用于函数逼近的神经网络
- 格式:pdf
- 大小:132.38 KB
- 文档页数:1
应用BP 神经网络逼近非线性函一、实验要求1、逼近的非线性函数选取为y=sin(x 1)+cos(x 2) ,其中有两个自变量即x1,x2,一个因变量即y。
2、逼近误差<5% ,即:应用测试数据对网络进行测试时,神经网络的输出与期望值的最大误差的绝对值小于期望值的5% 。
3、学习方法为经典的BP 算法或改进形式的BP 算法,鼓励采用改进形式的BP 算法。
4、不允许采用matlab 中现有的关于神经网络建立、学习、仿真的任何函数及命令。
二、实验基本原理2.1神经网络概述BP 神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传播,误差反向传播。
在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层。
每一层的神经元状态只影响下一层神经元状态。
如果输出层得不到期望输出,则转入反向传播,根据预判误差调整网络权值和阈值,从而使BP 神经网络预测输出不断逼近期望输出。
BP 神经网络的拓扑结构如图所示。
2.2BP 神经网络训练步骤BP 神经网络预测前首先要训练网络,通过训练使网络具有联想记忆和预测能力。
BP 神经网络的训练过程包括以下几个步骤。
步骤 1 :网络初始化。
根据系统输入输出序列(X,Y) 确定网络输入层节点数n 、隐含层节点数l、输出层节点数m ,初始化输入层、隐含层和输出层神经元之间的连接权值ωij,ωjk ,初始化隐含层阈值a,输出层阈值 b ,给定学习速率和神经元激励函数。
步骤 2 :隐含层输出计算。
根据输入变量X,输入层和隐含层间连接权值ω ij 以及隐含层阈值a,计算隐含层输出H 。
2.3 附加动量法经典 BP 神经网络采用梯度修正法作为权值和阈值的学习算法, 从网络预测误差的负梯 度方向修正权值和阈值, 没有考虑以前经验的积累,学习过程收敛缓慢。
对于这个问题,可 以采用附加动量法来解决,带附加动量的算法学习公式为(k) (k 1) (k) a (k 1) (k 2)式中,ω (k),ω(k-1) ,ω(k-2)分别为 k ,k-1,k-2 时刻的权值; a 为动量学习率,一般取值 为 0.95 。
利用BP 神经网络对大直径SHPB 杆弥散效应的修正研究朱 励BP 神经网络采用Sigmoid 型可微函数作为传递函数,可以实现输入和输出间的任意非线性映射,这使得它在函数逼近、模式识别、数据压缩等领域有着广泛的应用。
常规SHPB(Split Hopkinson Pressure Bar)技术是研究材料动态响应的重要实验手段,但一维应力加载是其最基本的假定,这实际上忽视了杆中质点横向运动的惯性作用,即忽视了横向惯性引起的弥散效应。
近年来,为了研究一些低阻抗非均质材料,大直径的SHPB 应用越来越多。
大直径杆中应力脉冲在杆中传播时,波形上升沿时间延长,波形振荡显著增强,脉冲峰值随传播距离而衰减。
因此大直径SHPB 杆中的弥散效应将影响到实验结果可靠性,在数据处理时必须加以修正。
利用BP 算法的数学原理,得到修整权值调整公式为:a) 调整隐含层到输出层的权值q j p i t w d b t w ij j i ij ,...,2,1,,...,2,1),()1(==∆+=+∆αη (1)其中η为学习率,α为动量率,它的引入有利于加速收敛和防止振荡。
b) 调整输入层到隐含层的权值p i n h t v e a t v hi i h hi ,...,2,1,,...,2,1),()1(==∆+=+∆αη (2)按照上面公式(1)和(2)来反复计算和调整权值,直到此误差达到预定的值为止。
在实验修正过程中,通过测量SHPB 杠上某一位置点的应力波信号,然后由公式(1)和(2)确定的修整权值推算样品端的信号。
本文确定的方法网络收敛速度快,在训练迭代至100步时,训练误差即可接近0.0001,神经网络的学习效果好。
采用BP 神经网络和瞬态有限元计算相结合,对大直径SHPB 杆几何弥散效应的修正问题进行了探索。
研究表明:采用瞬态有限元计算结果,对网络进行训练和仿真,训练效果和预示结果都比较好;BP 神经网络可以很方便地进行正分析和反分析,确定杆中弥散效应的隐式传递函数,即能方便地对弥散效应进行修正。
函数逼近在人工智能方面的应用
随着人工智能技术的不断发展,越来越多的应用场景涌现出来。
其中,函数逼近在人工智能方面的应用也越来越广泛。
函数逼近是指通过一系列已知的数据点,来构建一个函数模型,使得该模型能够在未知数据点上进行预测。
在人工智能领域,函数逼近被广泛应用于机器学习、深度学习等领域。
在机器学习中,函数逼近被用于构建分类器和回归器。
分类器是指将数据点分为不同的类别,回归器是指预测数据点的数值。
通过函数逼近,可以构建出高精度的分类器和回归器,从而实现对数据的准确预测和分析。
在深度学习中,函数逼近被用于构建神经网络模型。
神经网络模型是一种模拟人脑神经元工作方式的模型,通过多层神经元的组合,实现对数据的高级特征提取和分类。
函数逼近被用于构建神经网络中的激活函数和损失函数,从而实现对神经网络的优化和训练。
除此之外,函数逼近还被应用于图像处理、自然语言处理、推荐系统等领域。
例如,在图像处理中,函数逼近被用于构建图像的特征提取器和分类器,从而实现对图像的自动识别和分类。
函数逼近在人工智能方面的应用非常广泛,可以帮助我们构建高精度的模型,实现对数据的准确预测和分析。
随着人工智能技术的不
断发展,函数逼近的应用也将越来越广泛。
径向基函数(RBF)神经网络RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
简单说明一下为什么RBF网络学习收敛得比较快。
当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。
由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。
BP网络就是一个典型的例子。
如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。
常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。
径向基函数解决插值问题完全内插法要求插值函数经过每个样本点,即。
样本点总共有P个。
RBF的方法是要选择P个基函数,每个基函数对应一个训练数据,各基函数形式为,由于距离是径向同性的,因此称为径向基函数。
||X-X p||表示差向量的模,或者叫2范数。
基于为径向基函数的插值函数为:输入X是个m维的向量,样本容量为P,P>m。
可以看到输入数据点X p是径向基函数φp的中心。
隐藏层的作用是把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了。
将插值条件代入:写成向量的形式为,显然Φ是个规模这P对称矩阵,且与X的维度无关,当Φ可逆时,有。
对于一大类函数,当输入的X各不相同时,Φ就是可逆的。
下面的几个函数就属于这“一大类”函数:1)Gauss(高斯)函数2)Reflected Sigmoidal(反常S型)函数3)Inverse multiquadrics(拟多二次)函数σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越小,宽度越窄,函数越具有选择性。
完全内插存在一些问题:1)插值曲面必须经过所有样本点,当样本中包含噪声时,神经网络将拟合出一个错误的曲面,从而使泛化能力下降。
径向基函数(RBF)神经⽹络RBF⽹络能够逼近任意的⾮线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能⼒,并有很快的学习收敛速度,已成功应⽤于⾮线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
简单说明⼀下为什么RBF⽹络学习收敛得⽐较快。
当⽹络的⼀个或多个可调参数(权值或阈值)对任何⼀个输出都有影响时,这样的⽹络称为全局逼近⽹络。
由于对于每次输⼊,⽹络上的每⼀个权值都要调整,从⽽导致全局逼近⽹络的学习速度很慢。
BP⽹络就是⼀个典型的例⼦。
如果对于输⼊空间的某个局部区域只有少数⼏个连接权值影响输出,则该⽹络称为局部逼近⽹络。
常见的局部逼近⽹络有RBF⽹络、⼩脑模型(CMAC)⽹络、B样条⽹络等。
径向基函数解决插值问题完全内插法要求插值函数经过每个样本点,即。
样本点总共有P个。
RBF的⽅法是要选择P个基函数,每个基函数对应⼀个训练数据,各基函数形式为,由于距离是径向同性的,因此称为径向基函数。
||X-X p||表⽰差向量的模,或者叫2范数。
基于为径向基函数的插值函数为:输⼊X是个m维的向量,样本容量为P,P>m。
可以看到输⼊数据点X p是径向基函数φp的中⼼。
隐藏层的作⽤是把向量从低维m映射到⾼维P,低维线性不可分的情况到⾼维就线性可分了。
将插值条件代⼊:写成向量的形式为,显然Φ是个规模这P对称矩阵,且与X的维度⽆关,当Φ可逆时,有。
对于⼀⼤类函数,当输⼊的X各不相同时,Φ就是可逆的。
下⾯的⼏个函数就属于这“⼀⼤类”函数:1)Gauss(⾼斯)函数2)Reflected Sigmoidal(反常S型)函数3)Inverse multiquadrics(拟多⼆次)函数σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越⼩,宽度越窄,函数越具有选择性。
完全内插存在⼀些问题:1)插值曲⾯必须经过所有样本点,当样本中包含噪声时,神经⽹络将拟合出⼀个错误的曲⾯,从⽽使泛化能⼒下降。
神经网络为什么可以拟合任何函数神经网络是一种基于神经元模型的计算模型,用于解决各种机器学习和人工智能问题。
它的一个重要特性是它可以拟合任何函数,这使得神经网络成为现代机器学习的核心工具之一。
那么,为什么神经网络可以拟合任何函数呢?本文将对这个问题进行探讨。
1. 神经网络的灵活性神经网络通过多层神经元之间的连接和每个神经元的权重来表示函数的输入和输出之间的关系。
通过调整权重和偏差,神经网络可以学习到任意复杂度的函数。
这使得神经网络具有很高的灵活性,可以适应各种非线性的函数映射关系。
2. 多层连接的效应神经网络通常由多层神经元组成,每一层都通过权重连接到下一层。
这种层次结构在神经网络中引入了一个新的维度,使得神经网络能够学习到更多复杂的函数。
通过增加神经元的数量和层数,神经网络可以更好地逼近复杂的函数。
3. 激活函数的作用激活函数是神经网络中的一个重要组成部分,它引入了非线性特性,使得神经网络可以处理非线性函数。
常见的激活函数如Sigmoid函数、ReLU函数等,它们能够将输入映射到一个非线性的输出空间。
这种非线性特性对于拟合复杂的函数是至关重要的。
4. 反向传播算法神经网络的训练通常通过反向传播算法来实现,该算法可以有效地调整每个神经元的权重和偏差。
反向传播算法是基于梯度下降的优化算法,通过计算误差的导数来更新权重和偏差。
通过这种方式,神经网络可以不断地调整自身的参数,逐渐逼近目标函数,从而实现对任意函数的拟合。
5. 数据的多样性神经网络所需的训练数据通常是多样性和大量的。
通过提供足够的数据样本,神经网络可以从中学习到数据的分布规律,从而更好地适应数据中的噪声和差异。
这种数据的多样性可以帮助神经网络更好地拟合任意复杂度的函数。
6. 神经网络的规模神经网络的规模是指神经元的数量和网络的层数。
通过增加神经元的数量和层数,神经网络可以提高自身的表示能力,从而能够拟合更复杂的函数。
然而,增加网络的规模也可能导致过拟合的问题,需要通过正则化等方法进行调节。
应用BP神经网络逼近非线性函一、实验要求1、逼近的非线性函数选取为y=sin(x1)+cos(x2),其中有两个自变量即x1,x2,一个因变量即y。
2、逼近误差<5%,即:应用测试数据对网络进行测试时,神经网络的输出与期望值的最大误差的绝对值小于期望值的5%。
3、学习方法为经典的BP算法或改进形式的BP算法,鼓励采用改进形式的BP算法。
4、不允许采用matlab中现有的关于神经网络建立、学习、仿真的任何函数及命令。
二、实验基本原理2.1 神经网络概述BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传播,误差反向传播。
在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层。
每一层的神经元状态只影响下一层神经元状态。
如果输出层得不到期望输出,则转入反向传播,根据预判误差调整网络权值和阈值,从而使BP神经网络预测输出不断逼近期望输出。
BP神经网络的拓扑结构如图所示。
2.2 BP神经网络训练步骤BP神经网络预测前首先要训练网络,通过训练使网络具有联想记忆和预测能力。
BP神经网络的训练过程包括以下几个步骤。
步骤1:网络初始化。
根据系统输入输出序列(X,Y)确定网络输入层节点数n、隐含层节点数l、输出层节点数m,初始化输入层、隐含层和输出层神经元之间的连接权值ωij,ωjk,初始化隐含层阈值a,输出层阈值b,给定学习速率和神经元激励函数。
步骤2:隐含层输出计算。
根据输入变量X,输入层和隐含层间连接权值ωij以及隐含层阈值a,计算隐含层输出H。
j 1(a )nj ij i i H f x ω==-∑ j=1,2,…,l式中,l 为隐含层节点数,f 为隐含层激励函数,该函数有多种形式,一般选取为1(x)1xf e-=+步骤3:输出层输出计算。
根据隐含层输出H ,连接权值ωjk 和阈值b ,计算BP 神经网络预测输出O 。
1lk j jk k j O H b ω==-∑ k=1,2,…,m步骤4:误差计算。
万能近似定理(Universal Approximation Theorem)是指:对于一个任意的连续函数,都可以用一个神经网络来近似表示。
这个定理有助于证明神经网络具有较强的函数近似能力。
万能近似定理是由美国数学家卡尔·米勒(Karl Menger)在1932年提出的。
他证明了,对于任意的连续函数,都可以用一个无穷多项式来近似表示。
这个定理后来被扩展到神经网络的领域。
万能近似定理的意义在于,它证明了神经网络具有较强的函数近似能力。
这使得神经网络在许多应用中得到了广泛的使用,如图像识别、语音识别、自然语言处理等。
但是,万能近似定理并不是绝对的。
它只是证明了神经网络具有较强的函数近似能力,但并不是所有函数都可以被神经网络近似表示。
在实际应用中,神经网络的函数近似能力也受到许多因素的影响,如神经网络的结构、训练方法等。
因此,在实际应用中还需要注意这些因素,才能最大限度地发挥神经网络的函数近似能力。
径向基神经网络的介绍及其案例实现径向基(RBF)神经网络是一种常用的人工神经网络模型,它以径向基函数作为激活函数来进行模式分类和回归任务。
该网络在模式识别、函数逼近、数据挖掘等领域都具有良好的性能,并且具有较好的泛化能力。
引言:径向基(RBF)神经网络最早是由Broomhead和Lowe于1988年引入的,它是一种前馈式神经网络。
RBF神经网络的主要思想是以输入向量与一组高斯函数的基函数作为输入层,然后再通过隐藏层进行特征映射,最后通过输出层进行模式分类或回归。
1.RBF神经网络的结构:RBF神经网络包括输入层、隐藏层和输出层三层。
输入层负责接收输入向量,隐藏层负责特征映射,输出层负责输出结果。
输入层:输入层接收具有所要分类或回归的特征的数据,通常使用欧几里德距离计算输入层的神经元与输入向量之间的距离。
隐藏层:隐藏层是RBF神经网络的核心部分,它通过一组径向基函数来进行特征映射。
隐藏层的神经元数量通常和训练样本数量相同,每个神经元负责响应一个数据样本。
输出层:输出层根据隐藏层的输出结果进行模式分类或回归预测,并输出网络的最终结果。
2.RBF神经网络的训练:RBF神经网络的训练主要包括两个步骤:聚类和权值调整。
聚类:首先通过K-means等聚类算法将训练样本划分为若干个类别,每个类别对应一个隐藏层神经元。
这样可以将输入空间划分为若干个区域,每个区域中只有一个样本。
权值调整:通过最小化残差误差或最小化目标函数来优化隐藏层和输出层的权值。
常用的优化算法有最小二乘法、梯度下降法等。
3.RBF神经网络的案例实现:案例1:手写数字识别案例2:股票市场预测RBF神经网络也可以应用于股票市场的预测。
该案例中,RBF神经网络接收一组与股票相关的指标作为输入,通过隐藏层的特征映射将指标转化为更有意义的特征表示,最后通过输出层进行未来股价的回归预测。
该系统的训练样本为历史股票数据以及与之对应的未来股价。
结论:径向基(RBF)神经网络是一种应用广泛且效果良好的人工神经网络模型。
函数逼近的应用
函数逼近是数学中一种重要的方法,它可以用来近似实际问题中出现的复杂函数。
函数逼近的应用非常广泛,涵盖了多个领域,比如物理学、工程学和计算机科学等。
在物理学领域,函数逼近可以用来近似复杂的物理现象,比如光的传播和声音的传播等。
通过对这些现象进行函数逼近,可以更好地理解它们的本质和规律,进而提高物理学研究的精度和效率。
在工程学领域,函数逼近可以用来设计和优化各种系统和装置。
比如在机器学习中,函数逼近可以用来训练神经网络、分类器和回归器等。
在自动控制领域,函数逼近可以用来建立系统模型和控制器,进而实现自动化控制。
在计算机科学领域,函数逼近可以用来优化算法和数据结构。
比如在计算机图形学中,函数逼近可以用来构建和渲染复杂的三维模型和动画。
在计算机视觉中,函数逼近可以用来识别和分类图像和视频。
总之,函数逼近的应用非常广泛,它不仅可以用来解决复杂的数学问题,还可以用来解决实际的工程和科学问题。
随着计算机技术的不断发展和进步,函数逼近的应用也将越来越广泛和深入。
- 1 -。
基于BP神经网络的函数逼近的MATLAB实现
冯蓉;杨建华
【期刊名称】《榆林学院学报》
【年(卷),期】2007(017)002
【摘要】BP神经网络由于它的学习能力和非线性特性,使其能够对非线性函数进行很好的逼近.通过对BP神经网络结构和MATLAB软件及其BP神经网络工具箱的应用研究,利用BP神经网络工具箱设计BP神经网络,用于对非线性函数的逼近,通过网络的训练、测试达到了预期的效果.
【总页数】3页(P20-22)
【作者】冯蓉;杨建华
【作者单位】延安大学,西安创新学院,陕西,西安,710100;长安大学,信息工程学院,陕西,西安,710064
【正文语种】中文
【中图分类】TP183
【相关文献】
1.基于BP神经网络的函数逼近实验及MATLAB实现 [J], 曹旭帆;叶舟;万俊;李晶
2.基于Matlab的BP神经网络结构与函数逼近能力的关系分析 [J], 罗玉春;都洪基;崔芳芳
3.基于BP神经网络的非线性函数逼近及SAS实现 [J], 李君艺;张宇华
4.基于BP神经网络的函数逼近方法及其MATLAB实现 [J], 蒋良孝;李超群
5.基于BP神经网络的函数逼近及MATLAB仿真 [J], 钱贺斌
因版权原因,仅展示原文概要,查看原文内容请购买。
0 引言LabVIEW是美国NI公司开发的高效图形化虚拟仪器开发平台,它的图形化编程具有直观、简便、快速、易于开发和维护等优点,在虚拟仪器设计和测控系统开发等相关领域得到了日益广泛的应用,它无需任何文本程序代码,而是把复杂、繁琐的语言编程简化成图形,用线条把各种图形连接起来。
BP神经网络属于前馈神经网络,它广泛应用函数逼近、模式识别、分类和数据压缩等领域,若将神经网络与虚拟仪器有机结合,则可以为提高虚拟仪器测控系统的性能提供重要的依据。
1 BP神经网络学习算法BP模型是一种应用最广泛的多层前向拓扑结构,以三层BP神经网络作为理论依据进行编程,它由输入层、隐层和输出层构成。
设输入层神经元个数为I,隐层神经元个数为J,输出层神经元个数为K,学习样本有N个(x,Y,)向量,表示为:输入向量X{x1,x2,…,xI},输出向量l,{Y1,Y2,…,Yx),理想输出向量为T{tl,t2,…,tK}。
(1)输入层节点i,其输出等于xi(i=1,2,…,I,将控制变量值传输到隐含层,则隐层第j个神经元的输入:其中:Wji是隐层第J个神经元到输入层第i个神经元的连接权值。
(2)隐层第J个神经元的输出:(3)神经网络输出层,第k个神经元的输入为:其中:Vkj是输出层第k个神经元到隐层第j个神经元的连接权值。
(4)神经网络输出层,第志个神经元的输出为:(5)设定网络误差函数E:(6)输出层到隐层的连接权值调整量△Vkj:(7)隐层到输入层的连接权值调整量wji:2 用LabVlEW实现BP神经网络的两种方法用LabVIEw实现BP神经网络的两种方法为:(1)由于Matlab具有强大的数学运算能力以及在测控领域的广泛应用。
在LabVIEW中提供了MatlabScript节点,用户可在节点中编辑Matlab程序,并在Lab—VIEW中运行;也可以在LabVIEW程序运行时直接调用已经存在的Matlab程序,如使用节点则必须在系统中安装:Matlab5以上版本,在写入Matlab节点前要将程序先调试通过,并确保其中变量的数据类型匹配。
基于BP神经网络和RBF网络的非线性函数逼近问题比较研究丁德凯摘要:人脑是一个高度复杂的、非线性的和并行的计算机器,人脑可以组织神经系统结构和功能的基本单位,即神经元,以比今天已有的最快的计算机还要快很多倍的速度进行特定的计算,例如模式识别、发动机控制、感知等。
神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习,以及很强的非线性映射能力,所以它在函数(特别是非线性函数)逼近方面得到了广泛的应用。
BP神经网络和RBF神经网络,都是非线性多层前向网络,本文分别用BP(Back Propagation)网络和RBF(Radial Basis Function)网络对非线性函数f=sin(t)+cos(t)进行逼近,结果发现后者的学习速度更快,泛化能力更强,而前者的程序设计相对比较简单。
关键词:BP神经网络,RBF神经网络,函数逼近0 引言人工神经网络(Artificial Neural Networks,ANN)[1]是模仿生物神经网络功能的一种经验模型。
生物神经元受到传入的刺激,其反应又从输出端传到相联的其它神经元,输入和输出之间的变换关系一般是非线性的,且对输入信号有功能强大的反应和处理能力。
神经网络是由大量的处理单元(神经元)互相连接而成的网络。
为了模拟大脑的基本特性,在神经科学研究的基础上,提出了神经网络的模型。
但是,实际上神经网络并没有完全反映大脑的功能,只是对生物神经网络进行了某种抽象、简化和模拟。
神经网络的信息处理通过神经元的互相作用来实现,知识与信息的存储表现为网络元件互相分布式的物理联系。
神经网络的学习和识别取决于各种神经元连接权系数的动态演化过程。
神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
当前,它在许多领域有重要的作用。
例如,模式识别和图像处理;印刷体和手写字符识别、语音识别、签字识别、指纹识别、人体病理分析、目标检测与识别、图像压缩和图像复制等。
BP神经网络在函数逼近中的实现1.1 概述BP神经网络是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型,具有自学习、自组织、自适应和很强的非线性映射能力,可以以任意精度逼近任意连续函数.近年来,为了解决BP网络收敛速度慢,训练时间长等不足,提出了许多改进算法.然而,在针对实际问题的BP网络建模过程中,选择多少层网络,每层多少个神经元节点,选择何种传递函数等,均无可行的理论指导,只能通过大量的实验计算获得.MATLAB中的神经网络工具箱(Neural NetworkToolbox,简称NNbox),为解决这一问题提供了便利的条件.神经网络工具箱功能十分完善,提供了各种MATLAB函数,包括神经网络的建立、训练和仿真等函数,以及各种改进训练算法函数,用户可以很方便地进行神经网络的设计和仿真,也可以在MATLAB源文件的基础上进行适当修改,形成自己的工具包以满足实际需要。
此项课题主要是针对MATLAB软件对BP神经网络的各种算法的编程,将神经网络算法应用于函数逼近和样本含量估计问题中,并分析比较相关参数对算法运行结果的影响。
人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。
神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。
神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。
径向基函数神经⽹络模型与学习算法1985年,Powell提出了多变量插值的径向基函数(RBF)⽅法。
1988年Moody和Darken提出了⼀种神经⽹络结构,即RBF神经⽹络,属于前向神经⽹络类型,它能够以任意精度逼近任意连续函数,特别适合于解决分类问题。
RBF⽹络的结构与多层前向⽹络类似,它是⼀种三层前向⽹络。
输⼊层由信号源结点组成,第⼆层为隐含层,隐单元数视所描述问题的需要⽽定,隐单元的变换函数是RBF,它是对中⼼点径向对称且衰减的⾮负⾮线性函数,第三层为输出层,它对输⼊模式的作⽤作出相应。
从输⼊空间到隐含层空间的变换是⾮线性的,⽽从隐含层空间到输出层空间变换是线性的。
RBF⽹络的基本思想是:⽤RBF作为隐单元的“基”构成隐含层空间,这样就可以将输⼊⽮量直接映射到隐空间,⽽不需要通过权连接。
当RBF的中⼼点确定以后,这种映射关系也就确定了。
⽽隐含层空间到输出空间的映射是线性的,即⽹络的输出是隐单元输出的线性加权和,此处的权即为⽹络可调参数。
从总体上看,⽹络由输⼊到输出的映射是⾮线性的,⽽⽹络输出对可调参数⽽⾔却⼜是线性的。
这样,⽹络由输⼊到输出的映射是⾮线性的,⽽⽹络输出对可调参数⽽⾔却⼜是线性的。
这样⽹络的权就可由线性⽅程组直接解出,从⽽⼤⼤加快学习速度并避免局部极⼩问题。
RBF神经⽹络模型径向基神经⽹络的激活函数采⽤径向基函数,通常定义为空间任⼀点到某⼀中⼼之间欧⽒距离的单调函数。
径向基神经⽹络的激活函数是以输⼊向量和权值向量之间的距离‖为⾃变量的。
径向神经⽹络的激活函数⼀般表达式为R(\Vert dist \Vert) = e^{-\Vert dist \Vert^2}随着权值和输⼊向量之间距离的减少,⽹络输出是递增的,当输⼊向量和权值向量⼀致时,神经元输出1。
b为阈值,⽤于调整神经元的灵敏度。
利⽤径向基神经元和线性神经元可以建⽴⼴义回归神经⽹络,该种神经⽹络适⽤于函数逼近⽅⾯的应⽤;径向基神经元和竞争神经元可以组件概率神经⽹络,此种神经⽹络适⽤于解决分类问题。