基于BP神经网络的函数逼近及MATLAB仿真
- 格式:pdf
- 大小:746.38 KB
- 文档页数:2
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
2012届毕业设计论文基于MatLab的BP神经网络的仿真与实现院、部:计算机与信息科学学院学生姓名:指导教师:职称讲师专业:计算机科学与技术班级:完成时间:2012年5月摘要摘要本文首先说明课题研究的目的和意义,评述课题的国内外研究现状,引出目前存在的问题。
然后分析了神经网络算法的基本原理,给出经典神经网络算法的具体实现方法,总结神经网络算法的特点,并给出神经网络算法的基本流程。
采用Matlab软件编程实现BP神经网络算法。
将神经网络算法应用于函数逼近,样本分类和样本含量估计问题中,并分析相关参数或算法对运行结果的影响。
最后对BP神经网络算法进行了展望。
关键字: 神经网络;BP神经网络;函数逼近;样本分类ABSTRACTABSTRACTFirst, the research purpose and significance of neural network is expounded in this article. Commentary studies current situation at the problem home and abroad. Leads to the existing problems. and then have analyzed algorithmic basal principle of neural networks, Give algorithmic concert of classics neural networks out the realization method. Summing up the characteristics of neural network algorithm. Neural network algorithm is given the basic processes. The arithmetic of BP neural network is realized in Matlab software. The algorithm applies of BP neural networks to the function approximation problem,Sample classification and computes the swatch content. And analysis of relevant parameters on the results of algorithm. Finally, The BP neural network algorithm is Outlook.Key words: Neural network;BP neural network;Function approximation; Sample classfication目录摘要 (I)ABSTRACT........................................................ I I 目录............................................................ I II 前言.. (V)第一章绪论................................................... - 1 -1.1 人工神经网络的研究背景和意义............................ - 1 -1.2 神经网络的发展与研究现状................................ - 2 -1.2.1 神经网络的发展..................................... - 2 -1.2.2 神经网络的现状.................................... - 3 -1.3 神经网络的研究内容和目前存在的问题...................... - 3 -1.3.1 神经网络的研究内容................................. - 3 -1.3.2 神经网络研究目前存在的问题......................... - 3 -1.4 神经网络的应用.......................................... - 4 - 第二章神经网络结构及BP神经网络................................ - 5 -2.1 神经元与网络结构........................................ - 5 -2.1.1 生物神经元......................................... - 5 -2.1.2 人工神经元......................................... - 6 -2.1.3人工神经网络的构成................................. - 6 -2.2 BP神经网络及其原理...................................... - 9 -2.2.1 BP神经网络定义.................................... - 9 -2.2.2 BP神经网络模型及其基本原理........................ - 9 -2.3 BP神经网络的主要功能................................... - 10 -2.4 BP网络的优点以及局限性................................. - 11 - 第三章 BP神经网络在实例中的应用............................... - 13 -3.1 基于MATLAB的BP神经网络工具箱函数..................... - 13 -3.1.1 BP网络创建函数................................... - 14 -3.1.2 神经元上的传递函数................................ - 14 -3.1.3 BP网络学习函数................................... - 15 -3.1.4 BP网络训练函数................................... - 15 -3.2 BP网络在函数逼近中的应用............................... - 15 -3.2.1 问题的提出........................................ - 15 -3.2.2 基于BP神经网络逼近函数........................... - 16 -3.2.3 不同频率下的逼近效果.............................. - 19 -3.2.4 讨论............................................. - 21 -3.3仿真实验................................................ - 21 -3.3.1 BP神经网络MATLAB设计............................ - 21 -3.3.2 各种BP学习算法MATLAB仿真........................ - 23 -3.3.3 各种算法仿真结果比较与分析........................ - 26 -3.3.4 调整初始权值和阈值的仿真.......................... - 27 -3.3.5 其他影响因素仿真.................................. - 29 -3.4 BP网络在样本含量估计中的应用........................... - 30 -3.4.1 问题的提出........................................ - 30 -3.4.2 基于BP神经网络对胆固醇含量估计................... - 31 -3.4.3 不同条件下的输出结果.............................. - 33 -3.4.4 讨论.............................................. - 35 -3.5 BP神经网络在样本分类中的应用........................... - 36 -3.5.1问题的提出........................................ - 36 -3.5.2 基于BP神经网络的样本分类......................... - 36 -3.5.3不同算法条件下的不同测试过程以及输出结果.......... - 38 -3.5.4讨论.............................................. - 42 - 结论........................................................... - 43 - 参考文献 (1)致谢 (2)前言前言BP神经网络是目前人工神经网络模式中最具代表性,应用最广泛的一种模型,具有自学习、自组织、自适应和很强的非线性映射能力,可以以任意精度逼近任意连续函数.近年来,为了解决BP网络收敛速度慢,训练时间长等不足,提出了许多改进算法.然而,在针对实际问题的BP网络建模过程中,选择多少层网络,每层多少个神经元节点,选择何种传递函数等,均无可行的理论指导,只能通过大量的实验计算获得.MATLAB中的神经网络工具箱(Neural NetworkToolbox,简称NNbox),为解决这一问题提供了便利的条件.神经网络工具箱功能十分完善,提供了各种MATLAB函数,包括神经网络的建立、训练和仿真等函数,以及各种改进训练算法函数,用户可以很方便地进行神经网络的设计和仿真,也可以在MATLAB源文件的基础上进行适当修改,形成自己的工具包以满足实际需要。
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络net newff PR S S SNl TF TF TFNl BTF BLF PF =(,[1 2...],{ 1 2...},,,) PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]TF TF TFNl:各层的神经元传递函数。
{ 1 2...}BTF:训练用函数的名称。
(2)网络训练net tr Y E Pf Af train net P T Pi Ai VV TV=[,,,,,] (,,,,,,)(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'BP网络的训练函数BP网络训练参数2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP 神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
基于MATLAB的BP神经网络研究与应用【摘要】本文首先分析了神经网络算法的基本原理,采用Matlab软件编程实现BP神经网络算法。
将神经网络算法应用于函数逼近的问题中,并分析相关参数对算法运行结果的影响。
最终取得了不错的结果。
【关键词】BP神经网络;函数逼近1.绪论人工神经网络(artificial neural network,ANN)是模仿生物神经网络功能的一种经验模型。
生物神经元受到传入的刺激,其反应又从输出端传到相联的其它神经元,输入和输出之间的变换关系一般是非线性的。
1.1 BP神经网络定义BP (Back Propagation)神经网络是一种神经网络学习算法。
相邻层之间各神经元进行全连接,而每层各神经元之间无连接,网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,各神经元获得网络的输入响应产生连接权值(Weight)。
此过程反复交替进行,直至网络的全局误差趋向给定的极小值,即完成学习的过程。
1.2 BP神经网络模型及其基本原理网络的输入层模拟的是神经系统中的感觉神经元,它接收输入样本信号。
输入信号经输入层输入,通过隐含层的复杂计算由输出层输出,输出信号与期望输出相比较,若有误差,再将误差信号反向由输出层通过隐含层处理后向输入层传播。
在这个过程中,误差通过梯度下降算法,分摊给各层的所有单元,从而获得各单元的误差信号,以此误差信号为依据修正各单元权值,网络权值因此被重新分布。
此过程完成后,输入信号再次由输入层输入网络,重复上述过程。
这种信号正向传播与误差反向传播的各层权值调整过程周而复始地进行着,直到网络输出的误差减少到可以接受的程度,或进行到预先设定的学习次数为止。
权值不断调整的过程就是网络的学习训练过程。
2.BP网络在函数逼近中的应用2.1 基于BP神经网络逼近函数步骤1:假设频率参数k=1,绘制要逼近的非线性函数的曲线。
步骤2:网络的建立应用newff()函数建立BP网络结构。
基于BP神经网络的函数逼近方法及其MATLAB实现
蒋良孝;李超群
【期刊名称】《微型机与应用》
【年(卷),期】2004(023)001
【摘要】MATLAB软件及其BP神经网络工具箱函数的应用,结合一个实际的例子详细阐述了基于BP神经网络的函数逼近过程及其MATLAB实现方法.
【总页数】2页(P52-53)
【作者】蒋良孝;李超群
【作者单位】武汉中国地质大学计算机科学与技术系,430074;武汉华中科技大学数学系,430074
【正文语种】中文
【中图分类】TP18
【相关文献】
1.基于BP神经网络的函数逼近实验及MATLAB实现 [J], 曹旭帆;叶舟;万俊;李晶
2.基于BP神经网络的函数逼近的MATLAB实现 [J], 冯蓉;杨建华
3.基于Matlab的BP神经网络结构与函数逼近能力的关系分析 [J], 罗玉春;都洪基;崔芳芳
4.用BP神经网络实现函数逼近的方法及其讨论 [J], 张静亚;潘启勇
5.基于BP神经网络的函数逼近及MATLAB仿真 [J], 钱贺斌
因版权原因,仅展示原文概要,查看原文内容请购买。
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。