基于BP神经网络的函数逼近及MATLAB仿真
- 格式:pdf
- 大小:746.38 KB
- 文档页数:2
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
2012届毕业设计论文基于MatLab的BP神经网络的仿真与实现院、部:计算机与信息科学学院学生姓名:指导教师:职称讲师专业:计算机科学与技术班级:完成时间:2012年5月摘要摘要本文首先说明课题研究的目的和意义,评述课题的国内外研究现状,引出目前存在的问题。
然后分析了神经网络算法的基本原理,给出经典神经网络算法的具体实现方法,总结神经网络算法的特点,并给出神经网络算法的基本流程。
采用Matlab软件编程实现BP神经网络算法。
将神经网络算法应用于函数逼近,样本分类和样本含量估计问题中,并分析相关参数或算法对运行结果的影响。
最后对BP神经网络算法进行了展望。
关键字: 神经网络;BP神经网络;函数逼近;样本分类ABSTRACTABSTRACTFirst, the research purpose and significance of neural network is expounded in this article. Commentary studies current situation at the problem home and abroad. Leads to the existing problems. and then have analyzed algorithmic basal principle of neural networks, Give algorithmic concert of classics neural networks out the realization method. Summing up the characteristics of neural network algorithm. Neural network algorithm is given the basic processes. The arithmetic of BP neural network is realized in Matlab software. The algorithm applies of BP neural networks to the function approximation problem,Sample classification and computes the swatch content. And analysis of relevant parameters on the results of algorithm. Finally, The BP neural network algorithm is Outlook.Key words: Neural network;BP neural network;Function approximation; Sample classfication目录摘要 (I)ABSTRACT........................................................ I I 目录............................................................ I II 前言.. (V)第一章绪论................................................... - 1 -1.1 人工神经网络的研究背景和意义............................ - 1 -1.2 神经网络的发展与研究现状................................ - 2 -1.2.1 神经网络的发展..................................... - 2 -1.2.2 神经网络的现状.................................... - 3 -1.3 神经网络的研究内容和目前存在的问题...................... - 3 -1.3.1 神经网络的研究内容................................. - 3 -1.3.2 神经网络研究目前存在的问题......................... - 3 -1.4 神经网络的应用.......................................... - 4 - 第二章神经网络结构及BP神经网络................................ - 5 -2.1 神经元与网络结构........................................ - 5 -2.1.1 生物神经元......................................... - 5 -2.1.2 人工神经元......................................... - 6 -2.1.3人工神经网络的构成................................. - 6 -2.2 BP神经网络及其原理...................................... - 9 -2.2.1 BP神经网络定义.................................... - 9 -2.2.2 BP神经网络模型及其基本原理........................ - 9 -2.3 BP神经网络的主要功能................................... - 10 -2.4 BP网络的优点以及局限性................................. - 11 - 第三章 BP神经网络在实例中的应用............................... - 13 -3.1 基于MATLAB的BP神经网络工具箱函数..................... - 13 -3.1.1 BP网络创建函数................................... - 14 -3.1.2 神经元上的传递函数................................ - 14 -3.1.3 BP网络学习函数................................... - 15 -3.1.4 BP网络训练函数................................... - 15 -3.2 BP网络在函数逼近中的应用............................... - 15 -3.2.1 问题的提出........................................ - 15 -3.2.2 基于BP神经网络逼近函数........................... - 16 -3.2.3 不同频率下的逼近效果.............................. - 19 -3.2.4 讨论............................................. - 21 -3.3仿真实验................................................ - 21 -3.3.1 BP神经网络MATLAB设计............................ - 21 -3.3.2 各种BP学习算法MATLAB仿真........................ - 23 -3.3.3 各种算法仿真结果比较与分析........................ - 26 -3.3.4 调整初始权值和阈值的仿真.......................... - 27 -3.3.5 其他影响因素仿真.................................. - 29 -3.4 BP网络在样本含量估计中的应用........................... - 30 -3.4.1 问题的提出........................................ - 30 -3.4.2 基于BP神经网络对胆固醇含量估计................... - 31 -3.4.3 不同条件下的输出结果.............................. - 33 -3.4.4 讨论.............................................. - 35 -3.5 BP神经网络在样本分类中的应用........................... - 36 -3.5.1问题的提出........................................ - 36 -3.5.2 基于BP神经网络的样本分类......................... - 36 -3.5.3不同算法条件下的不同测试过程以及输出结果.......... - 38 -3.5.4讨论.............................................. - 42 - 结论........................................................... - 43 - 参考文献 (1)致谢 (2)前言前言BP神经网络是目前人工神经网络模式中最具代表性,应用最广泛的一种模型,具有自学习、自组织、自适应和很强的非线性映射能力,可以以任意精度逼近任意连续函数.近年来,为了解决BP网络收敛速度慢,训练时间长等不足,提出了许多改进算法.然而,在针对实际问题的BP网络建模过程中,选择多少层网络,每层多少个神经元节点,选择何种传递函数等,均无可行的理论指导,只能通过大量的实验计算获得.MATLAB中的神经网络工具箱(Neural NetworkToolbox,简称NNbox),为解决这一问题提供了便利的条件.神经网络工具箱功能十分完善,提供了各种MATLAB函数,包括神经网络的建立、训练和仿真等函数,以及各种改进训练算法函数,用户可以很方便地进行神经网络的设计和仿真,也可以在MATLAB源文件的基础上进行适当修改,形成自己的工具包以满足实际需要。
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络net newff PR S S SNl TF TF TFNl BTF BLF PF =(,[1 2...],{ 1 2...},,,) PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]TF TF TFNl:各层的神经元传递函数。
{ 1 2...}BTF:训练用函数的名称。
(2)网络训练net tr Y E Pf Af train net P T Pi Ai VV TV=[,,,,,] (,,,,,,)(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'BP网络的训练函数BP网络训练参数2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP 神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
基于MATLAB的BP神经网络研究与应用【摘要】本文首先分析了神经网络算法的基本原理,采用Matlab软件编程实现BP神经网络算法。
将神经网络算法应用于函数逼近的问题中,并分析相关参数对算法运行结果的影响。
最终取得了不错的结果。
【关键词】BP神经网络;函数逼近1.绪论人工神经网络(artificial neural network,ANN)是模仿生物神经网络功能的一种经验模型。
生物神经元受到传入的刺激,其反应又从输出端传到相联的其它神经元,输入和输出之间的变换关系一般是非线性的。
1.1 BP神经网络定义BP (Back Propagation)神经网络是一种神经网络学习算法。
相邻层之间各神经元进行全连接,而每层各神经元之间无连接,网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,各神经元获得网络的输入响应产生连接权值(Weight)。
此过程反复交替进行,直至网络的全局误差趋向给定的极小值,即完成学习的过程。
1.2 BP神经网络模型及其基本原理网络的输入层模拟的是神经系统中的感觉神经元,它接收输入样本信号。
输入信号经输入层输入,通过隐含层的复杂计算由输出层输出,输出信号与期望输出相比较,若有误差,再将误差信号反向由输出层通过隐含层处理后向输入层传播。
在这个过程中,误差通过梯度下降算法,分摊给各层的所有单元,从而获得各单元的误差信号,以此误差信号为依据修正各单元权值,网络权值因此被重新分布。
此过程完成后,输入信号再次由输入层输入网络,重复上述过程。
这种信号正向传播与误差反向传播的各层权值调整过程周而复始地进行着,直到网络输出的误差减少到可以接受的程度,或进行到预先设定的学习次数为止。
权值不断调整的过程就是网络的学习训练过程。
2.BP网络在函数逼近中的应用2.1 基于BP神经网络逼近函数步骤1:假设频率参数k=1,绘制要逼近的非线性函数的曲线。
步骤2:网络的建立应用newff()函数建立BP网络结构。
基于BP神经网络的函数逼近方法及其MATLAB实现
蒋良孝;李超群
【期刊名称】《微型机与应用》
【年(卷),期】2004(023)001
【摘要】MATLAB软件及其BP神经网络工具箱函数的应用,结合一个实际的例子详细阐述了基于BP神经网络的函数逼近过程及其MATLAB实现方法.
【总页数】2页(P52-53)
【作者】蒋良孝;李超群
【作者单位】武汉中国地质大学计算机科学与技术系,430074;武汉华中科技大学数学系,430074
【正文语种】中文
【中图分类】TP18
【相关文献】
1.基于BP神经网络的函数逼近实验及MATLAB实现 [J], 曹旭帆;叶舟;万俊;李晶
2.基于BP神经网络的函数逼近的MATLAB实现 [J], 冯蓉;杨建华
3.基于Matlab的BP神经网络结构与函数逼近能力的关系分析 [J], 罗玉春;都洪基;崔芳芳
4.用BP神经网络实现函数逼近的方法及其讨论 [J], 张静亚;潘启勇
5.基于BP神经网络的函数逼近及MATLAB仿真 [J], 钱贺斌
因版权原因,仅展示原文概要,查看原文内容请购买。
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
bp神经网络matlab实例(bp神经网络matlab实例)Case 1 training BP network by momentum gradient descent algorithm.Training samples are defined as follows:Input vector asP =[-1 -2 31-1 15 -3]The target vector is t = [-1 -1 1 1]Solution: the MATLAB program of this example is as follows:Close allClearEcho onCLC% NEWFF - generating a new feedforward neural network% TRAIN -- training BP neural network% SIM -- Simulation of BP neural networkPauseStart by hitting any keyCLCPercent defines training samples% P as input vectorP=[-1, -2, 3, 1; -1, 1, 5, -3];% T is the target vectorT=[-1, -1, 1, 1];Pause;CLC% create a new feedforward neural networkNet=newff (minmax (P), [3,1],{'tansig','purelin'},'traingdm')The current input layer weights and thresholds InputWeights=net.IW{1,1}Inputbias=net.b{1}The current network layer weights and thresholdsLayerWeights=net.LW{2,1}Layerbias=net.b{2}PauseCLC% set training parametersNet.trainParam.show = 50;Net.trainParam.lr = 0.05;Net.trainParam.mc = 0.9;Net.trainParam.epochs = 1000;Net.trainParam.goal = 1e-3;PauseCLC% call TRAINGDM algorithm to train BP network [net, tr]=train (net, P, T);PauseCLCSimulation of BP network by%A = sim (net, P)Calculate the simulation errorE = T - AMSE=mse (E)PauseCLCEcho offExample 2 adopts Bayesian regularization algorithm to improve the generalization ability of BP network. In this case, we used two kinds of training methods, namely L-M algorithm (trainlm) and the Bias regularization algorithm (trainbr), is used to train the BP network, so that it can fit attached to a white noise sine sample data. Among them, the sample data can be generated as follows MATLAB statements:Input vector: P = [-1:0.05:1];Target vector: randn ('seed', 78341223);T = sin (2*pi*P) +0.1*randn (size (P));Solution: the MATLAB program of this example is as follows: Close allClearEcho onCLC% NEWFF - generating a new feedforward neural network% TRAIN -- training BP neural network% SIM -- Simulation of BP neural networkPauseStart by hitting any keyCLC% define training sample vector% P as input vectorP = [-1:0.05:1];% T is the target vectorRandn ('seed', 78341223); T = sin (2*pi*P) +0.1*randn (size (P));Draw the sample data pointsPlot (P, T, +);Echo offHold on;Plot (P, sin (2*pi*P), ':');Draw sine curves without noiseEcho onCLCPauseCLC% create a new feedforward neural networkNet=newff (minmax (P), [20,1], {'tansig','purelin'});PauseCLCEcho offCLCDisp ('1. L-M optimization algorithm TRAINLM'); disp ('2. Bayesian regularization algorithm TRAINBR');Choice=input (\ "please select training algorithm (1,2): ');Figure (GCF);If (choice==1)Echo onCLC% using L-M optimization algorithm TRAINLMNet.trainFcn='trainlm';PauseCLC% set training parametersnet.trainparam.epochs = 500;net.trainparam.goal = 1e-6;NET(.NET);%重新初始化暂停中图分类号“(选择= = 2)回声中图分类号%采用贝叶斯正则化算法trainbr trainfcn = 'trainbr”网;暂停中图分类号%设置训练参数net.trainparam.epochs = 500;randn(“种子”,192736547);NET(.NET);%重新初始化暂停中图分类号结束调用相应算法训练BP网络% [净额],列车=(净额,P,T);暂停中图分类号对BP网络进行仿真%a = sim(NET,p);%计算仿真误差e = a;MSE=MSE(e)暂停中图分类号%绘制匹配结果曲线关闭所有;图(p,a,p,t,+,p,p,p(2),“,”;暂停;中图分类号回音通过采用两种不同的训练算法,我们可以得到如图1和图2所示的两种拟合结果。
(整理)BP神经网络matlab实现和matlab工具箱使用实例.BP神经网络matlab实现和matlab工具箱使用实例经过最近一段时间的神经网络学习,终于能初步使用matlab实现BP网络仿真试验。
这里特别感谢研友sistor2004的帖子《自己编的BP算法(工具:matlab)》和研友wangleisxcc的帖子《用C++,Matlab,Fortran实现的BP算法》前者帮助我对BP算法有了更明确的认识,后者让我对matlab下BP函数的使用有了初步了解。
因为他们发的帖子都没有加注释,对我等新手阅读时有一定困难,所以我把sistor2004发的程序稍加修改后加注了详细解释,方便新手阅读。
%严格按照BP网络计算公式来设计的一个matlab程序,对BP网络进行了优化设计%yyy,即在o(k)计算公式时,当网络进入平坦区时(<0.0001)学习率加大,出来后学习率又还原%v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j); 动量项clear allclcinputNums=3; %输入层节点outputNums=3; %输出层节点hideNums=10; %隐层节点数maxcount=20000; %最大迭代次数samplenum=3; %一个计数器,无意义precision=0.001; %预设精度yyy=1.3; %yyy是帮助网络加速走出平坦区alpha=0.01; %学习率设定值a=0.5; %BP优化算法的一个设定值,对上组训练的调整值按比例修改字串9error=zeros(1,maxcount+1); %error数组初始化;目的是预分配内存空间errorp=zeros(1,samplenum); %同上v=rand(inputNums,hideNums); %3*10;v初始化为一个3*10的随机归一矩阵; v表输入层到隐层的权值deltv=zeros(inputNums,hideNums); %3*10;内存空间预分配dv=zeros(inputNums,hideNums); %3*10;w=rand(hideNums,outputNums); %10*3;同Vdeltw=zeros(hideNums,outputNums);%10*3dw=zeros(hideNums,outputNums); %10*3samplelist=[0.1323,0.323,-0.132;0.321,0.2434,0.456;-0.6546,-0.3242,0.3255]; %3*3;指定输入值3*3(实为3个向量)expectlist=[0.5435,0.422,-0.642;0.1,0.562,0.5675;-0.6464,-0.756,0.11]; %3*3;期望输出值3*3(实为3个向量),有导师的监督学习count=1;while (count<=maxcount) %结束条件1迭代20000次c=1;while (c<=samplenum)for k=1:outputNumsd(k)=expectlist(c,k); %获得期望输出的向量,d(1:3)表示一个期望向量内的值endfor i=1:inputNumsx(i)=samplelist(c,i); %获得输入的向量(数据),x(1:3)表一个训练向量字串4end%Forward();for j=1:hideNumsnet=0.0;for i=1:inputNumsnet=net+x(i)*v(i,j);%输入层到隐层的加权和∑X(i)V(i)endy(j)=1/(1+exp(-net)); %输出层处理f(x)=1/(1+exp(-x))单极性sigmiod函数endfor k=1:outputNumsnet=0.0;for j=1:hideNumsnet=net+y(j)*w(j,k);endif count>=2&&error(count)-error(count+1)<=0.0001o(k)=1/(1+exp(-net)/yyy); %平坦区加大学习率else o(k)=1/(1+exp(-net)); %同上endend%BpError(c)反馈/修改;errortmp=0.0;for k=1:outputNumserrortmp=errortmp+(d(k)-o(k))^2; %第一组训练后的误差计算enderrorp(c)=0.5*errortmp; %误差E=∑(d(k)-o(k))^2 * 1/2%end%Backward();for k=1:outputNumsyitao(k)=(d(k)-o(k))*o(k)*(1-o(k)); %输入层误差偏导字串5endfor j=1:hideNumstem=0.0;for k=1:outputNumstem=tem+yitao(k)*w(j,k); %为了求隐层偏导,而计算的∑endyitay(j)=tem*y(j)*(1-y(j)); %隐层偏导end%调整各层权值for j=1:hideNumsfor k=1:outputNumsdeltw(j,k)=alpha*yitao(k)*y(j); %权值w的调整量deltw(已乘学习率)w(j,k)=w(j,k)+deltw(j,k)+a*dw(j,k);%权值调整,这里的dw=dletw(t-1),实际是对BP算法的一个dw(j,k)=deltw(j,k); %改进措施--增加动量项目的是提高训练速度endendfor i=1:inputNumsfor j=1:hideNumsdeltv(i,j)=alpha*yitay(j)*x(i); %同上deltwv(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j);dv(i,j)=deltv(i,j);endendc=c+1;end%第二个while结束;表示一次BP训练结束double tmp;tmp=0.0; 字串8for i=1:samplenumtmp=tmp+errorp(i)*errorp(i);%误差求和endtmp=tmp/c;error(count)=sqrt(tmp);%误差求均方根,即精度if (error(count)<precision)%另一个结束条件< p="">break;endcount=count+1;%训练次数加1end%第一个while结束error(maxcount+1)=error(maxcount);p=1:count;pp=p/50;plot(pp,error(p),"-"); %显示误差然后下面是研友wangleisxcc的程序基础上,我把初始化网络,训练网络,和网络使用三个稍微集成后的一个新函数bpnet %简单的BP神经网络集成,使用时直接调用bpnet就行%输入的是p-作为训练值的输入% t-也是网络的期望输出结果% ynum-设定隐层点数一般取3~20;% maxnum-如果训练一直达不到期望误差之内,那么BP迭代的次数一般设为5000% ex-期望误差,也就是训练一小于这个误差后结束迭代一般设为0.01% lr-学习率一般设为0.01% pp-使用p-t虚拟蓝好的BP网络来分类计算的向量,也就是嵌入二值水印的大组系数进行训练然后得到二值序列% ww-输出结果% 注明:ynum,maxnum,ex,lr均是一个值;而p,t,pp,ww均可以为向量字串1% 比如p是m*n的n维行向量,t那么为m*k的k维行向量,pp为o*i的i维行向量,ww为o* k的k维行向量%p,t作为网络训练输入,pp作为训练好的网络输入计算,最后的ww作为pp经过训练好的BP训练后的输出function ww=bpnet(p,t,ynum,maxnum,ex,lr,pp)plot(p,t,"+");title("训练向量");xlabel("P");ylabel("t");[w1,b1,w2,b2]=initff(p,ynum,"tansig",t,"purelin"); %初始化含一个隐层的BP网络zhen=25; %每迭代多少次更新显示biglr=1.1; %学习慢时学习率(用于跳出平坦区)litlr=0.7; %学习快时学习率(梯度下降过快时)a=0.7 %动量项a大小(△W(t)=lr*X*ん+a*△W(t-1))tp=[zhen maxnum ex lr biglr litlr a 1.04]; %trainbpx[w1,b1,w2,b2,ep,tr]=trainbpx(w1,b1,"tansig",w2,b2,"purelin", p,t,tp);ww=simuff(pp,w1,b1,"tansig",w2,b2,"purelin"); %ww就是调用结果下面是bpnet使用简例:%bpnet举例,因为BP网络的权值初始化都是随即生成,所以每次运行的状态可能不一样。
基于BP神经网络的函数逼近方法及其MATLAB实现作者:李超群落k孝摘要:MATLAB软件及其BP神经网络工具箱函数的应用,结合一个实际的例子详细阐述了基于BP神经网络的函数逼近过程及其MATLAB实现方法。
数值计算方法已经在各个学科领域得到了广泛应用,并且促使新的有效数值方法不断出现。
计算工具的使用为科学计算带来了很大的方便,但山于计算机字长的限制,许多夏杂的、大规模的计算问题需简化。
神经网络是对生物神经系统的模拟,其信息处理功能是山网络单元(神经元)的输入输出特性(激活特性)、网络的拓扑结构(神经元的连接方式)、连接权的大小(突触联系强度)和神经元的阂值(视作特殊的连接权)所决定的。
在神经网络的实际应用中,绝大部分的神经网络模型使用的是BP神经网络或其变化形式,它也是前馈神经网络的核心部分。
BP神经网络的主要特点是非线性映射能力,这种能力使其能够对任意非线性函数进行很好的逼近。
鉴于函数逼近及BP神经网络的这些特点,本文提出了基于BP神经网络的函数逼近方法。
此外,本文开创性地遗弃了C、C++、VC等传统的高级编程语言,采用功能强大的MATLAB语言编程,直接调用MATLAB软件包中的BP神经网络工具箱函数,使程序简捷明了,达到了事半功倍的效果。
1BP神经网络及其函数垣近能力BP神经网络是一•种单向传播的多层前馈网络,网络除了有输入输出节点外,还有一层或多层的隐含层节点,同层节点中没有任何连接,层间节点中实行全连接。
输入信号从输入层节点依次传过各隐含层节点,最后传到输出层节点。
每层节点的输出只影响下一层节点的输出。
各层节点的传递函数通常为双曲1E切S型(sigmoN)函数,但输出层节点的传递函数有时为线性函数。
BP神经网络可以看作是一个从输入到输出的高度非线性映射,即严:及”i及”,/(J)=y。
对于样本集合:输入xi(E及”)和输出yj于及”),可认为存在某一映射好使得8(Xj)=y6(i = l, 2, An)成立。
燕山大学模式识别与智能系统导论题目: BP网络在函数逼近中的应用专业:控制工程姓名: X X X 学号:一BP神经网络及其原理............................................................ - 1 -1.1 BP神经网络定义............................................................. - 1 -1.2 BP神经网络模型及其基本原理..................................... - 1 -1.3 BP神经网络的主要功能................................................. - 3 -1.4 BP网络的优点以及局限性............................................. - 3 - 二基于MATLAB的BP神经网络工具箱函数 ........................ - 6 -2.1 BP网络创建函数............................................................. - 7 -2.2 神经元上的传递函数...................................................... - 7 -2.3 BP网络学习函数............................................................. - 8 -2.4 BP网络训练函数............................................................. - 9 - 三BP网络在函数逼近中的应用.............................................. - 10 -3.1 问题的提出.................................................................... - 10 -3.2 基于BP神经网络逼近函数......................................... - 10 -3.3 不同频率下的逼近效果................................................ - 14 -3.4 讨论................................................................................ - 17 -一BP神经网络及其原理1.1 BP神经网络定义BP (Back Propagation)神经网络是一种神经网络学习算法。
BP网络MATLAB仿真介绍对于BP网络,存在一个重要的结论,即单隐层的BP网络可以逼近任意的非线性映射,前提是隐含层的神经元个数可以随意调整。
下面以一个单隐层的BP神经网络设计为例,介绍利用神经网络工具箱进行BP网络设计及分析的过程。
此处,利用一个单隐层的BP网络来逼近一个函数。
1.问题描述通过对函数进行采样得到了网络的输入变量P和目标变量T,分别为:P = -1 : 0.1 : 1;T = [-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609 0.1336 -0.2013 -0.4344 -0.5000 -0.3930 -0.1647 0.0988 0.3072 0.3960 0.3449 0.1816 -0.0312 -0.2189 -0.3201];每组向量都有21维数据,可以将输入向量和目标向量绘制在一起,如下图:2. 网络设计网络的输入层和输出层的神经元个数均为1,根据隐含层设计经验,解决该问题的网络的隐层神经元个数应该在3~8之间。
下面设计一个隐含层神经元数目可变的BP网络,通过误差对比,确定最佳的隐含层神经元个数,并检查隐含层神经元个数对网络性能的影响。
网络设计及训练代码如下:P = -1 : 0.1 : 1;T = [-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609 0.1336 -0.2013 -0.4344 -0.5000 -0.3930 -0.1647 0.0988 0.3072 0.3960 0.3449 0.1816 -0.0312 -0.2189 -0.3201];s = 3 : 8; % S表示隐层数目的可选项res = 1 : 6;for i = 1 : 6% 隐含层神经元的传递函数为tansig,输出层神经元的传递函数为logsig% 目标函数在[-1, 1]间,刚好满足tansig的输出要求。
目录1 绪论 (1)1.1 人工神经网络的研究背景和意义 (1)1.2 神经网络的发展与研究现状 (2)1.3 神经网络的研究内容和目前存在的问题 (3)1.4 神经网络的应用 (4)2 神经网络结构及BP神经网络 (4)2.1 神经元与网络结构 (4)2.2 BP神经网络及其原理 (7)2.3 BP神经网络的主要功能 (9)2.4 BP网络的优点以及局限性 (9)3 BP神经网络在实例中的应用 (10)3.1 基于MATLAB的BP神经网络工具箱函数 (10)3.2 BP网络在函数逼近中的应用 (12)3.3 BP网络在样本含量估计中的应用 (17)4 结束语 (23)参考文献: (24)英文摘要 (25)致谢 (26)基于MATLAB的BP神经网络应用1 绪论人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统[1]。
神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。
神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用[2]。
神经网络与其他传统方法相组合,将推动人工智能和信息处理技术不断发展。
近年来,神经网络在模拟人类认知的道路上更加深入发展,并与模糊系统、遗传算法、进化机制等组合,形成计算智能,成为人工智能的一个重要方向。
MATLAB是一种科学与工程计算的高级语言,广泛地运用于包括信号与图像处理,控制系统设计,系统仿真等诸多领域。