB,MC,则k MB=﹣,k MC=﹣3,∴﹣3≤≤﹣,故命题p3错误;联立方程组,解得A(﹣1,3),故OA2=10,故命题p4正确.故选:D.9.(5分)已知△ABC是边长为2的正三角形,点P为平面内一点,且||=,则)的取值范围是()A.[0,12]B.[0,]C.[0,6]D.[0,3]【解答】解:∵)=•(+++)=•(2++)=2||2+||×|+|×cosθ=6+6cosθ∵﹣1≤cosθ≤1∴0≤6+6cosθ≤12故选:A.10.(5分)已知定义在R上的奇函数f(x)满足当x≥0时,f(x)=1og2(x+2)+x+b,则|f(x)|>3的解集为()A.(﹣∞,﹣2)∪(2,+∞)B.(﹣∞,﹣,4)∪(4,+∞)C.(﹣2,2)D.(﹣4,4)【解答】解:由题意,f(0)=1+b=0,∴b=﹣1,∴f(x)=1og2(x+2)+x﹣1,∴f (2)=3,函数在R上单调递增,∵|f(x)|>3,∴|f(x)|>f(2),∴f(x)>2或f(x)<﹣2,∴x>2或x<﹣2,故选:A.11.(5分)直线y=k(x+2)(k>0)与抛物线C:y2=8x交于A,B两点,F为C的焦点,若sin∠ABF=2sin∠BAF,则k的值是()A.B.C.1D.【解答】解:分别过A,B项抛物线的准线作垂线,垂足分别为M,N,则AF=AM,BF=BN,∵sin∠ABF=2sin∠BAF,∴AF=2BF,∴AM=2BN,∴=,即B为AP的中点.联立方程组,消去x可得:y2﹣+16=0,设A(,y1),B(,y2),则y1y2=16,又B是P A的中点,∴y1=2y2,∴y2=2,即B(1,2),又P(﹣2,0),∴直线AB的斜率为.故选:B.12.(5分)已知函数,若x=2是函数f(x)的唯一极值点,则实数k的取值范围是()A.B.C.(0,2]D.[2,+∞)【解答】解:∵函数f(x)的定义域是(0,+∞)∴f′(x)=+﹣k=,∵x=2是函数f(x)的唯一一个极值点∴x=2是导函数f′(x)=0的唯一根,∴e x﹣kx2=0在(0,+∞)无变号零点,即k=在x>0上无变号零点,令g(x)=,因为g'(x)=,所以g(x)在(0,2)上单调递减,在x>2 上单调递增所以g(x)的最小值为g(2)=,所以必须k≤,故选:A.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)执行如图的程序框图,若,则输出n的值为5.【解答】解:模拟程序的运行,可得:循环依次为:;结束循环,输出n=5.故答案为:5.14.(5分)已知P为抛物线C:y=x2上一动点,直线l:y=2x﹣4与x轴、y轴交于M,N两点,点A(2,﹣4)且=+,则λ+μ的最小值为.【解答】解:由题意得M(2,0),N(0,﹣4),由=+,得(x﹣2,y+4)=λ(0,4)+μ(﹣2,0),∴x﹣2=﹣2μ,y+4=4λ,因此.故答案为:.15.(5分)锐角三角形ABC中,∠A=30°,BC=1,则△ABC面积的取值范围为.【解答】解:∵∠A=30°,BC=1,可得:,∴AB=2sin C,AC=2sin B=2sin(150°﹣C)=2(cos C+sin C)=cos C+sin C,∴S△ABC=AB•AC,∵C∈(,),可得:2C﹣∈(0,),∴sin(2C﹣)∈(0,1],可得:,则△ABC面积的取值范围为,故答案为:.16.(5分)已知A,B,C,D四点均在以点O1为球心的球面上,且AB=AC=AD=2,BC=BD=4,CD=8.若球O2在球O1内且与平面BCD相切,则球O2直径的最大值为8【解答】解:如图三棱锥A﹣BCD,底面为等腰直角三角形,斜边为CD,底面圆心为CD中点F,由AB=AC=AD,可得AF⊥平面BCD,球心O1在直线AF上,AF===2,设球O1的半径为r1,可得r12=(r1﹣2)2+16,解得r1=5,由球O2在球O1内且与平面BCD相切,则球心O2在直线AE上,球O2直径的最大值为10﹣2=8.故答案为:8.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(12分)已知数列{a n}满足:a1+a2+a3+…+a n=n﹣a n,(n=1,2,3,…)(Ⅰ)求证:数列{a n﹣1}是等比数列;(Ⅱ)令b n=(2﹣n)(a n﹣1)(n=1,2,3,…),如果对任意n∈N*,都有b n+t≤t2,求实数t的取值范围.【解答】(Ⅰ)证明:由题可知:a1+a2+a3+…+a n=n﹣a n,①a1+a2+a3+…+a n+1=n+1﹣a n+1,②②﹣①可得2a n+1﹣a n=1 …..(3分)即:a n+1﹣1=(a n﹣1),又a1﹣1=﹣…..(5分)所以数列{a n﹣1是以﹣为首项,以为公比的等比数列….…..(6分)(Ⅱ)解:由(Ⅰ)可得a n=1﹣,…(7分)∴b n=(2﹣n)(a n﹣1)=…(8分)由b n+1﹣b n=﹣=>0可得n<3由b n+1﹣b n<0可得n>3 …(9分)所以b1<b2<b3=b4,b4>b5>…>b n>…故b n有最大值b3=b4=所以,对任意n∈N*,都有b n+t≤t2,等价于对任意n∈N*,都有≤t2﹣t成立…(13分)所以t2﹣t﹣≥0解得t≥或t≤﹣所以,实数t的取值范围是(﹣∞,]∪[,+∞)…(14分)18.(12分)如图,在三棱锥V﹣ABC中,∠ABC=45°,VB=2,,BC=1,,且V在平面ABC上的射影D在线段AB上.(Ⅰ)求证:DC⊥BC;(Ⅱ)设二面角V﹣AC﹣B为θ,求θ的余弦值.【解答】18(Ⅰ)证明:VB=2,,BC=1⇒BC⊥VC,VD⊥平面ABC⇒VD⊥BC,VD∩VC=V,∴BC⊥平面VCD⇒DC⊥BC.(Ⅱ)解:作DE⊥AC垂足为E,连接VE,则∠VED为二面角V﹣AC﹣B的平面角.在△BCD中,∠DBC=45°,DC⊥BC,BC=1,∴CD=1,,∠BDC=45°,在△ADC中,∠ADC=135°,,∴,∴,又VD⊥平面ABC,∴VD⊥CD,又,∴,∴.19.(12分)近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表l所示:表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,y=a+bx与y=c•d x(c,d均为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:x i y i x i u i其中参考公式:对于一组数据(u1,υ1),(u2,υ2),…,(u n,υn),其回归直线的斜率和截距的最小二乘估计公式分别为:.【解答】解:(1)根据散点图判断,y=c•d x适宜作为扫码支付的人数y关于活动推出天数x的回归方程类型;…………(3分)(2)由y=c•d x,两边同时取常用对数得:1gy=1g(c•d x)=1gc+1gd•x;设1gy=v,∴v=1gc+1gd•x;………………(5分)计算,,∴lg==,………………(7分)把样本中心点(4,1.54)代入v=1gc+1gd•x,得:,∴,∴,……………………(9分)∴y关于x的回归方程式:;………(10分)把x=8代入上式,;活动推出第8天使用扫码支付的人次为3470;…………………………(12分)20.(12分)已知抛物线C:x2=﹣2py(p>0)的焦点到准线的距离为,直线l:y=a(a <﹣1)与抛物线C交于A,B两点,过这两点分别作抛物线C的切线,且这两条切线相交于点D.(1)若D的坐标为(0,2),求a的值;(2)设线段AB的中点为N,点D的坐标为(0,﹣a),过M(0,2a)的直线l′与线段DN为直径的圆相切,切点为G,且直线l′与抛物线C交于P,Q两点,求的取值范围.【解答】解:(1)由抛物线C:x2=﹣2py(p>0)的焦点到准线的距离为,得p=,则抛物线C的方程为x2=﹣y.设切线AD的方程为y=kx+2,代入x2=﹣y得x2+kx+2=0,由△=k2﹣8=0得k=±2.当k=2时,A的横坐标为﹣=﹣,则a=﹣(﹣)2=﹣2,当k=﹣2时,同理可得a=﹣2.(2)由(1)知,N(0,a),D(0,﹣a),则以线段ND为直径的圆为圆O:x2+y2=a2,根据对称性,只要探讨斜率为正数的直线l′即可,因为G为直线l′与圆O的切点,所以OG⊥MG,cos∠MOG==,所以∠MOG=,所以|MG|=|a|,则直线l′的斜率为,所以直线l′的方程为y=x+2a,代入x2=﹣y得x2+x+2a=0,设P(x1,y1),Q(x2,y2),所以x1+x2=﹣,x1x2=2a,△=3﹣8a>0,所以|PQ|=•=2,所以==•=•,设t=﹣,因为a<﹣1,所以t∈(0,1),所以3t2+8t∈(0,11),所以=•=•∈(0,).21.(12分)已知函数(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设g(x)=e x+mx2﹣2e2﹣3,当a=e2+1时,对任意x1∈[1,+∞),存在x2∈[1,+∞),使g(x2)≤f(x1),求实数m的取值范围.【解答】解:(I)f(x)的定义域为(0,+∞),又,令f'(x)=0,得x=1或x=a﹣1.当a≤1,则a﹣1≤0,由f'(x)<0得0<x<1,由f'(x)>0得x>1,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.当1<a<2,则0<a﹣1<1,由f'(x)<0得a﹣1<x<1,由f'(x)>0得0<x<a﹣1或x>1,函数f(x)在(a﹣1,1)上单调递减,在(0,a﹣1)和(1,+∞)上单调递增.当a=2,则a﹣1=1,可得f'(x)≥0,此时函数f(x)在(0,+∞)上单调递增.当a>2时,则a﹣1>1,由f'(x)<0得1<x<a﹣1,由f'(x)>0得0<x<1或x>a﹣1,函数f(x)在(1,a﹣1)上单调递减,在(0,1)和(a﹣1,+∞)上单调递增.(II)当a=e2+1时,由(1)得函数f(x)在(1,e2)上单调递减,在(0,1)和(e2,+∞)上单调递增,从而f(x)在[1,+∞)上的最小值为f(e2)=﹣e2﹣3.对任意x1∈[1,+∞),存在x2∈[1,+∞),使g(x2)≤f(x1),即存在x2∈[1,+∞),g(x2)函数值不超过f(x)在区间[1,+∞)上的最小值﹣e2﹣3.由e x+mx2﹣2e2﹣3≤﹣e2﹣3得e x+mx2≤e2,.记,则当x∈[1,+∞)时,m≤p(x)max.=,当x∈[1,2],显然有e x x+2(e2﹣e x)>0,当x∈(2,+∞),e x x+2(e2﹣e x)>e x x﹣2e x>0,故p(x)在区间[1,+∞)上单调递减,得,从而m的取值范围为(﹣∞,e2﹣e].(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C1的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2sinθ.(1)写出C1的极坐标方程和C2的直角坐标方程;(2)已知点M1、M2的极坐标分别为和(2,0),直线M1M2与曲线C2相交于P,Q两点,射线OP与曲线C1相交于点A,射线OQ与曲线C1相交于点B,求的值.【解答】解:(1)曲线C1的普通方程为,化成极坐标方程为,曲线C2的极坐标方程是ρ=2sinθ,化为ρ2=2ρsinθ,可得:曲线C2的直角坐标方程为x2+y2=2y,配方为x2+(y﹣1)2=1.(2)由点M1、M2的极坐标分别为和(2,0),可得直角坐标:M1(0,1),M2(2,0),∴直线M1M2的方程为,化为x+2y﹣2=0,∵此直线经过圆心(0,1),∴线段PQ是圆x2+(y﹣1)2=1的一条直径,∴∠POQ=90°,由OP⊥OQ得OA⊥OB,A,B是椭圆上的两点,在极坐标下,设,分别代入中,有和,∴,,则,即.[选修4-5:不等式选讲]23.已知函数f(x)=+.(1)求f(x)≥f(4)的解集;(2)设函数g(x)=k(x﹣3),k∈R,若f(x)>g(x)对任意的x∈R都成立,求k的取值范围.【解答】解:(1)∵函数f(x)=+=+=|x ﹣3|+|x+4|,∴f(x)≥f(4)即|x﹣3|+|x+4|≥9.∴①,或②,或③.得不等式①:x≤﹣5;解②可得x无解;解③求得:x≥4.所以f(x)≥f(4)的解集为{x|x≤﹣5,或x≥4}.(2)f(x)>g(x)对任意的x∈R都成立,即f(x)的图象恒在g(x)图象的上方,∵f(x)=|x﹣3|+|x+4|=.由于函数g(x)=k(x﹣3)的图象为恒过定点P(3,0),且斜率k变化的一条直线,作函数y=f(x)和y=g(x)的图象如图,其中,K PB=2,A(﹣4,7),∴K P A=﹣1.由图可知,要使得f(x)的图象恒在g(x)图象的上方,∴实数k的取值范围为(﹣1,2].。
2013年新课标数学40个考点总动员 考点36 推理和证明、程序框图(教师版) 【高考再现】 热点一、程序框图 1.(2012年高考(天津理))阅读右边的程序框图,运行相应的程序,当输入x的值为25时,输出x的值为( ) A.1 B.1 C.3 D.9
开 始
输入|1||xx
x = 2x+1 输出结 束
是 否 2.(2012年高考(新课标理))如果执行右边的程序框图,输入正整数(2)NN和实数12,,...,naaa,输出,AB,则 ( ) A.AB为12,,...,naaa的和 B.2AB为12,,...,naaa的算术平均数 C.A和B分别是12,,...,naaa中最大的数和最小的数 D.A和B分别是12,,...,naaa中最小的数和最大的数 3.(2012年高考(陕西理))右图是用模拟方法估计圆周率的程序框图,P表示估计结果,则图中空白框内应填入 ( )
A. 1000NP
B.41000NP C.1000MP D.41000MP 【解析】:点(,)iixy落在单位圆内或圆上,随机产生1000个 数,41000MP,故选D. 4.(2012年高考(辽宁理))执行如图所示的程序框图,则输出的S的值是 ( )
A.1 B.23 C. 32 D.4
5.(2012年高考(北京理))执行如图所示的程序框图,输出的S值为 ( ) A.2 B.4 C.8 D.16
6.(2012年高考(安徽理))如图所示,程序框图(算法流程图)的输出结果是 ( ) A.3 B.4 C. D.
k=0,Sk<3
开
结是 否
k=k
输S=S×2k
(第4题 【解析】选B x 1 2 4 8
y 1 2 3 4
7.(2012年高考(浙江理))若程序框图如图所示,则该程序运行后输出的值是______________. 8.(2012年高考(江西理))下图为某算法的程序框图,则程序运行后输出的结果是______________.
【金榜高考】高考历史二年名校模拟一年权威预测19 近代以来世界的科学发展历程【模拟演练】一、选择题1.(2012·临沂模拟)英费尔德说:“伽利略的发现以及他所应用的科学的推理方法是人类思想史上最伟大的成就之一,而且标志着物理学的真正开端”。
关于伽利略的贡献说法错误的是( )A.奠定了经典力学的基础B.捍卫和发展了哥白尼的日心说C.创立了实验与数学相结合的科学研究方法D.第一个掌握了完整的科学的宇宙论和科学理论体系的人2.(2012·黄冈模拟)“这些哲人(指启蒙思想家)受被牛顿证实的万有引力定律的影响很大,相信存在着不仅控制物质世界、而且控制人类社会的自然法则。
”该论述反映了科学( ) A.改变了人类的宗教信仰 B.摆脱了宗教神学的束缚C.影响了人类的思想观念D.提升了人类的物质生活3.(2012·衡阳模拟)在《论动体的电动力学》中写道,“我们要把这个猜想提升为公设,并且还要引进另一条在表面上看来和它不相容的公设:光在空虚空间里总是以一确定的速度v 传播着,这速度与发射体的运动状态无关。
”这个猜想是( )A.进化论B.相对论C.量子论D.光速论4.(2012·南京模拟)“黑体(能全部吸收外来辐射能的物体)腔壁由无数能量不连续的带电谐振子组成,它们所带的能量是一个最小能量单元的整倍数,这些带电谐振子通过吸收和辐射电磁波,与腔内辐射场交换能量。
”下列与这一理论有关的说法正确的是( )A.是实验科学,是近代科学形成的标志B.时空的性质跟物质本身的分布状态有关C.在一定程度上弥补了经典力学对微观世界认识的不足D.与“自然界无跳跃”的原则基本一致5.(2012·吉林模拟)19世纪初,一位学者通过对自然现象的观察,肯定了环境对物种变化的影响:经常使用的器官就会发达,不用就会退化;后天获得的特性有可能遗传下去。
这位学者是( )A.胡克B.施莱登C.拉马克D.达尔文6.(2012·武汉模拟)英国的斯宾塞创造“适者生存”的说法,以捍卫进化论;近代中国知识分子严复接受并传播进化论。
【名师综述】利用导数,如何解决函数与不等式大题在高考题的大题中,每年都要设计一道函数大题.因为导数的引入,为函数问题的解决提供了操作工具.因此入手大家比较清楚,但是深入解决函数与不等式相结合的题目时,往往一筹莫展.原因是找不到两者的结合点,不清楚解决技巧.解题技巧总结如下(1)树立服务意识:所谓“服务意识”是指利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式.(2)强化变形技巧:所谓“强化变形技巧”是指对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质,力求变形后不等式一边需要出现函数关系式.(3)巧妙构造函数:所谓“巧妙构造函数”是指根据不等式的结构特征,构造函数,利用函数的最值进行解决.在构造函数的时候灵活多样,注意积累经验,体现一个“巧妙”.【精选名校模拟】1.【2014届安徽六校教育研究会高三2月联考数学理】(本小题满分13分)已知(),P x y 为函数1ln y x =+图象上一点,O 为坐标原点,记直线OP 的斜率()k f x =.(Ⅰ)若函数()f x 在区间1,3a a ⎛⎫+⎪⎝⎭()0a >上存在极值,求实数a 的取值范围;2.【成都石室中学2014届高三上期“一诊”模拟考试(二)(理)】(本小题满分14分)已知函数2()ln f x a x x =-.(1)当2a =时,求函数()y f x =在1[,2]2上的最大值;(2)令()()g x f x ax =+,若()y g x =在区间(0,3)上不单调,求a 的取值范围;(3)当2a =时,函数()()h x f x mx =-的图象与x 轴交于两点12(,0),(,0)A x B x ,且120x x <<,又()h x '是()h x 的导函数.若正常数,αβ满足条件1,αββα+=≥.证明:12()0h x x αβ'+<.3.【成都石室中学2014届高三上期“一诊”模拟考试(一)(理)】(本小题满分14分)已知函数)0)(ln()(2>=a ax x x f(Ⅰ)a e =时,求()f x 在1x =处的切线方程;(Ⅱ)若2)('x x f ≤对任意的0>x 恒成立,求实数a 的取值范围;4.【四川省眉山市高2014届第一次诊断性考试数学(理)】己知函数f (x)=e x ,x ∈R.(1)若直线y=kx+1与f (x)的反函数图象相切,求实数k 的值;(2)设x ﹥0,讨论曲线y=f(x)与曲线y=mx 2(m ﹥0)公共点的个数;(3)设a b <,比较2)()(b f a f +与ab a f b f --)()(的大小并说明理由。
【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法. 求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题.2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【精选名校模拟】1.【成都石室中学2014届高三上期“一诊”模拟考试(一)(理)】(本小题满分12分)已知直三棱柱111C B A ABC -的三视图如图所示,且D 是BC 的中点.(Ⅰ)求证:1A B ∥平面1ADC ; (Ⅱ)求二面角1C AD C --的余弦值;(Ⅲ)试问线段11A B 上是否存在点E ,使AE 与1DC 成60︒角?若存在,确定E 点位置,若不存在,说明理由.2.【四川省绵阳市高2014届第二次诊断性考试数学(理)】(本题满分12分)如图,在直角梯形ABCD 中,AD //BC ,∠ADC =90º,AE ⊥平面ABCD ,EF //CD , BC =CD =AE =EF =12AD =1. (Ⅰ)求证:CE //平面ABF ; (Ⅱ)求证:BE ⊥AF ;(Ⅲ)在直线BC 上是否存在点M ,使二面角E -MD -A 的大小为6π?若存在,求出CM 的长;若不存在,请说明理由.试题解析:(I)证明:如图,作FG∥EA,AG∥EF,连结EG交AF于H,连结BH,BG,∵EF∥CD且EF=CD,∴AG∥CD,即点G在平面ABCD内.由AE⊥平面ABCD知AE⊥AG,∴四边形AEFG为正方形,故在直线BC 上存在点M ,且|CM |=|32(2)3-±|=33.………………………12分 法二、作AH DM ⊥,则3AH =,由等面积法得:233,33DM CM =∴=. 3.【四川省成都七中高2014届高三“一诊”模拟考试数学(理)】如图四棱锥ABCD P -中,底面ABCD 是平行四边形,⊥PG 平面ABCD ,垂足为G ,G 在AD 上且GD AG 31=,GC BG ⊥,2==GC GB ,E 是BC 的中点,四面体BCG P -的体积为38. (1)求二面角P BC D --的正切值; (2)求直线DP 到平面PBG 所成角的正弦值;(3)在棱PC 上是否存在一点F ,使异面直线DF 与GC 所成的角为060,若存在,确定点F 的位置,若不存在,说明理由.试题解析:(1)由四面体BCG P -的体积为38.∴4PG =设二面角P BC D --的大小为θ2==GC GB E 为中点,∴GE BC ⊥ 同理PE BC ⊥∴PEG θ∠=∴tan 22θ=……………………………………………………3分4.【湖北省稳派教育2014届高三上学期强化训练(三)数学(理)试题】如图,正方形ABCD 所在平面与圆O 所在的平面相交于CD ,线段CD 为圆O 的弦,AE 垂直于圆O 所在的平面,垂足E 为圆O 上异于C 、D 的点,设正方形ABCD 的边长为a ,且a AE 21=.(1)求证:平面⊥ABCD 平面ADE ;(2)若异面直线AB 与CE 所成的角为θ,AC 与底面CDE 所成角为α,二面角E CD A --所成角为β ,求证βαθtan tan sin =.又)21,0,0(a EA =,)21,,23(a a CA -=,4222141||||,cos sin 2=⋅=⋅>=<=∴a a a CA EA α,由此得77tan =α,5.【2014安徽省六校教育研究会高三2月联考数学理】(本小题满分12分)(Ⅰ)求证:1A D ⊥平面BCED ;(Ⅱ)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60?若存在,求出PB 的长,若不存在,请说明理由.【答案】(Ⅱ)在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB = 【解析】试题分析:(Ⅰ)二面角1A DE B --为直二面角,要证1A D ⊥平面BCED ;只要证1A D DE ⊥;设PB x =()03x ≤≤,则2x BH =,3PH x =,在Rt △1PA H 中,160PA H ∠=,所以112A H x = ,在Rt △1A DH 中,11A D =,122DH x =- ,由22211A D DH A H +=, 得222111222x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭ ,解得52x =,满足03x ≤≤,符合题意 所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB = ………………………12分解得54a =,即522PB a ==,满足023a ≤≤,符合题意,所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB = . ………………………12分6.【2014年“皖西七校”高三年级联合考试】(本小题满分12分)如图1,已知O ⊙的直径4AB =,点C 、D 为O ⊙上两点,且=45CAB ∠,60DAB ∠=,F 为弧BC 的中点.将O ⊙沿直径AB 折起,使两个半圆所在平面互相垂直(如图2). (Ⅰ)求证://OF AC ;(Ⅱ)在弧BD 上是否存在点G ,使得//FG 平面ACD ?若存在,试指出点G 的位置;若不存在,请说明理由;(Ⅲ)求二面角C -AD -B 的正弦值.⊥于E,连CE.(Ⅲ)过O作OE AD⊥,平面ABC⊥平面ABD,故CO⊥平面ABD.因为CO AB则CEO ∠是二面角C -AD -B 的平面角,又60OAD ∠=,2OA =,故3OE =. 由CO ⊥平面ABD ,OE ⊂平面ABD ,得CEO ∆为直角三角形, 又2CO =,故7CE =,可得cos CEO ∠=37=217,故二面角C -AD -B 的正弦值为27.121210(3)03121cos 771n n |n ||n |θ⋅⨯+-⨯+⨯∴===⋅⋅,故二面角C -AD -B 的正弦值为27. 7.(山东省日照市2014届高三12月校际联考)(本小题满分12分)在四棱锥P-ABCD 中,侧面PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥DC ,90,1,2ADC AB AD PD CD ∠=====ADC -900,AB=AD= PD=1.CD=2. (I)求证:BC ⊥平面PBD :(II)设E 为侧棱PC 上异于端点的一点,PE PC λ=,试确定λ的值,使得二面角 E-BD-P 的大小为45.试题解析:(Ⅰ)证明:因为侧面PCD ⊥底面ABCD ,PD ⊥CD ,所以PD ⊥底面ABCD ,所以PD ⊥AD .又因为ADC ∠=90,即AD ⊥CD ,以D 为原点建立如图所示的空间直角坐标系,则(1,0,0)A ,(1,1,0)B ,(0,2,0)C ,(0,0,1)P ,所以(1,1,0),(1,1,0).DB BC ==- 所以0DB BC ⋅=,所以BC BD ⊥ 由PD ⊥底面ABCD ,可得PD BC ⊥, 又因为PDDB D =,所以BC ⊥平面PBD . ……5分8.【昌平区2013-2014学年第一学期高三年级期末质量抽测(理)】(本小题满分14分)在四棱锥P ABCD -中,PD ⊥平面ABCD ,2PD CD BC AD ===,//,90AD BC BCD ∠=︒.(Ⅰ)求证:BC PC ⊥;(Ⅱ)求PA 与平面PBC 所成角的正弦值;(Ⅲ)线段PB 上是否存在点E ,使AE ⊥平面PBC ?说明理由. 【答案】(Ⅰ)详见解析;(Ⅱ)10Ⅲ) E 为PB 中点时,AE ⊥平面PBC(Ⅲ)(法一)当E 为线段PB 的中点时,AE ⊥平面PBC . 如图:分别取,PB PC 的中点,E F ,连结,,AE DF EF . 所以//EF BC ,且12EF BC =. 因为//,AD BC 且12AD BC =, 所以//,AD EF 且AD EF =. 所以四边形AEFD 是平行四边形.9.【海淀区2014届高三年级第一学期期末练习数学(理科)】(本小题共14分) 如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,AC BD O =,PAC ∆是边长为2的等边三角形,6PB PD ==,4AP AF =. (Ⅰ)求证:PO ⊥底面ABCD ;(Ⅱ)求直线CP 与平面BDF 所成角的大小;(Ⅲ)在线段PB 上是否存在一点M ,使得CM ∥平面BDF ?如果存在,求BMBP的值,如果不存在,请说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)30;(Ⅲ)存在,BM BP =13【解析】试题分析:(Ⅰ)ACBD O =,所以O 为,AC BD 中点。
海南省东方市民族中学2024届全国卷Ⅲ数学试题高考模拟题解析(精编版)注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设x ∈R ,则“|1|2x -< “是“2x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必条件2.已知函数2(0)()ln (0)x x f x x x ⎧≤=⎨>⎩,且关于x 的方程()0f x x a +-=有且只有一个实数根,则实数a 的取值范围( ). A .[0,)+∞B .(1,)+∞C .(0,)+∞D .[,1)-∞3.设递增的等比数列{}n a 的前n 项和为n S ,已知4403S =,43231030a a a -+=,则4a =( ) A .9B .27C .81D .834.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边经过点()1,2P ,则cos2θ=( ) A .35B .45-C .35D .455.已知集合{}2|230A x x x =--<,集合{|10}B x x =-≥,则()A B ⋂=R( ).A .(,1)[3,)-∞+∞B .(,1][3,)-∞+∞C .(,1)(3,)-∞+∞D .(1,3)6.已知角α的终边与单位圆221x y +=交于点01,3P y ⎛⎫ ⎪⎝⎭,则cos2α等于( )A .19B .79-C .23-D .137.已知,αβ是空间中两个不同的平面,,m n 是空间中两条不同的直线,则下列说法正确的是( ) A .若,m n αβ⊂⊂,且αβ⊥,则 m n ⊥ B .若,m n αα⊂⊂,且//,//m n ββ,则//αβC .若,//m n αβ⊥,且αβ⊥,则 m n ⊥D .若,//m n αβ⊥,且//αβ,则m n ⊥8.若直线240x y m ++=经过抛物线22y x =的焦点,则m =( ) A .12B .12-C .2D .2-9.在复平面内,复数21(1)ii +-对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限10.在声学中,声强级L (单位:dB )由公式1210110I L g -⎛⎫=⎪⎝⎭给出,其中I 为声强(单位:2W/m ).160dB L =,275dB L =,那么12I I =( ) A .4510B .4510-C .32-D .3210-11.如图,四边形ABCD 为平行四边形,E 为AB 中点,F 为CD 的三等分点(靠近D )若AF x AC yDE =+,则y x -的值为( )A .12-B .23-C .13-D .1-12.已知ABC ∆中,角A 、B 所对的边分别是a ,b ,则“a b >”是“A B >”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件D .充分必要条件二、填空题:本题共4小题,每小题5分,共20分。