人教A版必修三 分层抽样 课时作业
- 格式:doc
- 大小:126.00 KB
- 文档页数:9
绝密★启用前人教版必修3 课时2.1.3分层抽样一、选择题1.【题文】某班有男同学200人,女同学300人,用分层抽样的方法抽取一个容量为50的样本,则应分别抽取()A.男同学20人,女同学30人B.男同学10人,女同学40人C.男同学30人,女同学20人D.男同学25人,女同学25人2.【题文】一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,则抽取的进口的标志灯的数量为() A.2个B.3个C.5个D.13个3.【题文】一个单位有职工800人,其中具有高级职称的有160人,具有中级职称的有320人,具有初级职称的有200人,其余人员有120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,64.【题文】某大学数学系共有本科生4500人,其中大一、大二、大三、大四的学生人数比为5:4:3:1,若用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,则应抽大二的学生()A.80人B.60人C.40人D.20人5.【题文】某学校有高中学生900人,其中高一有400人,高二有300人,高三有200人,采用分层抽样的方法抽取一个容量为45的样本,那么高一、高二、高三各年级抽取的学生人数为()A.30、10、5 B.25、15、5 C.20、15、10 D.15、15、156.【题文】某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9B.18C.27D.367.【题文】某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样8.【题文】某初级中学有270人,其中七年级108人,八、九年级各81人.现在要抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系经抽样三种方案,将学生按年级从低到高的顺序依次统一编号为1,2,…,270.如果抽得的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.则下列结论正确的是()A.②③都不可能为系统抽样B.②④都不可能为分层抽样C.①④都可能为系统抽样D.①③都能为分层抽样二、填空题9.【题文】某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁及以上的人,用分层抽样法从中抽取20人,50岁及以上的职工应抽取的人数为________.10.【题文】某校共有教师200人,男学生800人,女学生600人,现用分层抽样的方法从所有师生中抽取一个容量为的样本,已知从男学生中抽取的人数为100人,那么n .11.【题文】防疫站对学生进行身体健康调查.红星中学共有学生1600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数是_______.三、解答题12.【题文】一批产品中,有一级品100个,二级品60个,三级品40个,分别用系统抽样和分层抽样的方法,从这批产品中抽取一个容量为20的样本,写出抽样过程,并说明采用哪种抽样方法更能反映总体水平?13.【题文】某市化工厂三个车间共有工人1000名,各车间男、女工人数如下表:已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0.15.(1)求x的值;(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名? 14.【题文】为了考察某校的教学水平,将对这个学校高三年级的部分学生的本学年考试成绩进行考察,为了全面地反映实际情况,采取以下三种方式进行抽查:(已知该校高三年级共有20个教学班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生人数都相同)(1)从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们的学习成绩;(2)每个班都抽取1人,共计20人,考察这20个学生的成绩;(3)把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察.(已知若按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人)根据上面的叙述,试回答下列问题.(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.人教版必修3 课时2.1.3分层抽样参考答案与解析一、选择题1.【答案】A【解析】200:30020:30=,故抽取的50人中,男同学20人,女同学30人,故选A.考点:分层抽样.【题型】选择题【难度】较易2.【答案】A【解析】抽取的样本容量与总体的比值为201 30015=,所以抽取的样本中,进口的标志灯抽取的数量为30×115=2(个).考点:分层抽样.【题型】选择题【难度】较易3.【答案】D【解析】各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×420=8,40×820=16,40×520=10,40×320=6.考点:分层抽样.【题型】选择题【难度】较易4.【答案】A考点:分层抽样.【题型】选择题【难度】较易5.【答案】C【解析】易知每个学生被抽取的概率45190020P==,则高一、高二、高三各年级被抽取的人数分别为.10201200,15201300,20201400=⨯=⨯=⨯故选C考点:分层抽样.【题型】选择题【难度】较易6.【答案】B【解析】设该单位老年职工有x人,该样本中的老年职工有y人,则160+3x=430⇒x=90,即老年职工有90人,则901816032yy=⇒=.考点:分层抽样.【题型】选择题【难度】较易7. 【答案】D【解析】总体人数为28+54+81=163,样本容量为36,由于总体由差异明显的三部分组成,所以考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人抽取54×29=12(人),青年人取81×29=18(人),先从老年人中剔除1人,老年人取27×29=6(人),组成容量为36的样本.考点:分层抽样. 【题型】选择题 【难度】一般 8. 【答案】D【解析】一、二、三年级的人数之比为108∶81∶81=4∶3∶3,共抽取10人,根据系统抽样和分层抽样的特点可知,①②③都可能为分层抽样,②④不可能为系统抽样,①③可能为系统抽样,故选D. 考点:抽样方法. 【题型】选择题 【难度】一般二、填空题 9. 【答案】6【解析】抽样比例为15,∴50岁及以上的职工有100452530--=人,则50岁及以上的应抽30×15=6(人).考点:分层抽样. 【题型】填空题【难度】较易 10. 【答案】200【解析】男学生占全校总人数80012008006002=++,那么1001,2002n n ==.考点:分层抽样. 【题型】填空题 【难度】较易 11. 【答案】760【解析】设该校的女生人数是x ,则男生人数是1 600-x ,抽样比是200116008=,则18x=18(1 600-x )-10,解得x =760. 考点:分层抽样. 【题型】填空题 【难度】一般三、解答题 12. 【答案】略【解析】系统抽样方法:将200件产品用随机方式编号,并分成20个组,每组10个产品,用抽签的方法从第一组中抽取一个产品,再依次加抽样间距,这样就得到容量为20的一个样本.分层抽样方法:∵一、二、三级品的个数比为5∶3∶2,∴需要从一级品中抽取100201006040⨯++=10(个),二级品中抽取60201006040⨯++=6(个),三级品中抽取40201006040⨯++=4(个). 将一级品的100个产品按00,01,…,99编号,将二级品的60个产品按00,01,…,59编号;将三级品的40个产品按00,01,…,39编号,采用随机数表法,分别从中抽取10个、6个、4个,这样就得到一个容量为20的样本.此题中采用分层抽样更好,样本更能反映总体的各类水平. 考点:系统抽样与分层抽样. 【题型】解答题 【难度】一般 13.【答案】(1)150 (2)20 【解析】(1)依题意0.15,1000x=解得x=150. (2)∵第一车间的工人数是173+177=350人,第二车间的工人数是100+150=250人,∴第三车间的工人数是1000350250400--=人.设应从第三车间抽取m 名工人,则有504001000m =,解得m=20, ∴应在第三车间抽取20名工人. 考点:分层抽样. 【题型】解答题 【难度】一般 14.【答案】见解析【解析】(1)三种抽取方式中,其总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式中样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式中样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式中样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)三种抽取方式中,第一种方式采用的方法是简单随机抽样法;第二种方式采用的方法是系统抽样法和简单随机抽样法;第三种方式采用的方法是分层抽样法和简单随机抽样法.(3)第一种方式抽样的步骤如下:第一步,在这20个班中用抽签法任意抽取一个班.第二步,从这个班中按学号用随机数表法或抽签法抽取20名学生,考察其考试成绩.第二种方式抽样的步骤如下:第一步,在第一个班中,用简单随机抽样法任意抽取某一学生,记其学号为a . 第二步,在其余的19个班中,选取学号为a 的学生,共计19人. 第三种方式抽样的步骤如下: 第一步,分层.因为按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.第二步,确定各个层次抽取的人数.因为样本容量与总体的个体数比为100∶1 000=1∶10,所以在每个层次抽取的个体数依次为150600250,,101010,即15,60,25. 第三步,按层次分别抽取:在优秀生中用简单随机抽样法抽取15人; 在良好生中用系统抽样法抽取60人; 在普通生中用简单随机抽样法抽取25人. 考点:分层抽样.【题型】解答题【难度】一般。
人教A版高中数学必修三第2章 2.1-2.1.3分层抽样2一、单选题1. 某市对大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2∶3∶5,若采用分层抽样的方法抽取一个样本,且中学生中被抽到的人数为150,则抽取的样本容量n等于()A.1500B.1000C.500D.1502. 某市新上了一批便民公共自行车,有绿色和橙黄色两种颜色,且绿色公共自行车和橙黄色公共自行车的数量比为2∶1,现在按照分层抽样的方法抽取36辆这样的公共自行车放在某校门口,则其中绿色公共自行车的辆数是()A.8B.12C.16D.243. 某商场有四类食品,食品类别和种数见下表:现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.7B.6C.5D.44. 某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法二、填空题某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取________名学生.防疫站对学生进行身体健康调查.红星中学共有学生1600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是________.三、解答题一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.参考答案与试题解析人教A版高中数学必修三第2章 2.1-2.1.3分层抽样2一、单选题1.【答案】C【考点】分层抽样方法【解析】设抽到的大、中、小学生的人数分别为2×3×5x,由|3x=150,得x=50,所以n= 100+150+250=500故选C【解答】此题暂无解答2.【答案】D【考点】分层抽样方法频率分布直方图列举法计算基本事件数及事件发生的概率【解析】设放在该校门口的绿色公共自行车的辆数是x,则x36=21+2,解得x=24故选D【解答】此题暂无解答3.【答案】B【考点】分层抽样方法【解析】依题意有:20⋅10+2040+10+30+20=6种【解答】此题暂无解答4.【答案】B【考点】分层抽样方法收集数据的方法离散型随机变量的期望与方差【解析】此题为抽样方法的选取问题.当总体中个体较少时宜采用简单随机抽样法;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较多时,宜采用系统抽样.【解答】依据题意,第①项调查中,总体中的个体差异较大,应采用分层抽样法;第①项调查总体中个体较少,应采用简单随机抽样法.故选B.二、填空题【答案】60【考点】分层抽样方法独立性检验系统抽样方法【解析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的.【解答】.该校一年级、二年级、三年级、四年级的本科生人数之比为4.5.5.6=60…应从一年级本科生中抽取学生人数为:300×44+5+5+6故答案为60.【答案】760【考点】分层抽样方法系统抽样方法收集数据的方法【解析】由题意知样本和总体比为200:1600=1.8,设抽取女生为X人,则男生为x+10,∵x+x+10=2x+10=200,解得x=95人,根据样本和总体比可得该校的女生人数为95×8=760,该校的男生人数为1600−760=840,故答案为840.【解答】此题暂无解答三、解答题【答案】见解析【考点】分层抽样方法收集数据的方法频率分布直方图【解析】因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而应采用分层抽样的方法.具体过程如下:(1)将30万人分成5层,一个乡镇为一层.(2)按照各乡镇的人口比例随机抽取各乡镇的样本:00×33+2+5+2+3=60(人),300×23+2+5+2+3=40{人),300×53+2+5+2+3=100(人),300×23+2+5+2+3=40(人),300×33+2+5+2+3=60(人).各乡镇分别用分层抽样抽取的人数分别为60,40,100,40,60.(3)将抽取的这300人组到一起,即得到一个样本.【解答】此题暂无解答。
§习题课课时目标.从总体上把握三种抽样方法的区别和联系.学会根据数据的不同情况,选用适合的抽样方法进行抽样..为了了解所加工的一批零件的长度,抽取其中个零件并测量了其长度,在这个问题中,个零件的长度是().总体.个体.总体的一个样本.样本容量答案.某工厂质检员每隔分钟从传送带某一位置取一件产品进行检测,这种抽样方法是().分层抽样.简单随机抽样.系统抽样.以上都不对答案解析按照一定的规律进行抽取为系统抽样..某校高三年级有男生人,女生人,为了解该年级学生的健康情况,从男生中任意抽取人,从女生中任意抽取人进行调查,这种抽样方法是().简单随机抽样法.抽签法.随机数法.分层抽样法答案解析由分层抽样的定义可知,该抽样为按比例的抽样..对于简单随机抽样,下列说法中正确的命题为()①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性..①②③.①②④.①③④.①②③④答案.在学生人数比例为∶∶的,,三所学校中,用分层抽样的方法招募名志愿者,若在学校恰好选出了名志愿者,那么=.答案解析由题意,知×=,∴=..博才实验中学共有学生名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为的样本.已知样本容量中女生比男生少人,则该校的女生人数是人.答案解析设该校女生人数为,则男生人数为( -).由已知,×( -)-·=,解得=.故该校的女生人数是人.一、选择题.下列哪种工作不能使用抽样方法进行().测定一批炮弹的射程.测定海洋水域的某种微生物的含量.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度.检测某学校全体高三学生的身高和体重的情况答案.一个田径队,有男运动员人,女运动员人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为()....答案解析运动员共计人,抽取比例为=,因此男运动员人中抽取人..下列抽样实验中,最适宜用系统抽样的是().某市的个区共有名学生,且个区的学生人数之比为∶∶∶,从中抽取人入样.某厂生产的个电子元件中随机抽取个入样。
课时提升作业(九)简单随机抽样(25分钟60分)一、选择题(每小题5分,共25分)1.(2015·鞍山高一检测)关于简单随机抽样的特点,有以下几种说法,其中不正确的是( )A.要求总体中的个体数有限B.从总体中逐个抽取C.这是一种不放回抽样D.每个个体被抽到的机会不一样,与先后顺序有关【解析】选D.简单随机抽样,除具有A,B,C三个特点外,还具有:是等可能抽样,各个个体被抽取的机会相等,与先后顺序无关.2.简单随机抽样的结果( )A.完全由抽样方式所决定B.完全由随机性所决定C.完全由人为因素所决定D.完全由计算方法所决定【解析】选B.根据简单随机抽样的定义,总体中每个个体被抽到的机会相等,因此抽样结果只与随机性有关,故选B .3.(2015·吉林高一检测)某校期末考试后,为了分析该校高一年级1 000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是( )A.1000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是100【解析】选D.1 000名学生的成绩是统计中的总体,每个学生的成绩是个体,被抽取的100名学生的成绩是一个样本,其样本的容量为100.4.下列抽样实验中,用抽签法方便的是( )A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验【解析】选B.A选项中总体容量较大,样本容量也较大不适宜用抽签法;B选项总体容量较小,样本容量也较小可用抽签法;C选项中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D选项总体容量较大,不适宜用抽签法.5.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )A.08B.07C.02D.01【解析】选D.由题意知选定的第一个数为65(第1行的第5列和第6列),按由左到右选取两位数(大于20的跳过、重复的不选取),前5个个体编号为08,02,14,07,01.故选出来的第5个个体的编号为01.二、填空题(每小题5分,共15分)6.(2015·潍坊高一检测)用简单随机抽样的方法从含n个个体的总体中,逐个抽取一个容量为3的样本,对其中个体a在第一次就被抽取的机率为,那么n= .【解析】在第一次抽样中,每个个体被抽到的可能性均为=,所以n=8.答案:8【补偿训练】某中学高一年级有700人,高二年级有600人,高三年级有500人,以每人被抽取的机会为0.03,从该中学学生中用简单随机抽样的方法抽取一个样本,则样本容量n为.【解析】n=(700+600+500)×0.03=54(人).答案:547.(2015·淮阴高一检测)从10个篮球中任取一个,检查其质量,用随机数表法抽取样本,则编号应为.【解析】只有编号时数字位数相同,才能达到随机等可能抽样,所以为0,1,2,3,4,5,6,7,8,9或01,02,03, (10)答案:0,1,2,3,4,5,6,7,8,9或01,02,03,…,108.某大学为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组.用抽签法设计抽样方案如下:第一步将18名志愿者编号,号码为1,2, (18)第二步将号码分别写在一张纸条上,揉成团,制成号签;第三步将号签放入一个不透明的袋子中,并充分搅匀;第四步;第五步所得号码对应的志愿者就是志愿小组的成员.则第四步步骤应为:.【解析】按照抽签法设计的步骤可知应为:从袋子中依次不放回地抽出6个号签,记录上面的编号.答案:从袋子中依次不放回地抽出6个号签,记录上面的编号三、解答题(每小题10分,共20分)9.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同学.【解析】第一步,将32名男生从00到31进行编号;第二步,用相同的纸条制成32个号签,在每个号签上写上这些编号;第三步,将写好的号签放在一个容器内摇匀,不放回地逐个从中抽出10个号签;第四步,相应编号的男生参加合唱;第五步,用相同的办法从28名女生中选出8名,则此8名女生参加合唱.10.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?【解析】(1)将元件的编号调整为010,011,012,...,099,100, (600)(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读.(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.(4)以上号码对应的6个元件就是要抽取的样本.(答案不唯一)(20分钟40分)一、选择题(每小题5分,共10分)1.(2015·荆州高一检测)某总体容量为M,其中带有标记的有N个,现用简单随机抽样的方法从中抽取一个容量为m的样本,则抽取的m 个个体中带有标记的个数估计为( )A. B. C. D.N【解析】选A.总体中带有标记的比例是,则抽取的m个个体中带有标记的个数估计为.【补偿训练】从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n 个小孩曾分过苹果,估计参加游戏的小孩的人数为( )A. B.k+m-n C. D.不能估计【解析】选C.设参加游戏的小孩有x人,则=,x=.2.用随机数表法从100名学生(男生25人)中抽选20人,某男学生被抽到的可能性是( )A. B. C. D.【解析】选C.从个体数为N=100的总体中抽取一个容量为n=20的样本,每个个体被抽到的可能性都是=,故选C.【补偿训练】从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该产品的合格率约为( ) A.36% B.72% C.90% D.25%【解析】选C.×100%=90%.二、填空题(每小题5分,共10分)3.(2015·洛阳高一检测)一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为6的样本,请从随机数表的倒数第5行(如下表)第10列开始,向右读取,直到取足样本,则抽取样本的号码是.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39【解析】读取的数字两个一组为01,87,47,20,01,83,87,95,86,93,28,17,68,02,…,则抽取的样本号码是01,47,20,28,17,02.答案:01,47,20,28,17,024.采用简单随机抽样,从6个标有序号A,B,C,D,E,F的球中抽取1个球,则每个球被抽到的可能性是.【解析】每个个体被抽到的可能性是一样的.答案:三、解答题(每小题10分,共20分)5.(2015·上饶高一检测)某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.【解析】第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中不放回地抽出10个号签,则相应编号的艺人参加演出.(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.6.(2015·梅州高一检测)某合资企业有150名职工,要从中随机抽出20人去参观学习.请用抽签法和随机数表法进行抽取,并写出过程. 【解析】(抽签法)先把150名职工编号:1,2,3,…,150,把编号分别写在相同的小纸片上,揉成小球,放入一个不透明的袋子中,充分搅拌均匀后,从中逐个不放回地抽取20个小球,这样就抽出了去参观学习的20名职工.(随机数表法)第一步,先把150名职工编号:001,002,003, (150)第二步,从随机数表中任选一个数,如第10行第4列数“0”.第三步,从数字0开始向右连续读数,每3个数字为一组,在读取的过程中,把大于150的数和与前面重复的数去掉,这样就得到20个号码如下:086,027,079,050,074,146,148,093,077,119,022,025,042,045,128,121,038,130,125,033.。
课时作业01 从普查到抽样(限时:10分钟)1.下列调查时,必须采用“抽样调查”的是( )A.调查某城市今年7月份的温度变化情况B.调查某一品牌5万包袋装鲜奶是否符合卫生标准C.调查我国所有城市中哪些是第一批沿海开放城市D.了解全班50名学生100米短跑的成绩解析:检查袋装鲜奶的质量,具有破坏性,不宜用普查方式.答案:B2.为了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是( )A.总体B.总体容量C.总体的一个样本D.样本容量解析:200个零件的长度为总体的一个样本.答案:C3.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是( )A.40 B.50C.120 D.150解析:每班3人,共40个班.故样本中的个体数为3×40=120.即样本容量为120.答案:C4.下面的四个问题中,可以用抽样调查方法的是( )A.检验10件产品的质量B.银行对公司10万元存款的现钞的真假检验C.跳伞运动员检查20个伞包及伞的质量D.检验一批汽车的防碰撞性能解析:根据抽样调查与普查的概念可知A,B,C一般采用普查的方法,只有D是采用抽样调查的方法.答案:D5.有人说“如果抽样方法设计得好,对样本进行视力调查与对24 300名学生进行视力普查的结果会差不多,而且对于教育部门掌握学生视力状况来说,因为节省了人力、物力和财力,抽样调查更可取”,你认为这种说法有道理吗?为什么?解析:这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查的结果接近于普查的结果,因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.(限时:30分钟)1.为了了解某地参加计算机水平测试的5 000名学生的成绩,从中抽取了200名学生的成绩进行统计分析,在这个问题中 5 000名学生成绩的全体是( )A.总体B.个体C.从总体中抽取的一个样本D.样本的容量解析:依据抽样调查的要求可知选A.答案:A2.抽样调查在抽取调查对象时( )A.按一定的方法抽取B.随便抽取C.全部抽取D.根据个人的爱好抽取解析:根据抽样调查的要求,可知选A.答案:A3.下列调查方式合适的是( )A.要了解一批电视机的使用寿命,采用普查方式B.要了解收看中央电视台的“法制报道”栏目的情况,采用普查方式C.要保证“神舟十号”载人飞船发射成功,对重要零件采取抽查方式D.要了解外国人对“上海世博会”的关注度,可采取抽样调查方式解析:检测电视机的寿命,具有破坏性,不宜用普查方式,故A不正确;由于收视观众较多,分布广,所以B不正确;对于“神舟十号”重要零件,数量不大,且至关重要,所以适合普查,因此C不正确;故选D.答案:D4.下列调查中属于抽样调查的是( )①每隔5年进行一次人口普查;②某商品的质量优劣;③某报社对某个事件进行舆论调查;④高考考生的身体检查.A.②③B.①④C.③④D.①②解析:①④为普查,②③为抽样调查.答案:A5.下面问题可以用普查的方式进行调查的是( )A.检验一批钢材的抗拉强度B.检验海水中微生物的含量C.检验10件产品的质量D.检验一批汽车的使用寿命解析:A项不能用普查的方式调查,因为这种试验具有破坏性;B项用普查的方式无法完成;C项可以用普查的方式进行调查;D项该试验具有破坏性,且需要耗费大量的时间,在实际生产中无法应用.答案:C6.为了准确调查我国某一时期的人口总量、人口分布、民族人口、城乡人口、受教育的程度、迁徒流动、就业状况等多方面的情况,需要用__________的方法进行调查.解析:要获得系统、全面、准确的信息,在对总体没有破坏的前提下,普查无疑是一个非常好的方法,要求全面、准确调查人口的状况,应当用普查的方法进行调查.答案:普查7.检验员为了检查牛奶中是否含有黄曲霉素MI,应采用__________的方法检验.解析:这是大批量的破坏性检验,不可能进行普查,应当采取抽样调查的方法检验.答案:抽样调查8.为了了解某班学生的会考合格率,要从该班70人中选30人进行考察分析.在这个问题中,70人的会考成绩的全体是________,样本是__________,样本容量是__________.解析:由总体、样本、样本容量的定义知:70人的会考成绩的全体是总体,。
课时提升作业十一分层抽样(25分钟60分)一、选择题(每小题5分,共25分)1.(2018·咸阳高一检测)①某小区有4 000人,其中少年人、中年人、老年人的比例为1∶2∶4,为了了解他们的体质情况,要从中抽取一个容量为200的样本;②从全班45名同学中选5人参加校委会.Ⅰ.简单随机抽样法;Ⅱ.系统抽样法;Ⅲ.分层抽样法.问题与方法配对正确的是( )A.①Ⅲ,②ⅠB.①Ⅰ,②ⅡC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ【解析】选A.①中,由于少年人、中年人、老年人体质情况差异明显,故要采用分层抽样的方法;②从全班45名同学中选5人参加校委会,由于总体数目不多,且样本容量不大,故要采用简单随机抽样.【补偿训练】某社区有700户家庭,其中高收入家庭225户,中等收入家庭400户,低收入家庭75户.为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某中学高二年级有12名篮球运动员,要从中选出3人调查投篮命中率情况,记作②;从某厂生产的802辆轿车中抽取40辆测试某项性能,记作③.为完成上述三项抽样,则应采取的抽样方法是( )A.①简单随机抽样,②系统抽样,③分层抽样B.①分层抽样,②简单随机抽样,③系统抽样C.①简单随机抽样,②分层抽样,③系统抽样D.①分层抽样,②系统抽样,③简单随机抽样【解析】选B.对于①,总体由高收入家庭、中等收入家庭和低收入家庭差异明显的三部分组成,而所调查的指标与收入情况密切相关,所以应采用分层抽样;对于②,总体中的个体数较少,而且所调查内容对12名调查对象是平等的,应采用简单随机抽样;对于③,总体中的个体数较多,且个体之间差异不明显,样本中个体数也较多,应采用系统抽样.2.(2018·张家口高二检测)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则老年人、中年人、青年人分别应抽取的人数是( )A.7,11,18B.6,12,18C.6,13,17D.7,14,21【解析】选D.由题意,老年人、中年人、青年人比例为1∶2∶3.由分层抽样的规则知,老年人应抽取的人数为×42=7人,中年人应抽取的人数为×42=14人,青年人应抽取的人数为×42=21人.3.某商场有四类食品,其中粮食类,植物油类,动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A.4B.5C.6D.7【解析】选C.抽样比为=,则抽取的植物油类种数是10×=2,则抽取的果蔬类食品种数是20×=4,所以抽取的植物油类与果蔬类食品种数之和是2+4=6.4.(2018·北京模拟)某小学共有学生2 000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为( )A.120B.40C.30D.20【解析】选B.因为一年级学生有400人,所以抽取一个容量为200的样本,用分层抽样方法抽取的一年级学生人数为=,解得n=40,即抽取一年级学生人数应为40.5.(2018·襄阳高二检测)某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,则n等于( )A.660B.720C.780D.800【解题指南】利用抽样比等于某层抽取的个体数与该层的个体总数之比,列方程可求出n.【解析】选B.因为从高一600人,高二780人,高三n人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,所以=,解得n=720.【补偿训练】某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n= ( )A.9B.10C.12D.13【解析】选D.由分层抽样可得,=,解得n=13.二、填空题(每小题5分,共15分)6.(2018·江苏高考)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.【解析】所求人数为60×=18.答案:18【补偿训练】一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为.【解析】设抽取男运动员人数为n,则=,解得n=12.答案:127.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是.【解析】应抽取的亩数分别为210×=7,120×=4,180×=6.答案:7,4,68.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为.【解题指南】先求出抽取比例,从而求出总体的个数,再求出15~16岁回收问卷份数x,最后计算出在15~16岁学生中抽取的问卷份数即可.【解析】11~12岁回收180份,其中在11~12岁学生问卷中抽取60份,则抽样比为.因为从回收的问卷中按年龄段分层抽取容量为300的样本,所以从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷总数为=900(份),则15~16岁回收问卷份数为:x=900-120-180-240=360(份).所以在15~16岁学生中抽取的问卷份数为360×=120(份).答案:120三、解答题(每小题10分,共20分)9.共享单车的出现方便了人们的出行,深受市民的喜爱.为调查某大学生对共享单车的使用情况,从该校学生中随机抽取了部分同学进行调查,得到男生、女生每周使用共享单车的时间(单位:小时)如下表:按每周使用时间分层抽样的方法在这些学生中抽取10人,其中每周使用时间在[0,2]内的学生有2人.(1)求z的值.(2)将每周使用时间在(2,4]内的学生按性别分层抽样的方法抽取一个容量为6的样本,计算女生和男生的人数.【解析】(1)根据分层抽样原理,样本为10时,在[0,2]内的抽取的学生有2人,所以=,解得z=40.(2)每周使用时间在(2,4]内的学生女生有20人,男生有40人,按性别分层抽样,样本容量为6时,女生抽取2人,男生抽取4人.10.(2018·南昌高一检测)某校高中部有三个年级,其中高三有学生1 000人,现采用分层抽样法抽取一个容量为165的样本,已知在高一年级抽取了55人,高二年级抽取了60人,则高中部共有多少学生?并就高三年级写出具体的抽样过程.【解析】(1)采用分层抽样法抽取一个容量为165的样本,在高一年级抽取了55人,高二年级抽取了60人,所以在高三年级抽取了165-55-60=50(人),又高三有学生1 000人,所以在抽样过程中,每个个体被抽到的概率是=;又样本容量为165人,所以高中部共有学生165÷=3 300人.(2)对于高三学生有1 000人,从中抽取50人,应采取系统抽样方法;具体的抽样过程如下:①采用随机的方式将总体中的 1 000个个体编号,如001,002,003,…,1 000;②将整个编号进行分段,分段间隔为k==20;。
A级:基础巩固练一、选择题1.将A,B,C三种性质的个体按1∶2∶4的比例进行分层抽样调查,若抽取的样本容量为21,则A,B,C三种性质的个体分别抽取()A.12,6,3 B.12,3,6 C.3,6,12 D.3,12,6答案 C解析由分层抽样的概念,知A,B,C三种性质的个体应分别抽取21×1 7=3,21×27=6,21×47=12.2.共享单车为人们提供了一种新的出行方式,有关部门对使用共享单车人群的年龄分布进行了统计,得到的数据如下表所示:年龄12~20岁20~30岁30~40岁40岁及以上比例14% 45.5% 34.5% 6%200的样本进行调查,那么应抽取20~30岁的人数为()A.12 B.28 C.69 D.91答案 D解析由分层抽样的定义得应抽取20~30岁的人数为200×45.5%=91.3.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5 C.6 D.7答案 C解析分层抽样中,分层抽取时都按相同的抽样比nN来抽取,本题中抽样比为2040+10+30+20=15,因此植物油类应抽取10×15=2(种),果蔬类食品应抽20×15=4(种),因此从植物油类和果蔬类食品中抽取的种数之和为2+4=6.4.在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样的方法从中抽取容量为20的样本,则每个个体被抽取的可能性是()A.124 B.136 C.160 D.16答案 D解析在分层抽样中,每个个体被抽取的可能性都相等,且为样本容量总体容量,所以每个个体被抽取的可能性是20120=16.5.分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带多少的比例进行交税,问三人各应付多少税?则下列说法错误的是()A.甲应付5141109钱B.乙应付3224 109钱C.丙应付1656 109钱D.三者中甲付的钱最多,丙付的钱最少答案 B解析由分层抽样可知,抽样比为100560+350+180=10109,则甲应付10109×560=5141109(钱);乙应付10109×350=3212109(钱);丙应付10109×180=1656109(钱).故选B.二、填空题6.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.答案1800解析设乙设备生产的产品总数为x件,则甲设备生产的产品总数为(4800-x)件.由题意,得5080=4800-x4800,解得x=1800.7.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取的辆数为________.答案6,30,10解析 设三种型号的轿车依次抽取x 辆,y 辆,z 辆,则有⎩⎪⎨⎪⎧ x 1200=y 6000=z 2000,x +y +z =46,解得⎩⎨⎧ x =6,y =30,z =10.故填6,30,10.8.某高中针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取________人.答案 6解析 解法一:因为“泥塑”社团的人数占两个社团总人数的35,故“剪纸”社团的人数占两个社团总人数的25,所以“剪纸”社团的人数为800×25=320. 因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310, 所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.解法二:因为“泥塑”社团的人数占两个社团总人数的35,故“剪纸”社团的人数占两个社团总人数的25,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以从高二年级“剪纸”社团中抽取的人数为20×310=6.三、解答题9.某单位有技师18人、技术员12人、工程师6人.需要从这些人中抽取一个容量为n(n∈N*)的样本,如果采用系统抽样的方法抽取,不用剔除个体;如果采用分层抽样的方法抽取,各层抽取结果都是整数;如果样本容量增加1,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量.解依题意,知总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的间隔为36n,分层抽样的抽样比是n36,抽取工程师的人数为n36×6=n6,技术员的人数为n36×12=n3,技工的人数为n36×18=n2,∴n应是36的约数且是6的倍数,即n的可能取值是6,12,18.当样本容量为n+1时,系统抽样的间隔为35n+1.∵35n+1必须为正整数,∴n只能取6,即样本容量n=6.B级:能力提升练10.某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3000名初中生、4000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?(3)为了从4000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?解(1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.因为样本容量为120,总体个数为500+3000+4000=7500,则抽样比120 7500=2 125,所以有500×2125=8,3000×2125=48,4000×2125=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.分层抽样的步骤是①分层:分为教职员工、初中生、高中生,共三层;②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8,48,64;③各层分别按简单随机抽样或系统抽样的方法抽取样本;④综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简单随机抽样有两种方法:抽签法和随机数法.如果用抽签法,要作3000个号签,费时费力,因此采用随机数法抽取样本,步骤是①编号:将3000份答卷都编上号码:0001,0002,0003, (3000)②在随机数表上随机选取一个起始位置;③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.(3)由于4000÷64=62.5不是整数,则应先使用简单随机抽样从4000名学生中随机剔除32个个体,再将剩余的3968个个体进行编号:1,2,...,3968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,...,62.从中随机抽取一个号码,若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457, (3929)。
第一章 1.2 1.2.1 输入语句、输出语句和赋值语句课时分层训练‖层级一‖|学业水平达标|1.下列关于赋值语句的说法错误的是( )A.赋值语句先计算出赋值号右边的表达式的值B.赋值语句是把左边变量的值赋给赋值号右边的表达式C.赋值语句是把右边表达式的值赋给赋值号左边的变量D.赋值语句中的“=”和数学中的“=”不一样解析:选B 赋值语句的作用是把右边表达式的值赋给赋值号左边的变量.2.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确的一组是( )A.a=bb=aB.c=bb=aa=cC.b=aa=bD.a=cc=bb=a解析:选B 先把b的值赋给中间变量c,于是c=17;再把a的值赋给变量b,于是b=8;最后把c的值赋给变量a,于是a=17.3.下列正确的语句的个数是( )①输入语句INPUT a+2②赋值语句x=x-5③输出语句PRINT M=2A.0 B.1C.2 D.3解析:选B ①中输入语句只能给变量赋值,不能给表达式a+2赋值,所以①错误;②中x=x-5表示变量x减去5后再赋给x,即完成x=x-5后,x比原来的值小5,所以②正确;③中不能输出赋值语句,所以③错误.4.下列代数式用程序语言表达正确的有( )解析:选B ①④正确;②错误,应为a/b;③错误,应为(-b+SQR(b^2-4] 5.程序输出的结果A是( )INPUT “A=”;1A=A*2A=A*3A=A*4A=A*5PRINT AENDA.5 B.6C.15 D.120解析:选D 该程序输出的结果为A=1×2×3×4×5=120.6.以下程序运行时输出的结果是________.答案:15,-67.下面一段程序执行后的结果是________.A=2A=A*2A=A+6PRINT AEND解析:执行第2句时A=2×2=4,执行第3句时A=4+6=10.答案:108.读如下两个程序,完成下列问题,程序①:x=1x=x*2x=x*3PRINT xEND程序②:INPUT xy=x*x+6PRINT yEND(1)程序①的运行结果为________.(2)若程序①②运行结果相同,则程序②输入的x的值为________.解析:赋值语句给变量赋值时,变量的值总是最后一次所赋的值,故程序①中x的值最后为6.要使程序②中y的值为6,即x2+6=6,故x=0.即输入的x的值为0.答案:(1)6 (2)09.春节期间,某水果店的三种水果标价分别为香蕉:2元/千克,苹果:3元/千克,梨:2.5元/千克.请你设计一个程序,以方便店主的收款.解:程序如下:10.某市2018年1~12月的产值分别是3.8,4.2,5.3,6.1,6.4,5.6,4.8,7.3,4.5,6.4,5.8,4.7(单位:亿元),试设计一个可计算出该市2018年各季度的月平均产值及2018年的月平均产值的程序.解:程序如下:INPUT a1,a2,a3,b1,b2,b3,c1,c2,c3,d1,d2,d3S1=a1+a2+a3S2=b1+b2+b3S3=c1+c2+c3S4=d1+d2+d3V1=S1/3V2=S2/3V3=S3/3V4=S4/3V=(S1+S2+S3+S4)/12PRINT V1,V2,V3,V4,VEND‖层级二‖|应试能力达标|A. ①③B.②④C.①④ D.②③解析:选B 赋值语句中的“=”与算术中的“=”是不一样的,式子两边的值也不能互换,从而只有②④正确,故选B.2.阅读下列程序,运行结果为( )x=1y=2z=4x=z-1y=x+zPRINT yENDA.1 B.2C.4 D.7解析:选D 由程序得x=4-1=3,y=3+4=7,故选D.3.读下面两个程序:若程序1,2运行结果相同,则程序2输入的值为( )A.6 B.0C.2 D.2或-2解析:选C 程序1的运行的结果是1×2×3=6,程序2的功能为求函数y=2x+2的函数值,令2x+2=6,得x=2.4.阅读如图所示的程序,此程序的功能为( )INPUT “x1,y1=”;x1,y1INPUT “x2,y2=”;x2,y2a=x1-x2m=a^2b=y1-y2n=b^2s=m+nd=SQR(s)PRINT dENDA.求点到直线的距离B.求两点之间的距离C.求点到平面的距离D.求输入的值的平方和解析:选B 输入的四个实数可作为两个点的坐标,程序中的a,b分别表示这两个点的横坐标之差及纵坐标之差,而m,n分别表示两点的横坐标差的平方及纵坐标差的平方,s是两点的横坐标之差与纵坐标之差的平方和,d是平方和的算术平方根,即两点之间的距离.5.下面程序执行后,输出的结果是________.x=3y=4m=(x+y)MOD 2n=2^(SQR(4))PRINT m,nEND解析:MOD为求余运算,7除以2的余数为1;n=24=4.答案:1,46.阅读下列程序,如果输入a=1,b=2,c=3,则输出的S的值为________.INPUT a,b,ca=bb=cc=aS=a^2+b^3+c^4PRINT SEND解析:依题意得a=2,b=3,c=2,∴S=22+33+24=47.答案:477.下面程序的功能是求所输入的两个正数的平方和,已知最后输出的结果是3.46,则此程序中,①处应填________;②处应填________.INPUT “x1=”;1.1INPUT “x2=”;①S=②PRINT SEND解析:由于程序的功能是求所输入的两个正数的平方和,所以S=x21+x22,由于最后输出的数是3.46,所以3.46=1.12+x22,即x22=2.25.又x2>0,所以x2=1.5.答案:1.5 x1^ 2+x2^ 28.某粮库3月4日存粮50 000 kg,3月5日调进粮食30 000 kg,3月6日调出全部存粮的一半,求每天的库存粮食数,设计程序并画出程序框图.解:库存的粮食数每天都在变,可以设置一个变量来表示每天的库存粮食数.程序:a=50 000PRINT “3月4日存粮数”;aa=a+30 000PRINT “3月5日存粮数”;aa=a/2PRINT “3月6日存粮数”;aEND程序框图如图所示.。
课时分层作业(十五) 随机事件的概率(建议用时:60分钟)[基础达标练]一、选择题1. 下列事件:①一个口袋内只装有5个红球,从中任取一球是红球;②抛掷两枚骰子,所得点数之和为9;③x 2≥0(x ∈R );④方程x 2-3x +5=0有两个不相等的实数根;⑤巴西足球队会在下届世界杯足球赛中夺得冠军.其中随机事件的个数为( )A .1B .2C .3D .4B [①是必然事件;②是随机事件;③是必然事件;④是不可能事件;⑤是随机事件.] 2.一个家庭中先后有两个小孩,则他(她)们的性别情况可能为( ) A .男女、男男、女女 B .男女、女男C .男男、男女、女男、女女D .男男、女女C [按先后顺序用列举法可得C 正确.]3.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:A .0.53B .0.5C .0.47D .0.37A [取到号码为奇数的频率是10+8+6+18+11100=0.53.]4.在12件同类产品中,有10件是正品,2件是次品,从中任意抽出3件,则下列事件为必然事件的是( )A .3件都是正品B .至少有一件是次品C .3件都是次品D .至少有一件是正品D [任意抽取3件的可能情况是:3个正品;2个正品1个次品;1个正品2个次品.由于只有2个次品,不会有3个次品的情况.3种可能的结果中都至少有1个正品,所以“至少有1个是正品”是必然发生的,即必然事件应该是“至少有1个是正品”.]5.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②作7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是n m =37;③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数是( )A .0B .1C .2D .2A [由频率与概率间的联系与区别知,①②③均不正确.] 二、填空题6.已知随机事件A 发生的频率是0.02,事件A 出现了10次,那么共进行了________次试验.500 [设共进行了n 次试验,则有10n=0.02,得n =500,故共进行500次试验.]7.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A ,则事件A 出现的频数为________,事件A 出现的频率为________.52 0.52 [100次试验中有48次正面朝上,则有52次反面朝上,则频率=52100=0.52.]8.先后抛掷1分,2分的硬币各一枚,观察落地后硬币向上面的情况,某同学记录了以下事件:A 事件:只有一枚硬币正面向上.B 事件:两枚硬币均正面向上.C 事件:至少一枚硬币正面向上.则含有三种结果的事件为________.C [A 事件有两种结果,(正,反)(反,正);B 事件只有一种结果,(正,正);C 事件有三种结果.]三、解答题9.指出下列事件是必然事件、不可能事件,还是随机事件. (1)我国东南沿海某地明年将受到3次冷空气的侵袭; (2)抛掷硬币10次,至少有一次正面向上;(3)同一门炮向同一目标发射多枚炮弹,其中50%的炮弹击中目标; (4)没有水分,种子发芽.[解] (1)我国东南沿海某地明年可能受到3次冷空气侵袭,也可能不是3次,是随机事件.(2)抛掷硬币10次,也可能全是反面向上,也可能有正面向上,是随机事件. (3)同一门炮向同一目标发射,命中率可能是50%,也可能不是50%,是随机事件. (4)没有水分,种子不可能发芽,是不可能事件. 10.指出下列试验的条件和结果. (1)某人射击一次,命中的环数;(2)从装有大小相同但颜色不同的a ,b ,c ,d 四个球的袋子中,任取1个球;(3)从装有大小相同但颜色不同的a ,b ,c ,d 四个球的袋子中,任取2个球. [解] (1)条件为射击一次;结果为命中的环数:0,1,2,3,4,5,6,7,8,9,10,共11种可能的结果.(2)条件为从袋中任取1个球;结果为a ,b ,c ,d ,共4种可能的结果.(3)条件为从袋中任取2个球;若记(a ,b )表示一次试验中取出的球是a 和b ,则试验的全部结果为(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d ),共6种可能的结果.[能力提升练]1.根据省教育研究机构的统计资料,今在校中学生近视率约为37.4%,某眼镜商要到一中学给学生配镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为( )A .374副B .224.4副C .不少于225副D .不多于225副C [根据概率相关知识,该校近视生人数约为600×37.4%=224.4,结合实际情况,眼镜商应带眼镜数不少于225副,选C.]2.某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.若该企业安排甲、乙两组各自研发一种新产品,将频率视为概率,试估算恰有一组研发成功的概率为( )A .415B .815C .730D .715B [在抽得的15个结果中,恰有一组研发成功的结果有8个,故在所抽取的样本中恰有一组研发成功的频率为815,将频率视为概率,即得恰有一组研发成功的概率约为815.]3.从100个同类产品中(其中有2个次品)任取3个.①三个正品;②两个正品,一个次品;③一个正品,两个次品;④三个次品;⑤至少一个次品;⑥至少一个正品.其中必然事件是________,不可能事件是________,随机事件是________.⑥ ④ ①②③⑤ [从100个产品(含2个次品)中取3个可能结果是:“三个全是正品”“两个正品,一个次品”“一个正品,两个次品”.]4.容量为200的样本的频率分布直方图如图所示.根据样本的频率分布直方图计算样本数据落在[6,10)内的频数为______,估计数据落在[2,10)内的概率约为________.64 0.4 [数据落在[6,10)内的频数为200×0.08×4=64,落在[2,10)内的频率为(0.02+0.08)×4=0.4,由频率估计概率知,所求概率为0.4.]5.某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10个智力题,每个题10分.然后作了统计,下表是统计结果.贫困地区:(2)求两个地区参加测试的儿童得60分以上的概率;[解](1)贫困地区依次填:0.533,0.540,0.520,0.520,0.512,0.503.发达地区依次填:0.567,0.580,0.560,0.555,0.552,0.550.(2)贫困地区和发达地区参加测试的儿童得60分以上的频率逐渐趋于0.5和0.55,故概率分别为0.5和0.55.。
********灿若寒星竭诚为您提供优质文档*********
灿若寒星
2019-2020学年人教A版必修三 分层抽样 课时作业
1.在1 000个球中有红球50个,从中抽取100个进行分析,如果
用分层抽样的方法对球进行抽样,则应抽红球( )
A.33个 B.20个
C.5个 D.10个
【解析】 设应抽红球x个,则1001 000=x50,则x=3.
【答案】 C
2.已知某地区中小学生人数和近视情况分别如图①和图②所
示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取
2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为
( )
图211
A.200,20 B.100,20
C.200,10 D.100,10
【解析】 该地区中小学生总人数为
********灿若寒星竭诚为您提供优质文档*********
灿若寒星
3 500+2 000+4 500=10 000,
则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2
000×2%×50%=20.
【答案】 A
3.某城区有农民、工人、知识分子家庭共计2 000家,其中农民
家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调
查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有( )
①简单随机抽样;②系统抽样;③分层抽样.
A.②③ B.①③
C.③ D.①②③
【解析】 由三种抽样方法的特点.
可知,选D.
【答案】 D
二、填空题
4.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名
学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业
共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.
【解析】 应在丙专业抽取的学生人数是
400
150+150+400+300
×40=14.
【答案】 16
5.某校共有2 000名学生,各年级男、女生人数如表所示.现用
分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数
********灿若寒星竭诚为您提供优质文档*********
灿若寒星
为_____________.
一年级 二年级 三年级
女生 373 380 y
男生 377 370 z
【解析】 依题意可知三年级学生人数为500,即总体中各年级的
人数比例为3∶3∶2,故用分层抽样抽取三年级学生人数为64×28=14.
【答案】 16
6.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用
分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,
则应从高二年级抽取________名学生.
【解析】 高二年级学生人数占总数的310,样本容量为50,则50
×310=13.
【答案】 15
三、解答题
7.某单位有2 000名职工,老年、中年、青年分布在管理、技术
开发、营销、生产各部门中,如下表所示:
人数 管理 技术开发 营销 生产 合计
老年 40 40 40 80 200
中年 80 100 160 240 600
青年 40 160 280 720 1 200
********灿若寒星竭诚为您提供优质文档*********
灿若寒星
合计 160 320 480 1 040 2 000
(1)若要抽取40人调查身体状况,则应怎样抽样?
(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,
则应怎样抽选出席人? 【导学号:28750034】
【解】 (1)按老年、中年、青年分层抽样,
抽取比例为402 000=150.
故老年人,中年人,青年人各抽取4人,10人,24人,
(2)按管理、技术开发、营销、生产进行分层,用分层抽样,抽取
比例为252 000=180,
故管理,技术开发,营销,生产各抽取2人,4人,6人,13人.
8.某市两所高级中学联合在暑假组织全体教师外出旅游,活动分
为两条线路:华东五市游和长白山之旅,且每位教师至多参加了其中
的一条线路.在参加活动的教师中,高一教师占42.5%,高二教师占
45.5%,高三教师占10%.参加华东五市游的教师占参加活动总人数的14,
且该组中,高一教师占50%,高二教师占40%,高三教师占10%.为了了
解各条线路不同年级的教师对本次活动的满意程度,现用分层抽样的
方法从参加活动的全体教师中抽取一个容量为200的样本.试确定:
(1)参加长白山之旅的高一教师、高二教师、高三教师分别所占的
比例;
(2)参加长白山之旅的高一教师、高二教师、高三教师分别应抽取
的人数.