电磁感应中的安培定则、左手定则、右手定则以及楞次定律、电磁感应定律
- 格式:docx
- 大小:550.11 KB
- 文档页数:4
一文看懂电磁感应定律右手定则电磁感应定律中电动势的方向可以通过楞次定律或右手定则来确定。
右手定则内容:伸平右手使姆指与四指垂直,手心向着磁场的N极,姆指的方向与导体运动的方向一致,四指所指的方向即为导体中感应电流的方向(感应电动势的方向与感应电流的方向相同)。
楞次定律指出:感应电流的磁场要阻碍原磁通的变化。
简而言之,就是磁通量变大,产生的电流有让其变小的趋势;而磁通量变小,产生的电流有让其变大的趋势。
右手定则概念“右手定则“又叫发电机定则,用它来确定在磁场中运动的导体感应电动势(感应电流)的方向。
电磁学中,右手定则判断的主要是与力无关的方向。
如果是和力有关的则全依靠左手定则。
即,关于力的用左手,其他的(一般用于判断感应电流方向)用右手定则。
(这一点常常有人记混,可以发现“力”字向左撇,就用左手;而“电”字向右撇,就用右手)记忆口诀:左通力右生电。
还可以记忆为:因电而动用左手,因动而电用右手,方法简要:右手手指沿电流方向拳起,大拇指伸出,观察大拇指方向。
可以用右手的手掌和手指的方向来记忆导线切割磁感线时所产生的电流的方向,即:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从手心进入,并使拇指指向导线运动方向,这时四指所指的方向就是感应电流的方向。
这就是判定导线切割磁感线时感应电流方向的右手定则。
右手定则判断线圈电流和其产生磁感线方向关系以及判断导体切割磁感线电流方向和导体运动方向关系。
右手定则计算方法电流元I1dι对相距γ12的另一电流元I2dι的作用力df12为:μ0I1I2dι2(dι1γ12)df12=─────────────4πγ123式中dι 1.dι2的方向都是电流的方向;γ12是从I1dι指向I2dι的径矢。
安培定律可分为两部分。
其一是电流元Idι(即上述I1dι)在γ(即上述γ12)处产生的磁场为。
一、电磁感应中的电路问题
1. 内电路和外电路.
(1) 切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.
(2) 该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路.
2. 电源电动势E=Blv或E=n Δ
Δt
.
二、电磁感应图象问题应用的知识为:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、欧姆定律、牛顿运动定律、函数图象知识等
三、感应电流在磁场中所受的安培力
1. 安培力的大小F=BIL=
·
BL E
R=
22v
B L
R.
2. 安培力的方向判断.
(1) 右手定则和左手定则相结合,先用右手定则确定感应电流方向,再用左手定则判断感应电流所受安培力的方向.
(2) 用楞次定律判断,感应电流所受安培力的方向一定和导体切割磁感线运动的方向相反.
四、电磁感应的能量转化
1. 电磁感应现象的实质是其他形式的能和电能之间的转化.
2. 感应电流在磁场中受安培力,外力克服安培力做功,将其他形式的能转化为电能,电流做功再将电能转化为内能.
3. 电流做功产生的热量用焦耳定律计算,公式为Q=I2Rt.。
专题06 电磁感应、交流电中的图像目录一.电磁感应中的图像问题综述 (1)二.根据Bt图像的规律,选择Et图像、It图像 (1)三.根据线圈穿越磁场的规律,选择E t-图像、U t-图像、I t-图像或E-x图像、 (2)U-x图像和I-x图像 (2)四.根据自感、互感的规律,选择E t-图像、U t-图像、I t-图像 (4)五.借助图像分析电磁感应三定则一定律 (5)六.应用图像分析电磁感应的综合问题 (6)七.交流电的变化规律图像的应用 (8)A.B.C.D.【典例分析2】(2023·北京西城·统考二模)如图1所示,一闭合金属圆环处在垂直圆环平面的匀强磁场中.若磁感应强度B随时间t按如图2所示的规律变化,设图中磁感应强度垂直纸面向里的方向为正方向,环中感应电流沿顺时针方向为正方向,则环中电流随时间变化的图象是()A.B.C.D.三.根据线圈穿越磁场的规律,选择E t-图像、U t-图像、I t-图像或E-x图像、U-x图像和I-x图像【分析要点】线框匀速穿过方向不同的磁场,在刚进入或刚出磁场时,线框的感应电流大小相等,方向相同.当线框从一种磁场进入另一种磁场时,此时有两边分别切割磁感线,产生的感应电动势正好是两者之和,根据E=BLv,求出每条边产生的感应电动势,得到总的感应电动势.由闭合电路欧姆定律求出线框中的感应电流,此类电磁感应中图象的问题,近几年高考中出现的较为频繁,解答的关键是要掌握法拉第电磁感应定律、欧姆定律、楞次定律、安培力公式等等知识,要知道当线框左右两边都切割磁感线时,两个感应电动势方向相同,是串联关系.【典例分析1】(2024上·四川攀枝花·高三统考期末)如图所示,在边长为2l的正三角形ABC区域内有垂直直面向外的匀强磁场,一边长为l的菱形单匝金属线框abcd的底边与BC在同一直线上,菱形线框的∠=。
使线框保持恒定的速度沿平行于BC方向匀速穿过磁场区域。
电磁感应现象、楞次定律一.感应电流的产生条件1.电磁感应:利用磁场产生电流的现象叫电磁感应;产生的电流叫感应电流。
2.产生条件:不管是闭合回路的一部分导体做切割磁感线的运动,还是闭合回路中的磁场发生变化,穿过闭合回路的磁感线条数都发生变化,回路中就有感应电流产生—闭合回路中的磁通量发生变化磁通量Φ增加,感应电流的磁场方向与原磁场相反磁通量Φ减少,感应电流的磁场方向与原磁场相同二.判断感应电流方向的原则1.右手定则:当导体在磁场中切割磁感线的运动时,其产生的感应电流的方向可用右手定则判定。
伸出右手,磁感线垂直穿过掌心,大拇指指向为导体的运动方向,四指指向为感应电流的方向2.楞次定律:感应电流的方向总阻碍引起感应电流的磁场的磁通量的变化例:如图所示,矩形线圈abcd在匀强磁场中向左运动,问有无感应电流?分析:(1)∵磁通量不变,所以无感应电流(2)ab、cd同时切割磁感线,由右手定则,电流方向由a→b、由d→c,切割效果抵消,无感应电流。
注意:用两种正确的观点分析同一事物,结论应该是一致的,除非分析过程有错。
严格地讲,对于任一个电磁感应现象,这两个原则都适用,且能判断出一致的结果。
但却不一定很方便,例如:右手定则对直导线在磁场中运动这一过程就比较方便。
大家在应用时对这两种方法都要达到熟练,且从中摸索简单适用的方法。
3.步骤(1)先判断原磁场的方向(2)判断闭合回路的磁通量的变化情况(3)判断感应磁场的方向(4)由感应磁场方向判断感应电流的方向三.楞次定律的理解和应用楞次定律的主要内容是研究引起感应电流的磁场即原磁场和感应电流的磁场二者之间的关系1.当闭合电路所围面积的磁通量增加时,感应电流的磁场方向与原磁场方向相反;当闭合电路的磁通量减少时,感应电流的磁场方向与原磁场方向相同例1.两平行长直导线都通以相同电流,线圈abcd与导线共面,当它从左到右在两导线之间移动时,其感应电流的方向是?分析:线圈所在空间内的磁场分布如图,当线圈从左往右运动时,穿过它的磁通量先减小,原磁场方向为垂直纸面向里,所以感应磁场方向为垂直纸面向里,由右手定则可知,感应电流方向为顺时针方向;后来磁通量又逐渐增大,原磁场方向为垂直纸面向外,所以感应磁场方向为垂直纸面向里,由右手定则可知,感应电流方向为顺时针方向。
学案5习题课:楞次定律的应用[学习目标定位] 1.学习应用楞次定律的推论判断感应电流的方向.2.理解安培定则、左手定则、右手定则和楞次定律的区别.1.应用楞次定律判断感应电流方向的一般步骤是:(1)明确所研究的闭合电路,判断原磁场的方向;(2)判断闭合电路内原磁场的磁通量的变化情况;(3)由楞次定律判断感应电流的磁场方向;(4)由安培定则根据感应电流的磁场方向,判断出感应电流的方向.2.安培定则(右手螺旋定则)、右手定则、左手定则(1)判断电流产生的磁场方向用安培定则.(2)判断磁场对通电导体及运动电荷的作用力方向用左手定则.(3)判断导体切割磁感线运动产生的感应电流方向用右手定则.一、“增反减同”法感应电流的磁场,总是阻碍引起感应电流的磁通量(原磁场磁通量)的变化.(1)当原磁场磁通量增加时,感应电流的磁场方向与原磁场方向相反,(2)当原磁场磁通量减少时,感应电流的磁场方向与原磁场方向相同.口诀记为“增反减同”.例1如图1所示,一水平放置的矩形闭合线圈abcd在细长磁铁的N极附近竖直下落,保持bc边在纸处,ab边在纸内,由图中位置Ⅰ经过位置Ⅱ到位置Ⅲ,位置Ⅰ和位置Ⅲ都很接近位置Ⅱ,这个过程中线圈的感应电流()图1A.沿abcd流动B.沿dcba流动C.先沿abcd流动,后沿dcba流动D.先沿dcba流动,后沿abcd流动解析本题考查用楞次定律判断感应电流的方向,关键要分析清楚矩形线圈由位置Ⅰ到位置Ⅱ和由位置Ⅱ到位置Ⅲ两过程中,穿过线圈的磁感线方向相反.由条形磁铁的磁场可知,线圈在位置Ⅱ时穿过闭合线圈的磁通量最小为零,线圈从位置Ⅰ到位置Ⅱ,从下向上穿过线圈的磁通量在减少,线圈从位置Ⅱ到位置Ⅲ,从上向下穿过线圈的磁通量在增加,根据楞次定律可知感应电流的方向是abcd.答案 A二、“来拒去留”法由于磁场与导体的相对运动产生电磁感应现象时,产生的感应电流与磁场间有力的作用,这种力的作用会“阻碍”相对运动,简称口诀“来拒去留”.例2如图2所示,当磁铁突然向铜环运动时,铜环的运动情况是()图2A.向右摆动B.向左摆动C.静止D.无法判定解析本题可由两种方法来解决:方法1:画出磁铁的磁感线分布,如图甲所示,当磁铁向铜环运动时,穿过铜环的磁通量增加,由楞次定律判断出铜环中的感应电流方向如图甲所示.分析铜环受安培力作用而运动时,可把铜环中的电流等效为多段直线电流元.取上、下两小段电流元作为研究对象,由左手定则确定两段电流元的受力,由此可推断出整个铜环所受合力向右,故A正确.甲乙方法2(等效法):磁铁向右运动,使铜环产生的感应电流可等效为图乙所示的条形磁铁,两磁铁有排斥作用,故A正确.答案 A三、“增缩减扩”法当闭合电路中有感应电流产生时,电路的各部分导线就会受到安培力作用,会使电路的面积有变化(或有变化趋势).(1)若原磁通量增加,则通过减小有效面积起到阻碍的作用.(2)若原磁通量减小,则通过增大有效面积起到阻碍的作用.口诀记为“增缩减扩”.例3如图3所示,在载流直导线旁固定有两平行光滑导轨A、B,导轨与直导线平行且在同一水平面内,在导轨上有两可自由滑动的导体ab和cd.当载流直导线中的电流逐渐增强时,导体ab和cd的运动情况是()图3A.一起向左运动B.一起向右运动C.ab和cd相向运动,相互靠近D.ab和cd相背运动,相互远离解析由于在闭合回路abcd中,ab和cd电流方向相反,所以两导体运动方向一定相反,排除A、B;当载流直导线中的电流逐渐增强时,穿过闭合回路的磁通量增大,根据楞次定律,感应电流总是阻碍穿过回路磁通量的变化,所以两导体相互靠近,减小面积,达到阻碍磁通量增大的目的.故选C.答案 C四、“增离减靠”法发生电磁感应现象时,通过什么方式来“阻碍”原磁通量的变化要根据具体情况而定.可能是阻碍导体的相对运动,也可能是改变线圈的有效面积,还可能是通过远离或靠近变化的磁场源来阻碍原磁通量的变化.即:(1)若原磁通量增加,则通过远离磁场源起到阻碍的作用.(2)若原磁通量减小,则通过靠近磁场源起到阻碍的作用.口诀记为“增离减靠”.例4一长直铁芯上绕有一固定线圈M,铁芯右端与一木质圆柱密接,木质圆柱上套有一闭合金属环N,N可在木质圆柱上无摩擦移动,M连接在如图4所示的电路中,其中R为滑动变阻器,E1和E2为直流电源,S为单刀双掷开关,下列情况中,可观测到N向左运动的是()图4A.在S断开的情况下,S向a闭合的瞬间B.在S断开的情况下,S向b闭合的瞬间C.在S已向a闭合的情况下,将R的滑片向c端移动时D.在S已向a闭合的情况下,将R的滑片向d端移动时解析金属环N向左运动,说明穿过N的磁通量在减小,说明线圈M中的电流在减小,只有选项C符合题意.答案 C五、安培定则、左手定则、右手定则、楞次定律的区别应用1.右手定则是楞次定律的特殊情况(1)楞次定律的研究对象为整个闭合导体回路,适用于磁通量变化引起感应电流的各种情况.(2)右手定则的研究对象为闭合导体回路的一部分,适用于一段导线在磁场中做切割磁感线运动.2.区别安培定则、左手定则、右手定则的关键是抓住因果关系(1)因电而生磁(I→B)→安培定则.(判断电流周围磁感线的方向)(2)因动而生电(v、B→I感)→右手定则.(导体切割磁感线产生感应电流)(3)因电而受力(I、B→F安)→左手定则.(磁场对电流有作用力)例5如图5所示,导轨间的磁场方向垂直于纸面向里.圆形金属环B正对磁铁A当导线MN在导轨上向右加速滑动时,下列说法正确的是()图5A.MN中电流方向N→M,B被A吸引B.MN中电流方向N→M,B被A排斥C.MN中电流方向M→N,B被A吸引D.MN中电流方向M→N,B被A排斥解析MN向右加速滑动,根据右手定则,MN中的电流方向从N→M,且大小在逐渐变大,根据安培定则知,电磁铁A的磁场方向向左,且大小逐渐增强,根据楞次定律知,B环中的感应电流产生的磁场方向向右,B被A排斥,B正确,A、C、D错误.答案 B1.(“来拒去留”法)如图6所示,螺线管CD的导线绕法不明,当磁铁AB插入螺线管时,闭合电路中有图示方向的感应电流产生,下列关于螺线管磁场极性的判断,正确的是()图6A.C端一定是N极B.D端一定是N极C.C端的极性一定与磁铁B端的极性相同D.因螺线管的绕法不明,故无法判断极性答案 C解析由“来拒去留”得磁铁与螺线管之间产生相斥的作用,即螺线管的C端一定与磁铁的B端极性相同,与螺线管的绕法无关.但因为磁铁AB的N、S极性不明,所以螺线管CD 两端的极性也不能确定,所以A、B、D错,C对.2.(“增缩减扩”法及“来拒去留”法)如图7所示,水平桌面上放有一个闭合铝环,在铝环轴线上方有一个条形磁铁.当条形磁铁沿轴线竖直向下迅速移动时,下列判断正确的是()图7A.铝环有收缩趋势,对桌面压力减小B.铝环有收缩趋势,对桌面压力增大C.铝环有扩张趋势,对桌面压力减小D.铝环有扩张趋势,对桌面压力增大答案 B解析根据楞次定律可知:当条形磁铁沿轴线竖直向下迅速移动时,闭合铝环内的磁通量增大,因此铝环面积应有收缩的趋势,同时将远离磁铁,故增大了和桌面的挤压程度,从而使铝环对桌面压力增大,故B项正确.3.(“增离减靠”法)如图8是某电磁冲击钻的原理图,若突然发现钻头M向右运动,则可能是()图8A.开关S闭合瞬间B.开关S由闭合到断开的瞬间C.开关S已经是闭合的,滑动变阻器滑片P向左迅速滑动D.开关S已经是闭合的,滑动变阻器滑片P向右迅速滑动答案AC解析当开关突然闭合时,左线圈上有了电流,产生磁场,而对于右线圈来说,磁通量增加,产生感应电流,使钻头M向右运动,故A项正确;当开关S已经是闭合时,只有左侧线圈电流增大才会导致钻头M向右运动,故C项正确.4.(安培定则、左手定则、右手定则、楞次定律的区别运用)如图9所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,当PQ在外力的作用下运动时,MN在磁场力的作用下向右运动,则PQ所做的运动可能是()图9A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动答案BC解析当PQ向右运动时,用右手定则可判定PQ中感应电流的方向是由Q→P,由安培定则可知穿过L1的磁场方向是自下而上的;若PQ向右加速运动,则穿过L1的磁通量增加,用楞次定律可以判断流过MN的感应电流是从N→M的,用左手定则可判定MN受到向左的安培力,将向左运动,可见选项A错误;若PQ向右减速运动,流过MN的感应电流方向、MN所受的安培力的方向均将反向,MN向右运动,所以选项C正确;同理可判断选项B正确,选项D错误.题组一“来拒去留”法1.如图1所示,线圈两端与电阻相连构成闭合回路,在线圈上方有一竖直放置的条形磁铁,磁铁的N极朝下.在磁铁的N极向下靠近线圈的过程中()图1A.通过电阻的感应电流方向由a到b,线圈与磁铁相互排斥B.通过电阻的感应电流方向由b到a,线圈与磁铁相互排斥C.通过电阻的感应电流方向由a到b,线圈与磁铁相互吸引D.通过电阻的感应电流方向由b到a,线圈与磁铁相互吸引答案 B解析根据楞次定律,感应电流的磁场总是阻碍磁通量的变化,因此阻碍条形磁铁的下落,即来拒去留,同名磁极相斥,所以线圈上端为N极,根据安培定则判断线圈电流方向向下,线圈下端为正极,上端为负极,电流方向从下端由b经电阻到a再回到线圈负极,B对.2.如图2所示,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属圆环中穿过.现将环从位置Ⅰ释放,经过磁铁到达位置Ⅱ,设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则()图2A.T1>mg,T2>mg B.T1<mg,T2<mgC.T1>mg,T2<mg D.T1<mg,T2>mg答案 A解析当环经过磁铁上端,穿过环的磁通量增加,圆环中的感应电流的磁场要阻碍其磁通量增加,所以磁铁对线圈有向上的斥力作用,由牛顿第三定律,环对磁铁有向下的斥力作用,使得细线对磁铁的拉力大于磁铁的重力,即T1>mg;同理,当圆环经过磁铁下端时,穿过环的磁通量减小,圆环中的感应电流的磁场要阻碍其磁通量减小,所以磁铁对环有向上的吸引力作用,由牛顿第三定律,则环对磁铁有向下的吸引力作用,使得细线对磁铁的拉力大于磁铁的重力,即T2>mg,选项A正确.3.如图3所示,粗糙水平桌面上有一质量为m的铜质矩形线圈.当一竖直放置的条形磁铁从线圈中线AB正上方快速经过时,若线圈始终不动,则关于线圈受到的支持力N及在水平方向运动趋势的正确判断是()图3A.N先小于mg后大于mg,运动趋势向左B.N先大于mg后小于mg,运动趋势向左C.N先小于mg后大于mg,运动趋势向右D.N先大于mg后小于mg,运动趋势向右答案 D解析条形磁铁从线圈正上方由左向右运动的过程中,线圈中的磁通量先增大后减小,根据楞次定律的第二种描述:“来拒去留”可知,线圈先有向下和向右的趋势,后有向上和向右的趋势;故线圈受到的支持力先大于重力后小于重力;运动趋势向右.故选D.4.如图4所示,两个相同的轻质铝环套在一根水平光滑绝缘杆上,当一条形磁铁向左运动靠近两环时,两环的运动情况是()图4A.同时向左运动,间距变大B.同时向左运动,间距变小C.同时向右运动,间距变小D.同时向右运动,间距变大答案 B解析磁铁向左运动,穿过两环的磁通量均增加.根据楞次定律,感应电流的磁场将阻碍原磁通量增加,所以两者都向左运动.另外,两环产生的感应电流方向相同,依据安培定则和左手定则可以判断两个环之间是相互吸引的,所以选项A、C、D错误,B正确.题组二“增缩减扩”法5.如图5所示,在水平面上有一固定的导轨,导轨为U形金属框架,框架上放置一金属杆ab,不计摩擦,在竖直方向上有匀强磁场,则()图5A.若磁场方向竖直向上并增强时,杆ab将向右移动B.若磁场方向竖直向上并减弱时,杆ab将向右移动C.若磁场方向竖直向下并增强时,杆ab将向右移动D.若磁场方向竖直向下并减弱时,杆ab将向右移动答案BD解析不管磁场方向竖直向上还是竖直向下,当磁感应强度增大时,回路中磁通量变大,由楞次定律知杆ab将向左移动,反之,杆ab将向右移动,选项B、D正确.6.如图6所示,光滑固定金属导轨M、N水平放置,两根导体棒P、Q平行放在导轨上,形成闭合回路.当一条形磁铁从上方向下迅速接近回路时,可动的两导体棒P、Q将()图6A.保持不动B.相互远离C.相互靠近D.无法判断答案 C解析效果法:四根导体组成闭合回路,当磁铁迅速接近回路时,不管是N极向下还是S 极向下,穿过回路的磁通量都增加,闭合回路中产生感应电流,感应电流将“阻碍”原磁通量的增加,怎样来阻碍增加呢?可动的两根导体只能用减小回路面积的方法来阻碍原磁通量的增加,得到的结论是P、Q相互靠近,选项C正确.还可以用常规法,根据导体受磁场力的方向来判断.7.如图7所示,ab是一个可绕垂直于纸面的轴O转动的闭合矩形导线框,当滑动变阻器R 的滑片自左向右滑动时,线框ab的运动情况是()图7A.保持静止不动B.逆时针转动C.顺时针转动D.发生转动,但电源极性不明,无法确定转动的方向答案 C解析根据题图所示电路,线框ab所处位置的磁场是水平方向的,当滑动变阻器的滑片向右滑动时,电路中电阻增大,电流减弱,则穿过闭合导线框ab的磁通量将减少.Φ=BS sin θ,θ为线圈平面与磁场方向的夹角,根据楞次定律,感应电流的磁场将阻碍原来磁场的变化,则线框ab只有顺时针旋转使θ角增大,而使穿过线圈的磁通量增加,则C正确.注意此题并不需要明确电源的极性.题组三“增离减靠”法8.如图8所示,一个有弹性的金属线圈被一根橡皮绳吊于通电直导线的正下方,直导线与线圈在同一竖直面内,当通电直导线中电流增大时,弹性线圈的面积S和橡皮绳的长度l将()图8A.S增大,l变长B.S减小,l变短C.S增大,l变短D.S减小,l变长答案 D解析当通电直导线中电流增大时,穿过金属线圈的磁通量增大,金属线圈中产生感应电流,根据楞次定律,感应电流要阻碍原磁通量的增大:一是用缩小面积的方式进行阻碍;二是用远离直导线的方法进行阻碍,故D正确.9.如图9所示,A为水平放置的胶木圆盘,在其侧面均匀分布着负电荷,在A的正上方用绝缘丝线悬挂一个金属圆环B,使B的环面水平且与圆盘面平行,其轴线与胶木盘A的轴线OO′重合,现使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则()图9A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大答案 B解析胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,形成环形电流,环形电流的大小增大,根据右手螺旋定则知,通过B的磁通量向下,且增大,根据楞次定律的另一种表述,引起的效果阻碍原磁通量的增大,知金属环的面积有缩小的趋势,且有向上的运动趋势,所以丝线的拉力减小.故B正确,A、C、D错误.10.如图10所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S接通瞬间,两铜环的运动情况是()图10A .同时向两侧推开B .同时向螺线管靠拢C .一个被推开,一个被吸引,但因电流正负极未知,无法具体判断D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 答案 A解析 当电键S 接通瞬间,小铜环中磁通量从无到有,根据楞次定律,感应电流的磁场要阻碍磁通量的增加,则两环将向两侧运动.故A 正确.题组四 安培定则、左手定则、右手定则、楞次定律的区别运用11.如图11所示,导体AB 、CD 可在水平轨道上自由滑动,当导体棒AB 向左移动时 ( )图11A .AB 中感应电流的方向为A 到BB .AB 中感应电流的方向为B 到AC .CD 向左移动D .CD 向右移动答案 AD解析 由右手定则可判断AB 中感应电流方向为A →B ,CD 中电流方向为C →D ,由左手定则可判定CD 受到向右的安培力作用而向右运动.12.如图12甲所示,长直导线与闭合金属线框位于同一平面内,长直导线中的电流i 随时间t 的变化关系如图乙所示.在0~T 2时间内,直导线中电流向上,则在T 2~T 时间内,线框中感应电流的方向与所受安培力的方向是 ( )图12A .感应电流方向为顺时针,线框所受安培力的合力方向向左B .感应电流方向为逆时针,线框所受安培力的合力方向向右C .感应电流方向为顺时针,线框所受安培力的合力方向向右D .感应电流方向为逆时针,线框所受安培力的合力方向向左答案 C解析 在T 2~T 时间内,直导线电流方向向下,根据安培定则,知直导线右侧磁场的方向垂直纸面向外,电流逐渐增大,则磁场逐渐增强,根据楞次定律,金属线框中产生顺时针方向的感应电流.根据左手定则,知金属框左边受到的安培力方向水平向右,右边受到的安培力方向水平向左,离导线越近,磁场越强,则左边受到的安培力大于右边受到的安培力,所以金属框所受安培力的合力水平方向向右,故C正确,A、B、D错误.13.如图13所示,在匀强磁场中放有平行铜导轨,它与大线圈M相连接,要使小导线圈N 获得顺时针方向的感应电流,则放在导轨上的金属棒ab的运动情况(两线圈共面放置)是()图13A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动答案BC。
电磁感应中的安培定则、左手定则、右手定则以及楞次定律、电磁感应定律
安培定则、左手定则、右手定则、楞次定律:
1.安培定则:运动电荷、电流产生磁场。
2.左手定则:磁场对运动电荷、电流有作用力。
3.右手定则:电磁感应中部分导体做切割磁感线运动。
4.楞次定律:电磁感应中闭合回路磁通量变化。
详解:
1.安培定则:右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向。
安培定则经常被用来判断通电导体周围产生磁场方向。
2.左手定则:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入,使四指指向电流方向;拇指所指方向就是通电导线在磁场中所受安培力方向,左手定则经常被用来判断磁场对运动电荷、电流有作用力,下图为两通电导体相互作用力情况。
3.右手定则:伸开右手,使拇指与其余四指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入,拇指指向导体运动的方向,四指所指的方向就是感应电流的方向.右手定则被用来判断做切割磁感线运动产生感应电流方向,如下图所示。
4.楞次定律:原磁通量增加时感应电流的磁场与原磁场方向相反,原磁通量减少时感应电流的磁场与原磁场方向相同。
A和D图线圈中产生磁场竖直向上,B、C产生磁场竖直向下。
5.关键是抓住因果关系:
因电而生磁(I→B)→安培定则;
因动而生电(v、B→I安)→右手定则;
因电而受力(I、B→F安)→左手定则。
6.电磁感应定律:
电磁感应定律是物理学中用来描述电磁感应现象的一种规律。
根据电磁感应定律,当一个闭合导体在磁场中运动时,它会产生感应电动势,而感应电动势的大小与磁通量变化率成正比。
换句话说,感应电动势的大小与磁通量变化的速度成正比。
电磁感应定律适用于计算感应电动势的大小。