高中数学必修三作业:分层抽样课时作业解析版
- 格式:docx
- 大小:25.77 KB
- 文档页数:5
学业分层测评(十一)分层抽样
(建议用时:分钟)
[学业达标]
一、选择题
.某地区为了了解居民家庭生活状况,先把居民按所在行业分
为几类,然后每个行业抽的居民家庭进行调查,这种抽样是( ) .简单随机抽样.系统抽样
.分层抽样.分类抽样
【解析】由于居民按行业可分为不同的几类,符合分层抽样的特点.
【答案】
.一个单位有职工人,其中具有高级职称的人,具有中级职称
的人,具有初级职称的人,其余人员人,为了解职工收入情况,决
定采用分层抽样的方法,从中抽取容量为的样本,则从上述各层中
依次抽取的人数分别是( )
.,,,.,,,
.,,,.,,,
【解析】抽样比例为=,故各层中依次抽取的人数为×=(人),×=(人),×=(人),×=(人).故选.
【答案】
.在
个球中有红球个,从中抽取个进行分析,如果用分层抽样的方法对
球进行抽样,则应抽红球( )
.个.个
.个.个
【解析】设应抽红球个,则)=,则=.
【答案】
.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则样本容量和抽取的高中生近视人数分别为(
)
图--
.,.,
.,.,
【解析】该地区中小学生总人数为
++=,
则样本容量为×=,其中抽取的高中生近视人数为××=.
【答案】
.某城区有农民、工人、知识分子家庭共计家,其中农民家庭户,工人家庭户.现要从中抽取容量为的样本,调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有( )。
学业分层测评 (十 )(建用: 45 分 )[ 学达 ]一、填空1.某商场想通票及售的2%来迅速估每天的量,采取以下方法:从某票的存根中随机抽出一,如15 号,而后按序今后将65号, 115 号, 165 号,⋯, 915 号抽出,票上的售成一个本.种抽取本的方法 ________.【分析】上述抽方法是将票均匀分红若干,每50 .从第一中抽取 15 号,此后各抽 15+50n(n=1,2,⋯,18)号,切合系抽的特色.【答案】系抽2.从 2 013 个号中抽取 20 个号入,采纳系抽的方法,抽的分段隔 ________.先从 2 013 个个体中剔除 13 个,分段隔2 000【分析】20=100.【答案】1003.某班共有学生52 人,依据学生的学号,用系抽的方法,抽取一个容量 4 的本 .已知 2 号、 28 号、 41 号同学在本中,那么有一个同学的学号是 ________.52【分析】由意知 k=4= 13,∴ 有一个同学的学号2+13=15.【答案】154.某企利用系抽的方法抽取一个容量60 的本,若每一个工入的可能性 0.2,企的工人数________.【分析】系抽中,每个个体被抽到是等可能的,企工人数60n,n=0.2,故 n= 300.【答案】300本,将 160 名学生从 1~160 号,按 号 序均匀分红二十(1~ 8 号, 9~16号,⋯, 153~160 号 ),若第十六 抽出的号125, 第一 中按此抽方法确立的号 是 ________.【分析】因 第十六 的号 在 121~128 号范 内,所以125 是第十六的第 5 个号,所以第一 确立的号5.【答案】56.某班 有 50 名学生, 要采纳系 抽 的方法在50 名学生中抽出 10名学生,将 50 名学生随机 号1~50 号,并分 ,第一 1~5 号,第二 6~10 号,⋯,第十46~50 号,若在第三 中抽得号12 的学生, 在第八中抽得号 ________的学生 .【分析】∵ 距 5,∴(8-3)×5+12=37.【答案】377.一个 体有 80 个个体, 号0,1,2,⋯, 79,挨次将其分红8 个小 ,号 0,1,2,⋯, 79,要用系 抽 法抽取一个容量 8 的 本,若在第随机抽取一个号 6, 所抽到的8 个号 分 ________.【分析】 k =80= ,∴在第 1抽取的号 16,第 216+ = ,81010 26第 3 6+ 3×10=36, ⋯,第 7 6+ 10×7=76.所抽 8 个号 6,16,26,36,46,56,66,76.【答案】6,16,26,36,46,56,66,768.在一次 中, 定一个人 的条件是: (1)在 中得票最多; (2)得票数不低于 票数的一半 .假如在 票 ,周 得票数据 失, 依据 数据回答 :候 人明 李 周得票数3001003060x假如周 ,那么周 的得票数 x 起码是 ________.【分析】依据条件,假如周 ,周 的得票数 x 不低于 票数的一半,x1490 票.即≥ ? x≥490,且 x∈N 即周得票数起码300+100+30+60+x2【答案】490二、解答9.了某路口一个月的流量状况,交警采纳系抽的方法,本距7,从每周中随机抽取一天,正好抽取的是礼拜日,后做出告 .你交警的抽方法有什么?当怎改?假如是一年的流量状况呢?【解】交警所的数据以及由此所推测出来的,只好代表礼拜日的交通流量 .因为礼拜日是歇息,好多人不上班,不可以代表其余几日的状况.改方法能够将所要的段的每天先随机地号,再用系抽方法来抽,或许使用随机抽来抽亦可.假如是一年的交通流量,使用随机抽法然不适合,比可行的方法是把本距改8.10.某工厂有工人 1 021 人,此中高工程 20 人,抽取一般工人 40 人,高工程 4 人成代表去参加某活,怎抽?【解】(1)将 1 001 名一般工人用随机方式号.(2)从体中剔除 1 人(剔除方法可用随机数表法),将剩下的 1 000 名工重新号 (分 0001,0002,⋯,1000),并均匀分红 40 段,此中每一段包括1 00040=25 个个体 .(3)在第一段 0001,0002,⋯, 002525 个号顶用随机抽法抽出一个 (如 0003)作开端号 .(4)将号 0003,0028,0053,⋯,0978 的个体抽出 .(5)将 20 名高工程用随机方式号1,2,⋯,20.(6)将 20 个号分写在大小、形状同样的小条上,揉成小球,制成号.(7)将获得的号放入一个不透明的容器中,充足拌均匀.(8)冷静器中逐一抽取 4 个号,并上边的号.(9)从体中将与所抽号的号相一致的个体拿出.以上获得的个体即是代表成.[ 能力提高 ]1.某位有 840 名工,采纳系抽方法抽取 42 人做卷,将 840 人按 1,2,⋯,840 随机号,抽取的 42 人中,号落入区 [481,720]的人数________.840【分析】抽隔42=20.在 1,2,⋯,20 中抽取号 x0(x0∈[1,20]) ,在 [481,720]之抽取的号 20k+x0, 481≤20k+ x0≤720,k∈N* .1x0∴2420≤ k+20≤36.x01∵∈,1,20 20∴k= 24,25,26,⋯,35,∴k 共有 35- 24+1=12(个),即所求人数12.【答案】122.将参加夏令的 600 名学生号: 001,002,⋯, 600.采纳系抽方法抽取一个容量 50 的本,且随机抽得的号 003. 600 名学生疏住在三个区,从 001 到 300 在第Ⅰ 区,从 301 到 495 在第Ⅱ 区,从 496 到 600 在第Ⅲ 区,三个区被抽中的人数挨次 ________. 【学号: 90200038】600【分析】由意知隔50=12,故抽到的号12k+3(k=0,1,⋯,49),可解得:第Ⅰ 区抽25 人,第Ⅱ 区抽17 人,第Ⅲ 区抽8 人.【答案】25,17,83.采纳系抽从含有8 000 个个体的体 (号 0000,0001,⋯, 7999)中抽取一个容量50 的本,最后一段号的范________,已知最后一个入号是 7894,开 5 个入号是 ________.【分析】因 8 000 ÷50= 160,所以最后一段的号号最后的160 个号,即从 7840 到 7999 共 160 个号 .从 7840 到 7894 共 55 个数,所以从 0000到第 55 个号 0054,而后逐一加上160 得, 0214,0374,0534,0694.【答案】7840~79990054,0214,0374,0534,06944.一个体中有 1 000 个个体,随机号 0,1,2,3,⋯,999,以号序将其均匀分红10 个小,号挨次 0,1,2,3,⋯,9,要用系抽方法抽取一容量 10 的本,定:假如在第0 小中随机抽取的号 x,那么挨次位地获得后边各中的号,即第 k 小中抽取的号的后两位数字与 x+33k 的后两位数字同样 .(1)当 x=24 ,写出所抽取本的10 个号;(2)若所抽取本的10 个号中有一个号的后两位数字是87,求 x 的取范 .【解】(1) 当x = 24,所抽取本的10个号依次24,157,290,323,456,589,622,755,888,921.(2)当 k=0,1,2,⋯,9 ,33k 的挨次 0,33,66,99,132,165,198,231,264,297.由所抽取本的 10 个号中有一个号的后两位数字是87,可得 x 的取可能 87,54,21,88,55,22,89,56,23,90.所以 x 的取范是 {21,22,23,54,55,56,87,88,89,90}.。
课时分层作业(十一) 分层抽样(建议用时:60分钟)一、选择题1.某校共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,用分层抽样抽取一个容量为20的样本,则应抽取的后勤人员人数是( )A .3B .2C .15D .4A [因为160人抽取20人,所以抽取的比例为20160=18,因为后勤人数为24,所以应抽取24×18=3.故选A.] 2.某中学高二年级共有学生2 400人,为了解他们的身体状况,用分层抽样的方法从中抽取一个容量为80的样本,若样本中共有男生42人,则该校高二年级共有女生( )A .1 260B .1 230C .1 200D .1 140D [设女生总人数为x 人,由分层抽样的方法,可得抽取女生人数为80-42=38(人),所以802 400=38x,解得x =1 140.故选D.] 3.一批灯泡400只,其中20 W 、40 W 、60 W 的数目之比是4∶3∶1,现用分层抽样的方法产生一个容量为40的样本,三种灯泡依次抽取的个数为( )A .20,15,5B .4,3,1C .16,12,4D .8,6,2A [40×48=20.40×38=15,40×18=5.] 4.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3D [不管是简单随机抽样、系统抽样还是分层抽样,它们都是等可能抽样,每个个体被抽中的概率均为n N.]5.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x 份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为( )A .60B .80C .120D .180C [11~12岁回收180份,其中在11~12岁学生问卷中抽取60份,抽样比为13,因为分层抽取样本的容量为300,故回收问卷总数为30013=900份,故x =900-120-180-240=360份,360×13=120份.] 二、填空题6.在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样的方法从中抽取容量为20的样本,则每个个体被抽取的可能性是________.16 [在分层抽样中,每个个体被抽取的可能性相等,且为样本容量总体容量.所以每个个体被抽取的可能性是20120=16.] 7.我国古代数学算经十书之一的《九章算术》中有一“衰分”问题:“今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣________人”.145 [今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣487×7 2508 750+7 250+8 350=145(人).] 8.下列问题中,采用怎样的抽样方法较为合理?(1)从10台电冰箱中抽取3台进行质量检查;(2)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本;(3)体育彩票000 001~100 000编号中,凡彩票号码最后三位数为345的中一等奖.(1)________ (2)________ (3)________.(1)抽签法 (2)分层抽样 (3)系统抽样9.某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?[解] (1)按老年、中年、青年分层抽样,抽取比例为402 000=150. 故老年人,中年人,青年人各抽取4人,12人,24人,(2)按管理、技术开发、营销、生产进行分层,用分层抽样,抽取比例为252 000=180, 故管理,技术开发,营销,生产各抽取2人,4人,6人,13人.10.为了考察某校的教学水平,抽查了该学校高三年级部分学生的本年度考试成绩.为了全面地反映实际情况,采取以下三种考察方式(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;②每个班都抽取1人,共计14人,考察这14个学生的成绩;③把该校高三年级的学生按成绩分成优秀,良好,普通三个级别,从中抽取100名学生进行考查(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的叙述,试回答下列问题:(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方法各自抽取样本的步骤.[解] (1)这三种抽取方式中,其总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第二种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第三种抽取方式中样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)第一种方式采用的方法是简单随机抽样法;第二种方式采用的方法是系统抽样法和简单随机抽样法;第三种方式采用的方法是分层抽样法和简单随机抽样法.(3)第一种方式抽样的步骤如下:第一步:在这14个班中用抽签法任意抽取一个班;第二步:从这个班中按学号用随机数表法或抽签法抽取14名学生,考察其考试成绩. 第二种方式抽样的步骤如下:第一步:在第一个班中,用简单随机抽样法任意抽取某一学生,记其学号为x ;第二步:在其余的13个班中,选取学号为x +50k (1≤k ≤12,k ∈Z )的学生,共计14人. 第三种方式抽样的步骤如下:第一步:分层,因为若按成绩分,其中优秀生共105人,良好生共420人,普通生共175人,所以在抽取样本中,应该把全体学生分成三个层次;第二步:确定各个层次抽取的人数,因为样本容量与总体数的比为100∶700=1∶7,所以在每个层抽取的个体数依次为1057,4207,1757,即15,60,25; 第三步:按层分别抽取,在优秀生中用简单随机抽样法抽取15人,在良好生中用简单随机抽样法抽取60人,在普通生中用简单随机抽样法抽取25人.第四步:将所抽取的个体组合在一起构成样本.1.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .200,20B .100,20C .200,10D .100,10A [该地区中小学生总人数为3 500+2 000+4 500=10 000人,则样本容量为10 000×2%=200人,其中抽取的高中生近视人数为2 000×2%×50%=20.]2.某初级中学共有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人进行某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为001,002,003,…,270;使用系统抽样时,将学生统一随机编号为001,002,003,…,270,并将整个编号平均分为10段.如果抽得的号码有下列四种情况:①007,034,061,088,115,142,169,196,223,250;②005,009,100,107,111,121,180,195,200,265;③011,038,065,092,119,146,173,200,227,254;④036,062,088,114,140,166,192,218,244,270.关于上述样本的下列结论中,正确的是( )A .②③都不能为系统抽样B .②④都不能为分层抽样C .①④都可能为系统抽样D .①③都可能为分层抽样D [系统抽样又称为“等距抽样”,做到等距的有①③④,但只做到等距还不一定是系统抽样,还应做到10段中每段要抽1个,检查这一点只需看第一个元素是否在001~027范围内,结果发现④不符合,同时,若为系统抽样,则分段间隔k =27010=27,④也不符合这一要求,所以可能是系统抽样的为①③,因此排除A ,C ;若采用分层抽样,一、二、三年级的人数比例为4∶3∶3,由于共抽取10人,所以三个年级应分别抽取4人、3人、3人,即在001~108范围内要有4个编号,在109~189和190~270范围内要分别有3个编号,符合此要求的有①②③,即它们都可能为分层抽样(其中①③在每一层内采用了系统抽样,②在每一层内采用了简单随机抽样),所以排除B.]3.某高中针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的5,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取________人.6 [因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以“剪纸”社团的人数为800×25=320.因为“剪纸”社团中高二年级人数比例为y x +y +z=32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.] 4.某机关老年、中年、青年的人数分别为18,12,6,现从中抽取一个容量为n 的样本,若采用系统抽样和分层抽样,则不用剔除个体.当样本容量增加1时,若采用系统抽样,需在总体中剔除1个个体,则样本容量n =________.6 [当样本容量为n 时,因为采用系统抽样时不用剔除个体,所以n 是18+12+6=36的约数,n 可能为1,2,3,4,6,9,12,18,36.因为采用分层抽样时不用剔除个体,所以n 36×18=n 2,n 36×12=n 3,n 36×6=n 6均是整数,所以n 可能为6,12,18,36.又因为当样本容量增加1时,需要剔除1个个体,才能用系统抽样,所以n +1是35的约数,而n +1可能为7,13,19,37,所以n +1=7,所以n =6.]5.某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名初中生、4 000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3 000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?(3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?[解] (1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.因为样本容量为120,总体个数为500+3 000+4 000=7 500,则抽样比:1207 500=2125, 所以有500×2125=8,3 000×2125=48, 4 000×2125=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64. 分层抽样的步骤是①分层:分为教职员工、初中生、高中生,共三层.②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.③各层分别按简单随机抽样或系统抽样的方法抽取样本.④综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简单随机抽样有两种方法:抽签法和随机数法.如果用抽签法,要作3 000个号签,费时费力,因此采用随机数法抽取样本,步骤是①编号:将3 000份答卷都编上号码:0 001,0 002,0 003,…,3 000.②在随机数表上随机选取一个起始位置.③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3 000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.(3)由于4 000÷64=62.5不是整数,则应先使用简单随机抽样从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,…,62.从中随机抽取一个号码,若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.。
分层抽样课后练习题一:某学院有A,B,C三个专业共1 200名学生.现采用分层抽样的方法抽取一个容量为120的样本,已知A专业有420名学生,B专业有380名学生,则在C专业应抽取________名学生.题二:某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,为了检查普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数是________.题三:某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5C.6 D.7题四:某工厂生产A、B、C三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,那么此样本的容量n=________.题五:将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.题六:将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的编号为003.这600名学生分住在3个营区,从001到300住在第1营区,从301到495住在第2营区,从496到600住在第3营区,则3个营区被抽中的人数依次为()A.26,16,8 B.25,16,9C.25,17,8 D.24,17,9题七:一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人.题八:交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101B.808 C.1 212 D.2 012题九:调查某高中1 000名学生的身高情况,得下表.已知从这批学生中随机抽取1名学生,抽到偏低男生的概率为0.15(1)求x的值;(2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在偏高学生中抽多少名;(3)已知y≥193,z≥193,求偏高学生中男生不少于女生的概率.题十:某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:(1)若要抽取40(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对某运动会筹备情况的了解,则应怎样抽样?题十一:2012年6月16日“神舟”九号载人飞船顺利发射升空,某校开展了“观…神九‟飞天燃爱国激情”系列主题教育活动.该学校高一年级有学生300人,高二年级有学生300人,高三年级有学生400人,通过分层抽样从中抽取40人调查“神舟”九号载人飞船的发射对自己学习态度的影响,则高三年级抽取的人数比高一年级抽取的人数多()A.5人B.4人C.3人D.2人题十二:一支田径队有男女运动员98人,其中男运动员有56人,按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_____.题十三:甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生.为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90的样本,丙校中A同学被抽取到的概率()题十四:某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.题十五:某市有A、B、C三所学校,共有高三文科学生1 500人,且A、B、C三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为n的样本,进行成绩分析,若从B校学生中抽取40人,则n=________.题十六:网络上流行一种“QQ农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此,先对60名学生进行编号为:01,02,03,…60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.分层抽样课后练习参考答案题一: 40.详解:由已知条件可得每一名学生被抽取的概率为P =1201 200=110,则应在C 专业中抽取(1200-420-380)×110=40名学生.题二: 50.详解:由题意得70490×350=50(人).题三: C .详解:四类食品的每一种被抽到的概率为2040+10+30+20=15, ∴植物油类和果蔬类食品被抽到的种数之和为(10+20)×15=6.题四: 80.详解:设分别抽取B 、C 型号产品m 1,m 2件,则由分层抽样的特点可知216=3m 1=5m 2,∴m 1=24,m 2=40,∴n =16+m 1+m 2=80.题五: 16, 28, 40, 52.详解:依据系统抽样方法的定义知,将这60名学生依次按编号每12人作为一组,即01~12、13~24、…、49~60,当第一组抽得的号码是04时,剩下的四个号码依次是16,28,40,52(即其余每一小组所抽出来的号码都是相应的组中的第四个号码).题六: C .详解:由题意知,被抽中的学生的编号构成以3为首项,12为公差的等差数列{a n },其通项a n =12n -9(1≤n ≤50,n ∈N *).令1≤12n -9≤300,得1≤n ≤25,故第1营区被抽中的人数为25;令301≤12n -9≤495,得26≤n ≤42,故第2营区被抽中的人数为17;令496≤12n -9≤600,得43≤n ≤50,故第3营区被抽中的人数为8.题七: 6.详解:分层抽样的特点是按照各层占总体的比相等抽取样本,设抽取的女运动员有x 人,则x 8=4256,解得x =6.题八: B .详解:由题意知抽样比为1296,而四个社区一共抽取的驾驶员人数为12+21+25+43=101,故有1296=101N ,解得N =808.题九: (1)x =150;(2) 20名;(3)815. 详解:(1)由题意可知,x 1 000=0.15,故x =150. (2)由题意可知,偏高学生人数为y +z =1 000-(100+173+150+177)=400.设应在偏高学生中抽m 名,则m 400=501 000,故m =20.应在偏高学生中抽20名. (3)由(2)知y +z =400,且y ≥193,z ≥193,满足条件的(y ,z )有(193,207),(194,206),…,(207,193),共有15组.设事件A :“偏高学生中男生不少于女生”,即y ≤z ,满足条件的(y ,z )有(193,207),(194, 206),…,(200,200),共有8组,所以P (A )=815. 偏高学生中男生不少于女生的概率为815.题十: (1)按老年4人,中年12人,青年24人抽取;(2)按管理2人,技术开发4人,营销6人,生产13人抽取;(3)用系统抽样,对2 000人随机编号,号码从0001~2 000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,得到容量为20的样本.详解:(1)用分层抽样,并按老年4人,中年12人,青年24人抽取.(2)用分层抽样,并按管理2人,技术开发4人,营销6人,生产13人抽取.(3)用系统抽样,对2 000人随机编号,号码从0001~2 000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,得到容量为20的样本.题十一: B .详解:由已知可得该校学生一共有1000人,则高一抽取的人数为300×401 000=12,高三抽取的人数为400×401 000=16,所以高三年级抽取的人数比高一年级抽取的人数多4人.题十二: 12.详解:依题意,女运动员有98-56=42(人).设应抽取女运动员x 人,根据分层抽样特点,得x 42=2898,解得x =12.题十三: 1120. 详解:每一个个体被抽到的概率相等, 是903 600+5 400+1 800=1120.题十四: 160.详解:由分层抽样得,此样本中男生人数为560×280560+420=160.题十五: 120.详解:设A 、B 、C 三所学校学生人数分别为x ,y ,z ,由题知x ,y ,z 成等差数列,所以x +z =2y ,又x +y+z =1 500,所以y =500,用分层抽样方法抽取B 校学生人数为n 1 500×500=40,得n =120.题十六: 57.详解:由最小的两个编号为03,09可知,抽取人数的比例为16,即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.。
课时分层作业(九) 简单随机抽样(建议用时:60分钟)[合格基础练]一、选择题1.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回B[逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取也不影响样本的代表性,制签也一样,故选B.] 2.某班50名学生中有30名男生,20名女生,用简单随机抽样抽取1名学生参加某项活动,则抽到女生的可能性为()A.0.4 B.0.5C.0.6 D.2 3A[在简单随机抽样中每个个体被抽到的机会相等,故可能性为2050=0.4.]3.下列抽取样本的方式属于简单随机抽样的是()①从无限多个个体中抽取100个个体样本;②盒子中有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③从8台电脑中不放回地随机抽取2台进行质量检验(假设8台电脑已编好号,对编号随机抽取).A.①B.②C.③D.以上都不对C[分析简单随机抽样的4个特点:①总体中个数有限;②个体间差异较小并逐个抽取;③不放回抽样;④等可能抽样;只有③符合.]4.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法:①1,2,3,…,100;②001,002,…,100;③00,01,02,…,99;④01,02,03,…,100.其中正确的序号是()A.②③④B.③④C.②③D.①②C[用随机数表法时编号的位数要相同,符合条件的有②③.]5.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是()A.110,110 B.310,15C.15,310D.310,310A[根据简单随机抽样的定义知选A.]二、填空题6.用抽签法进行抽样有以下几个步骤:①制签;②抽签;③将签摇匀;④编号;⑤将抽取的号码对应的个体取出,组成样本.这些步骤的正确顺序为________.④①③②⑤[由抽签法的步骤知,正确顺序为④①③②⑤.]7.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.①2 000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机数表法抽样;⑥每个运动员被抽到的机会相等.④⑤⑥[①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.]8.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N=_________________________.120 [30N =25%,因此N =120.]三、解答题9.现有一批编号为010,011,…,099,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?[解] 第一步,将元件的编号调整为010,011,012,…,099,100,…,600. 第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数3.第三步,从数3开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到321,273,279,600,552,254.第四步,与以上这6个号码对应的6个元件就是所要抽取的对象.10.某大学为了支持东亚运动会,从报名的60名大三学生中选10人组成志愿小组,请用抽签法和随机数表法设计抽样方案.[解] 抽签法:第一步:将60名大学生编号,编号为01,02,03, (60)第二步:将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;第三步:将60个号签放入一个不透明的盒子中,充分搅匀;第四步:从盒子中逐个抽取10个号签,并记录上面的编号;第五步:所得号码对应的学生,就是志愿小组的成员.随机数表法:第一步:将60名学生编号,编号为01,02,03, (60)第二步:在随机数表中任选一数开始,按某一确定方向读数;第三步:凡不在01~60中的数或已读过的数,都跳过去不作记录,依次记录下10个得数;第四步:找出号码与记录的数相同的学生组成志愿小组.[等级过关练]1.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为()A.knm B.k+m-nC.kmn D.不能估计C[设参加游戏的小孩有x人,则kx=nm,所以x=kmn.]2.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性为()A.0.01 B.0.04C.0.2 D.0.25C[明确是简单随机抽样且每个个体被抽到的可能性是相等的,问题的突破口就找到了.因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性为20100=0.2.]3.某中学高一年级有400人,高二年级有320人,高三年级有280人,每人被抽取的可能性均为0.2,从该中学抽取一个容量为n的样本,则n=________.200[∵n400+320+280=0.2,∴n=200.]4.一个布袋中有10个同样质地的小球,从中不放回地依次抽取3个小球,则某一特定小球被抽到的可能性是________,第三次抽取时,剩余每个小球被抽到的可能性是________.3 1018[因为简单随机抽样过程中每个个体被抽到的可能性均为nN,所以第一个空填310.因本题中的抽样是不放回抽样,所以第一次抽取时,每个小球被抽到的可能性为110,第二次抽取时,剩余9个小球,每个小球被抽到的可能性为19,第三次抽取时,剩余8个小球,每个小球被抽到的可能性为18.]5.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.[解]第一步:先确定艺人.(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中不放回的抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序.确定了演出人员后,再用相同的纸条做成20个号签,上面写上01到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.。
课时分层作业(五) 抽样方法(建议用时:60分钟)[基础达标练]一、选择题1.采用简单随机抽样,从6个标有序号A ,B ,C ,D ,E ,F 的球中抽取1个球,则每个球被抽到的可能性是( )A .35B .12C .13D .16D [每个个体被抽到的可能性相等,均为样本容量总体容量.]2.总体由编号为01,02,…,19,20的20个个体组成.利用下列随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取,每次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 0198 3204 9234493582003623486969387481A .08B .07C .02D .01D [第1行第5列和第6列的数字为65, 所以被选中的编号依次为08,02,14,07,01.所以选出来的第5个个体的编号为01,故选D .]3.某校对全校1 200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本.已知从女生中抽了85人,则该校的男生人数是( )A .720B .690C .510D .200B [由男生人数占总人数的比等于抽到的男生人数占样本容量的比,可得男生有1 200×200-85200=690(人).]4.为了检验某种产品的质量,决定从101件产品中抽取10件检验,若用随机数表法抽取样本,则编号的位数为( )A .2B .3C .4D .5B [用随机数表法抽取样本,位数应相同,应为3位,首位可以是000或001.] 5.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽取容量为n 的样本,其中甲种产品有18件,则样本容量n =( )A .54B .90C .45D .126B [依题意得33+5+7×n =18,解得n =90,即样本容量为90.]二、填定题6.利用简单随机抽样从含有8个个体的总体中抽取一个容量的为4的样本,则总体中每个个体被抽到的概率是________.12 [总体个数为N =8,样本容量为M =4,则每一个个体被抽到的概率为P =M N =48=12.]7.某所学校有小学部、初中部和高中部,在校小学生、初中生和高中生人数之比为5∶2∶3,且已知初中生有800人,现采用分层抽样的方法从这所学校的学生中抽取一个容量为80的样本以了解学生对学校文体活动方面的评价,则每个高中生被抽到的可能性是________.150 [高中生有8002×3=1 200(人), 小学生有8002×5=2 000(人), 所以每个高中生被抽到的可能性为801 200+800+2 000=804 000=150.]8.某校共有学生2 000名,各年级男、女生人数如下表,现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.16[一年级总人数为373+377=750,二年级总人数为380+370=750,故三年级总人数为2 000-750-750=500.因在全校抽取64名学生,所以在三年级抽取的学生人数为500×642 000=16.]三、解答题9.在下列问题中,采用怎样的抽样方法较为合理?(1)从10台电冰箱中抽取3台进行质量检测;(2)某学校有160名教职工,其中教师120名、行政人员16名、后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.思路点拨:(1)总体中的个体数比较小,因此比较适合采用抽签法或随机数表法;(2)由于学校各类职工对这一问题的看法可能差异较大,所以应采用分层抽样方法.[解](1)采用抽签法或随机数表法.(2)采用分层抽样.由于总体容量为160,故样本中教师人数应为20160×120=15(人),行政人员人数应为20160×16=2(人),后勤人员人数应为20160×24=3(人).10.某单位有80名员工,现要从中抽取8名员工去参加一个座谈会.每名员工被抽取的机会均等,应怎样抽取?思路点拨:由于本题中的总体和样本数目都较小,因此可采用抽签法抽取,也可采用随机数表法抽取.[解]法一:(抽签法)①把80名员工编号为1,2,3,…,80,并写在小纸片上,折叠成小块或揉成小球;②将制成的小块或小球放到不透明的袋子中,搅拌均匀;③从袋子中逐个抽取8个号签;④选出总体中与抽到号签一致的8名员工参加座谈会.法二:(随机数表法)①把80名员工编号,可以编为00,01,02, (79)②取出随机数表,选择某一行某一列的某个数开始读数(不妨选择第5行第12列的数8);③按照一定的方向读下去,在读取的过程中,若得到的号码不在编号内,则跳过,若在编号内,则取出,若得到的号码前面已经取出,即是重复出现的号码,则跳过,如此继续下去,直到取满为止;④根据选定的号码抽取样本.[能力提升练]1.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为() A.②①③④B.③④①②C.①③④②D.④①③②C[利用随机数表法抽取样本的一般步骤排序.]2.为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从A,B,C三所中学抽取60名教师进行调查,已知A,B,C三所学校中分别有180,270,90名教师,则从C学校中应抽取的人数为()A.10 B.15C.20 D.30A[根据分层抽样的特征,从C学校中应抽取的人数为90180+270+90×60=10.]3.某中学有高中生3 500人、初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为________.100[根据分层抽样的抽样比相同,得703 500=n3 500+1 500,解得n=100.]4.某人从湖里打了一网鱼,共m条,做上记号再放回湖中,数日后又打了一网鱼,共n条,其中做记号的有k条,估计湖中有鱼________条.mnk[打了一网鱼,共n条,其中做记号的有k条,可以理解为每一条鱼被抽取的可能性为kn.设湖里共有N条鱼,则mN=kn,所以N=mnk.]5.某企业三月中旬生产A,B,C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:A 产品的样本容量比C产品的样本容量多10,根据以上信息,可得C的产品数量是多少件?[解]设样本容量为x,则x3 000×1 300=130,∴x=300.∴A产品和C产品在样本中共有300-130=170(件).设C产品的样本容量为y,则y+y+10=170,∴y=80.∴C产品的数量为3 000300×80=800(件).。
2020-2021学年北师大版数学必修3课时分层作业:1.2.2 分层抽样与系统抽样含解析课时分层作业(三)(建议用时:40分钟)一、选择题1.某牛奶生产线上每隔30分钟抽取一袋进行检验,该抽样方法记为①;从某中学的30名数学爱好者中抽取3人了解学业负担情况,该抽样方法记为②.那么()A.①是系统抽样,②是简单随机抽样B.①是简单随机抽样,②是简单随机抽样C.①是简单随机抽样,②是系统抽样D.①是系统抽样,②是系统抽样A[对于①,因为每隔30分钟抽取一袋,是等间距抽样,故①为系统抽样;对于②,总体数量少,样本容量也小,故②为简单随机抽样,故选A.]2.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法 B.系统抽样法C.分层抽样法D.随机数法C[根据年级不同产生差异及按人数比例抽取易知应为分层抽样法.]3.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号1,2,…,960,则抽到的32人中,编号落入区间[1,480]的人数为()A.10B.14C.15D.16D[由系统抽样的定义,960人中抽取32人,共需均分成32组,每组错误!=30(人),区间[1,480]恰好含错误!=16(组),故抽到的32人中,编号落入区间[1,480]的人数为16人.]4.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按错误!的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.10A[若设高三学生数为x,则高一学生数为错误!,高二学生数为错误!+300,所以有x+错误!+错误!+300=3 500.解得x=1 600,故高一学生数为800.因此应抽取高一学生数为800100=8.] 5.为了保证分层抽样时每个个体等可能地被抽取,必须要求()A.每层不等可能抽样B.每层抽取的个体数相等C.每层抽取的个体可以不一样多,但必须满足抽取n i=n错误! (i=1,2,…,k)个个体.(其中i是层数,n是抽取的样本容量,N i是第i层中个体的个数,N是总体的容量)D.只要抽取的样本容量一定,每层抽取的个体数没有限制C[A不正确.B中由于每层的容量不一定相等,每层抽同样多的个体数,显然从整个总体来看,各层之间的个体被抽取的可能性就不一样了,因此B也不正确.C中对于第i层的每个个体,它被抽到的可能性与层数无关,即对于每个个体来说,被抽取的可能性是相同的,故C正确.D不正确.]二、填空题6.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.25[设男生抽取x人,则有错误!=错误!,解得x=25.]7.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否达标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.1 211[分段间隔为错误!=20,故第k组抽到的号码为(k-1)×20+11,则第61组抽出号码为11+(61-1)×20=1 211.]8.为了了解高一、高二、高三学生的身体状况,现用分层抽样的方法抽取一个容量为1 200的样本,三个年级学生人数之比依次为k∶5∶3,已知高一年级共抽取了240人,则高三年级抽取的人数为________.360[因为高一年级抽取学生的比例为错误!=错误!,所以错误!=错误!,解得k=2,故高三年级抽取的人数为1 200×错误!=360。
2019届数学人教版精品资料
课时作业(十一) 分层抽样
A组基础巩固
1.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是() A.抽签法B.随机数法
C.系统抽样法D.分层抽样法
答案:D
2.某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家,为了掌握各商店的营业情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的中型商店数是()
A.2 B.3
C.5 D.13
答案:C
3.(2015·北京)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()
A.90 B.100
C.180 D.300
解析:由题意,老年和青年教师的人数比为900∶1600=9∶16. 因为青年教师有320人,所以老年教师有180人,故选C.
答案:C
4.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①,②这两项调查宜采用的抽样方法依次是() A.分层抽样法,系统抽样法
B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法
D.简单随机抽样法,分层抽样法
解析:依据题意,第①项调查中,总体中的个体差异较大,应采用分层抽样法;第②项。
高中分层抽样练习题及讲解# 高中分层抽样练习题及讲解分层抽样是一种概率抽样方法,它将总体分为不同的层或组,然后从每一层中随机抽取样本。
这种方法适用于总体中存在明显差异的情况。
以下是一些高中分层抽样的练习题及相应的讲解。
## 练习题一题目:某学校要进行学生健康调查,学校共有1000名学生,分为三个年级:高一、高二、高三,每个年级各占1/3。
调查者希望了解学生每天的睡眠时间。
请设计一个分层抽样方案。
解答:1. 首先,将1000名学生按照年级分为三个层,每层333名学生。
2. 由于每个年级的学生数量相同,可以采用简单随机抽样的方法从每个年级中抽取样本。
3. 假设每个年级需要抽取100名学生作为样本,那么每个年级的抽样比为100/333。
4. 从每个年级的333名学生中随机抽取100名学生,这样总共抽取300名学生作为样本。
## 练习题二题目:一个社区有1000户家庭,其中低收入家庭占20%,中等收入家庭占60%,高收入家庭占20%。
社区管理者想要了解家庭的月支出情况。
请设计一个分层抽样方案。
解答:1. 根据家庭收入水平,将1000户家庭分为三个层:低收入、中等收入、高收入。
2. 每个层的户数分别为:低收入200户,中等收入600户,高收入200户。
3. 设计抽样比,假设总样本量为100户。
4. 计算每个层的样本量:低收入家庭20户,中等收入家庭60户,高收入家庭20户。
5. 分别从每个层中随机抽取相应数量的家庭作为样本。
## 练习题三题目:某市进行人口普查,全市共有100000人,其中男性50000人,女性50000人。
普查者想要了解居民的受教育程度。
请设计一个分层抽样方案。
解答:1. 将100000人按照性别分为两个层:男性和女性。
2. 每个层的人数相等,都是50000人。
3. 设计抽样比,假设总样本量为1000人。
4. 计算每个层的样本量:男性500人,女性500人。
5. 分别从男性和女性中随机抽取500人作为样本。
课时作业(三)一、选择题1.某市场想通过检查发票及销售记录的2%来快速估计每月的销量总额.采取如下方法:从某本发票的存根中随机抽一张,如15号,然后按顺序往后将65号,115号,165号,……抽出,发票上的销售额组成一个调查样本.这种抽取样本的方法是( )A .抽签法B .随机数法C .系统抽样法D .其他的抽样方法解析:上述抽样方法是将发票平均分成假设干组,每组50张.从第一组中抽取15号,以后各组抽取15+50n (n ∈N *)号,符合系统抽样的特点.应选C.答案:C2.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,方案采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生( )A .30人,30人,30人B .30人,45人,15人C .20人,30人,10人D .30人,50人,10人解析:设甲、乙、丙三校抽取的学生人数分别为a 、b 、c ,那么a3 600=b 5 400=c 1 800=903 600+5 400+1 800, 解得a =30,b =45,c =15.应选择B. 答案:B3.某客运公司为了了解客车的耗油情况,现采用系统抽样方法按1∶10的比例抽取一个样本进行检测,将所有200辆客车依次编号为1,2,…,200,那么其中抽取的4辆客车的编号可能是( )A .3,23,63,102B .31,61,87,127C .103,133,153,193D .57,68,98,108解析:按照系统抽样方法,此题是将200辆客车按1∶10的比例抽取,需分成10段,所抽取客车的编号之差是10的倍数,故应选C.答案:C4.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,那么抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14解析:依据系统抽样为等距抽样的特点,分42组,每组20人,区间[481,720]包含25组到36组,每组抽1人,那么抽到的人数为12.答案:B5.某单位有职工120人,其中男职工90人,现采用分层抽样的方法(按男、女分层)抽取一个样本,假设样本中有27名男职工,那么样本容量为( )A .30B .36C .40D .无法确定解析:分层抽样中抽样比一定相同,设样本容量为n ,由题意得,n 120=2790,解得n =36.答案:B6.某企业六月中旬生产A 、B 、C 三种产品共3 000件 ,根据分层抽样的结果,企业统计员制作了如下的统计表格:A 产品的样本容量比C 产品的样本容量多10,请你根据以上信息确定表格中a 的值为( )A .70B .80C .90D .100解析:由题意知A 产品的样本容量为a +10,由分层抽样的特点有a +10+a 3 000-1 300=1301 300,∴a =80.答案:B 二、填空题7.某小礼堂有25排座位,每排20个座位.一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的25名学生进行测试,这里运用的是 ________ 抽样方法.答案:系统8.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,那么应从一年级本科生中抽取__________名学生.解析:设应从一年级本科生中抽取x 名学生,那么x 300=44+5+5+6,解得x =60.答案:609.一个总体中共有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样的方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.假设m =6,那么在第7组中抽取的号码是________.解析:根据题意,第七组中的号码是[60,69]内的正整数. 因为m =6,k =7,m +k =13.所抽取的号码个位数为3,于是此号码为63. 答案:63 三、解答题10.某校500名学生中,O 型血有200人,A 型血有125人,B 型血有125人,AB 型血有50人,为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本?解:用分层抽样抽取样本. ∵20500=125,即抽样比为125, ∴200×125=8,125×125=5,50×125=2.故O 型血抽8人,A 型血抽5人,B 型血抽5人,AB 型血抽2人. 抽样步骤: (1)确定抽样比125.(2)按比例分配各层所要抽取的个体数,O 型血抽8人,A 型血抽5人,B 型血抽5人,AB 型血抽2人.(3)用简单随机抽样分别在各种血型的人中抽取样本,直至取出容量为20的样本. 11.某学校有学生3 000人,现在要抽取100人组成夏令营,怎样抽取样本? 解:按系统抽样抽取样本,其步骤是:(1)将3 000名学生随机编号为1,2,…,3 000.(2)确定分段间隔k =3 000100=30,将整体按编号分为100组,第1组1~30,第2组31~60,…,依次分下去,第100组2 971~3 000.(3)在第1组用简单随机抽样确定起始个体的编号l (0<l ≤30).(4)按照一定的规那么抽取样本,通常是将起始编号l 加上分段间隔30得到第2个个体编号l +30,再加上30得到第3个个体编号l +60,这样继续下去,直到获取整个样本.比方l =15,那么抽取的编号为15,45,75,105,…,2 985.这些号码对应的学生组成样本.12.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样和分层抽样的方法抽取,却不用剔除个体;如果样本容量增加1个,那么在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n .解:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6,即样本容量n =6.。
数学·必修3(苏教版)第2章统计2.1抽样方法2.1.3 分层抽样基础巩固1.某大学共有本科生10 000人,其中一、二、三、四年级的学生比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生为()A.160人B.80人C.120人D.40人答案:D2.简单随机抽样、系统抽样、分层抽样之间的共同点是() A.都是从总体中逐个抽取B.将总体分成几部分,按事先规定的要求在各部分抽取C .抽样过程中每个个体被抽取的机会相同D .将总体分成几层,分层进行抽取 答案:C3.一个年级有12个班,每个班的同学从1至50排学号,为了交流学习经验,要求每班学号为14的同学留下进行交流,这里运用的是________.解析:依据概念,区分三种抽样. 答案:系统抽样4.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取一个容量为45的样本,那么高一、高二、高三各年级抽取人数分别为________.解析:对应设x ,y ,z ,由300x =200y =400z =90045,可直接求出.答案:15,10,205.某公司有2 000名员工,其中高层管理人员占5%,属于高收入者;中层管理人员占15%,属于中等收入者;一般员工占80%,属于低收入者,现对该公司员工的收入情况进行调查,拟调查10%的员工,应当怎样进行抽样?解析:按收入水平分层,2 000×10%=200(人),200×5%=10(人),200×15%=30(人),200×80%=160(人),故应从高层管理人员中抽取10人,从中层管理人员中抽取30人,从一般员工中抽取160人,再对这200人的收入调查.6.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本,如果采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.解析:总体容量为6+12+18=36(人).当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取工程师人数为n 36×6=n 6人,技术人员人数为n 36×12=n 3人,技工人数为n 36×18=n2人,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n只能取6.即样本容量n=6.7.对某单位1 000名职工进行某项专门调查,调查的项目与职工任职年限有关,人事部门提供了如下资料:试利用上述资料,设计一个抽样比为110的抽样方法.解析:因为抽样比为1 10,故只需从1 000人中抽取1 000×110=100(人).故从任职5年以下的人中抽取300×110=30(人);任职5~10年的人中抽取500×110=50(人);任职10年以上的人中抽取200×110=20(人).能力升级8.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.8 B.6 C.3 D.30解析:分层抽样中每个个体被抽到的可能性相等,则抽取的植物油类与果蔬类食品种数之和是20100×(10+20)=6.答案:B9.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.②,③都不能为系统抽样B.②,④都不能为分层抽样C.①,④都可能为系统抽样D.①,③都可能为分层抽样解析:本题主要考查系统抽样及分层抽样的概念.答案:D10.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是________.解析:由分层抽样的定义可知,该抽样为按比例的抽样.答案:分层抽样法11.某大型超市销售的乳类商品有四种:纯奶、酸奶、婴幼儿奶粉、成人奶粉且纯奶、酸奶、婴幼儿奶粉、成人奶粉分别有30种、10种、35种、25种不同的品牌,现采用分层抽样的方法从中抽取一个容量为n的样本进行三聚氰胺安全检测,若抽取的婴儿奶粉的品牌数是7,则n=________.答案:2012.某校高一、高二和高三年级学生数分别为n1,n2,n3,为了解学生视力情况,现用分层抽样抽取容量为n0的样本,则在高一抽的人数占高一总人数的比例是________.答案:n0n1+n2+n313.某单位有2 000名职工,老年、中年、青年分别在管理、技术开发、营销、生产各部门中,如下表所示:(1)(2)若要开一个25人参加的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查市民对北京奥运会筹备情况的了解,则应怎样抽取?解析:要达到什么样的目的,就应该考虑怎样抽取样本才具有合理公正性,这就涉及如何使用恰当的抽样方法.(1)因为身体状况主要与年龄有关,所以可以按老年、中年、青年分层抽样法进行抽样,要抽取40人,可以在老年、中年、青年职工中分别抽取4、12、24人.(2)因为出席这样的座谈会的人员应该代表各个部门,所以可以按部门分层抽样的方法进行抽样,要抽取25人,可以在管理、技术开发、营销和生产各部门的职工中分别随机抽取2、4、6、13人.(3)因为对北京奥运会筹备情况的了解与年龄、部门关系不大,所以可以用系统抽样或简单随机抽样的方法抽取样本.14.中央电视台希望在春节联欢晚会播出后一周内获得当年春节联欢晚会的收视率.下面是三名同学为电视台设计的调查方案.同学A:我把这张《春节联欢晚会收视率调查表》放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快统计出收视率了.同学B:我给我们居民小区的每一位住户发一个是否在除夕那天晚上看过中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.同学C:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?解析:调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人群是:上网而且登陆某网址的人群,那些不能上网的人群,或者不登陆某网址的人群就被排除在外了.因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性.因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性.因此C方案抽取的样本的代表性差.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.。
【人教A版】必修3《2分层抽样(25分钟60分)一、选择题(每小题5分,共25分)1.(2015·石家庄高一检测)为了解某地区中小学生的视力情形,拟从该地区的中小学生中抽取部分学生进行调查,事先差不多了解到该地区小学、初中、高中三个学段学生的视力情形有较大差异,而男女生视力情形差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性不分层抽样C.按学段分层抽样D.系统抽样【解析】选C.结合三种抽样的特点及抽样要求求解.由于三个学段学生的视力情形差不较大,故需按学段分层抽样.【补偿训练】某公司在甲、乙、丙、丁四个地区分不有150个、120个、180个、150个销售点.公司为了调查产品销售的情形,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有10个特大型销售点,要从中抽取7个销售点调查其销售收入和售后服务等情形,记这项调查为②,则完成①②这两项调查宜采纳的抽样方法依次为()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法【解析】选B.由调查①可知个体差异明显,故宜用分层抽样;调查②中个体较少,故宜用简单随机抽样.2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情形,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为()A.7B.15C.25D.35【解析】选B.青年职工、中年职工、老年职工三层之比为7∶5∶3,因此样本容量为7÷=15(人).3.简单随机抽样、系统抽样、分层抽样三者的共同特点是()A.将总体分成几部分,按预先设定的规则在各部分抽取B.抽样过程中每个个体被抽到的机会均等C.将总体分成几层,然后分层按照比例抽取D.没有共同点【解析】选B.由定义知,三种抽样方法都必须保证每个个体被抽到的机会相等.4.(2015·北京高考)某校老年、中年和青年教师的人数见下表,采纳分层抽样的方法调查教师的躯体状况,在抽取样本中,青年教师有320人,则该样本的老年教师人数为()A.90类不人数老年教师900中年教师1800青年教师1600合计4300【解题指南】分层抽样总体与样本中各层的比相同.【解析】选C.设样本中老年教师人数为n人,=,解得n=180.【补偿训练】(2014·重庆高考)某中学有高中生3 500人,初中生1 5 00人.为了解学生的学习情形,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽70人,则n为()A.100B.150C.200D.250【解题指南】直截了当按照分层抽样的定义列出关于n的等式求解即可.【解析】选A.由分层抽样的定义可知=,解得n=100.5.(2015·沧州高一检测)某橘子园有平地和山地共120亩,现在要估量平均亩产量,按一定的比例用分层抽样的方法共抽取10亩进行调查,如果所抽山地的亩数是平地亩数的2倍多1,则那个橘子园的平地与山地的亩数分不为()A.45,75B.40,80C.36,84D.30,90【解析】选C.本题考查分层抽样方法.按照条件知所抽山地的亩数为7,所抽平地的亩数为3,则橘子园中山地的亩数为84,平地的亩数为36.二、填空题(每小题5分,共15分)6.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为.【解析】设抽取男运动员人数为n,则=,解之得n=12.答案:127.(2015·福建高考)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.【解题指南】第一运算出男生人数,再运算出男女比例,从而确定抽取男生人数.【解析】由题意知,男生人数=900-400=500,因此抽取比例为男生︰女生=500∶400=5∶4,样本容量为45,因此抽取的男生人数为45×= 25.答案:25【补偿训练】某地有居民100 000户,其中一般家庭99 000户,高收入家庭1 000户.从一般家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发觉共有120户家庭拥有3套或3套以上住房,其中一般家庭50户,高收入家庭70户.依据这些数据并结合所把握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估量是.【解析】该地拥有3套或3套以上住房的家庭能够估量有99 000×+1 000×=5 700(户),因此所占比例的合理估量是5 700÷100 000=5. 7%.答案:5.7%8.某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,为了调查一般话在该校教师中的推广普及情形,现用分层抽样的方法,从全体教师中抽取一个容量为70的样本进行一般话水平测试,其中在不到40岁的教师中应抽取的人数是.【解析】由题意得×350=50(人).答案:50三、解答题(每小题10分,共20分)9.(2015·乐山高一检测)某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为2 00的样本,调查该市高中学生的视力情形,试写出抽样过程.【解题指南】本题要紧考查数理统计中一些差不多的概念和差不多方法.做这种题目时,应该注意叙述的完整性和条理性.【解析】(1)由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本.(2)确定每层抽取个体的个数,在3个区分不抽取的学生人数之比也是2∶3∶5,因此抽取的学生人数分不是200×=40;200×=60;200×=100.(3)在各层分不按系统抽样法抽取样本.(4)综合每层抽样,组成容量为200的样本.10.选择合适的抽样方法抽样,写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个.(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个.(3)有甲厂生产的300个篮球,抽取10个.(4)有甲厂生产的300个篮球,抽取30个.【解题指南】应结合三种抽样方法的使用范畴和实际情形灵活使用各种抽样方法解决咨询题.【解析】(1)总体容量较小,用抽签法.①将30个篮球编号,编号为00,01, (29)②将以上30个编号分不写在完全一样的小纸条上,揉成小球,制成号签;③把号签放入一个不透亮的袋子中,充分搅拌;④从袋子中不放回地逐个抽取3个号签,并记录上面的号码;⑤找出和所得号码对应的篮球即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样.①确定抽取个数.因为=3,因此甲厂生产的应抽取=7(个),乙厂生产的应抽取=3(个);②用抽签法分不抽取甲厂生产的篮球7个,乙厂生产的篮球3个,这些篮球便组成了我们要抽取的样本.(3)总体容量较大,样本容量较小,宜用随机数表法.①将300个篮球用随机方式编号,编号为001,002, (300)②在随机数表中随机的确定一个数作为开始,如第8行第29列的数“7”开始,任选一个方向作为读数方向,例如向右读;③从数“7”开始向右读,每次读三位,凡不在001~300中的数跃过去不读,遇到差不多读过的数也跃过去不读,依次得到10个号码,这确实是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大,宜用系统抽样.①将300个篮球用随机方式编号,编号为000,001,002, (299)并分成30段,其中每一段包含=10(个)个体;②在第一段000,001,002,…,009这十个编号中用简单随机抽样抽出一个(如002)作为起始号码;③将编号为002,012,022,…,292的个体抽出,即可组成所要求的样本.(20分钟40分)一、选择题(每小题5分,共10分)1.(2015·四川高考)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在明显差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法【解析】选C.因为题干中总体是由差异明显的三个部分组成的,因此选择分层抽样法.【补偿训练】某学院有四个饲养房,分不养有18,54,24,48只白鼠供试验用,某项试验需抽取24只白鼠,你认为最合适的抽样方法为()A.在每个饲养房中各抽取6只B.把所有白鼠都加上编有不同号码的颈圈,用随机抽样的方法确定24只C.在四个饲养房分不随机抽取3,9,4,8只D.先确定在这四个饲养房应分不抽取3,9,4,8只,再由各饲养房自己加号码颈圈,用简单随机抽样法确定各自要抽取的对象【解析】选D.依据公平性原则,按照实际情形确定适当的取样方法是本题的灵魂.A中对四个饲养房平均摊派,但由于各饲养房所养数量不一,反而造成了各个个体被入选几率的不均衡,是错误的方法;B中保证了各个个体被入选几率的相等,但由于没有注意到处在四个不同环境中会产生不同差异,不如采取分层抽样可靠性高,且统一编号统一选择加大了工作量;C中总体采纳了分层抽样,但在每个层次中没有考虑到个体的抽取情形.故选D.2.(2015·佛山高一检测)某校共有学生2 000名,各年级男、女生人数如下表所示:现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A.24B.18C.16D.12【解析】选C.一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,因此三年级的学生人数为2 000-750-750=500,那么三年级应抽取的人数为500×=16(人).二、填空题(每小题5分,共10分)3.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分不有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采纳分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是.【解析】抽样比为=,则抽取的植物油类种数是10×= 2,则抽取的果蔬类食品种数是20×=4,因此抽取的植物油类与果蔬类食品种数之和是2+4=6(种).答案:6【补偿训练】某校有学生2 000人,其中高三学生500人.为了解学生的躯体素养情形,采纳按年级分层抽样的方法,从该校学生中抽取一个20 0人的样本,则样本中高三学生的人数为.【解析】抽样比为=,样本中高三学生的人数为500×=50(人).答案:504.(2015·十堰高一检测)某单位200名职工的年龄分布情形如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~20 0编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是.若用分层抽样方法,则40岁以下年龄段应抽取人.【解析】由分组可知,抽号的间隔为5,又因为第5组抽出的号码为2 2,因此第8组抽出的号码为22+(8-5)×5=37.40岁以下年龄段的职工数为200×0.5=100,则应抽取的人数为×100=20(人).答案:3720三、解答题(每小题10分,共20分)5.某都市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家,为了把握各商店的营业情形,打算抽取一个容量为21的样本,按照分层抽样方法抽取时,各种百货商店分不要抽取多少家?并写出抽样过程.【解题指南】解答本题应按分层抽样的步骤抽取,第一算出抽样比例,然后求出各层抽样的样本数,最后在各层抽取得到样本.【解析】(1)样本容量与总体的个体数的比为=.(2)确定各种商店要抽取的数目:大型:20×=2(家),中型:40×=4(家),小型:150×=15(家).(3)采纳简单随机抽样在各层中抽取大型2家,中型4家,小型15家.如此便得到了所要抽取的样本.6.(2015·益阳高一检测)为了对某课题进行讨论研究,用分层抽样的方法从三所高校A,B,C的有关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)高校有关人数抽取人数A x 1B 36 yC 54 3(1)求x,y.(2)若从高校B有关的人中选2人作专题发言,应采纳什么抽样法,请写出合理的抽样过程.【解析】(1)分层抽样是按各层有关人数和抽取人数的比例进行的,因此有:=⇒x=18,=⇒y=2,故x=18,y=2.(2)总体容量和样本容量较小,因此应采纳抽签法,过程如下:第一步,将36人随机编号,号码为1,2,3, (36)第二步,将号码分不写在相同的纸片上,揉成团,制成号签;第三步,将号签放入一个不透亮的容器中,充分搅匀,依次不放回地抽取2个号码,并记录上面的编号;第四步,把与号码相对应的人抽出,即可得到所要的样本.。
课时训练11分层抽样基础夯实1.某学校进行数学竞赛,将考生的成绩分成90分以下、90~120分、120~150分三种情况进行统计,发现三个成绩段的人数之比依次为5∶3∶1.现用分层抽样的方法抽取一个容量为m的样本,其中分数在90~120分的人数是45,则此样本的容量m的值为()A.75B.100C.125D.135解析:由已知得,得m=135.答案:D2.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8B.11C.16D.10解析:若设高三学生数为x,则高一学生数为,高二学生数为+300,所以有x++300=3 500,解得x=1 600.故高一学生数为800,因此应抽取的高一学生数为=8.答案:A3.某学校共有师生2 400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本.已知从学生中抽取150人,则该学校的教师人数是.解析:应抽取教师160-150=10(人),所以学校教师人数为2 400×=150.答案:1504.防疫站对学生进行身体健康调查.红星中学共有学生1 600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是.解析:设该校的女生人数是x,则男生人数是1 600-x,抽样比是,则x=(1 600-x)-10,解得x=760.答案:760人5.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是.解析:该地拥有3套或3套以上住房的家庭可以估计有99 000×+1 000×=5 700户,所以所占比例的合理估计是5 700÷100 000=5.7%.答案:5.7%6.某学校为了解2016年高考语文课的考试成绩,计划在高考后对1 200名学生进行抽样调查.其中文科考生300人,理科考生600人,艺术类考生200人,体育类考生70人,外语类考生30人,如果要抽120人作为调查分析对象,则按科目分分别应抽多少考生?解从1 200名考生中抽取120人作调查,由于各科目考试人数不同,为了更准确地了解情况,可采用分层抽样,抽样时每层所抽取的人数按1∶10分配.∴300×=30(人),600×=60(人),200×=20(人),70×=7(人),30×=3(人).∴抽取的文科、理科、艺术、体育、外语类考生分别是30人,60人,20人,7人,3人. 7.为了对某课题进行讨论研究,用分层抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):高校相关人数抽取人数A x1B36yC543(1)求x,y;(2)若从高校B相关的人中选2人进行专题发言,应采用什么抽样方法,请写出合理的抽样过程.解(1)分层抽样是按各层相关人数和抽取人数的比例进行的,所以有:⇒x=18,⇒y=2.故x=18,y=2.(2)总体容量和样本容量都较小,所以应采用抽签法,过程如下:①将36人随机编号,号码为1,2,3, (36)②将号码分别写在相同的纸片上,揉成团,制成号签;③将号签放入一个不透明的容器中,充分搅匀,依次抽取2个号码,并记录上面的编号;④把与号码相对应的人抽出,即可得到所要的样本.能力提升8.导学号51810104某高级中学共有学生2 700人,其中高一年级1 080人,高二和高三年级各810人,现从中抽取100名同学参加某项调查,试分别用系统抽样和分层抽样两种方法抽取样本,并比较这两种方法的特点,哪个方法更恰当?解用系统抽样方法.将2 700名学生分别编号为1,2,3,…,2700,把这2 700名学生分为100组,每组27人,每组号码分别为1~27,28~54,55~81,…,2674~2700,在第一组用抽签法抽出一个号码,设为l,1≤l≤27,则l,l+27,l+54,l+3×27,…,l+99×27,这100个号码对应的100名学生组成样本,去参加某项调查.用分层抽样方法.,1 080×=40,810×=30.因此从高一年级中抽取40人,从高二年级和高三年级分别抽取30人,共100人组成样本.故在高一、高二、高三年级的每个年级用系统抽样法分别抽取40人、30人、30人,组成100个人的样本.由于本题总体容量和样本容量都比较大,采用系统抽样方法抽样,其过程相对简单,可操作性强,但抽取的样本不一定能准确地代表高一、高二、高三的情况,很可能某个年级抽取的学生特别多,而某个年级抽取的学生特别少,不具有代表性.而采取分层抽样,三个年级抽取出来的学生人数正好与各年级总人数成比例,所选出来的学生具有代表性,但操作过程相对复杂.具体在抽样时,要按抽样的要求选择方法,如果对各年级的代表性不做要求,则应选择系统抽样,如果对各年级的代表性有要求,则应选择分层抽样.。
④综合每层抽样,组成样本.
这样便完成了整个抽样过程,就能得到比较客观的评价结论.
(2)由于简单随机抽样有两种方法:抽签法和随机数表法.如果用抽签法,要作3 000个号签,费时费力,因此采用随机数表抽取样本,步骤是:
①编号:将3 000份答卷都编上号码:0 001,0 002,0 003,…,3 000.
②在随机数表上随机选取一个起始位置.
③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3 000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.
(3)由于4 000÷64=62.5不是整数,则应先使用简单随机抽样从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,…,62.从中随机抽取一个号码,如抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.。
学业分层测评(十一)(建议用时:45分钟)[学业达标]一、填空题1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是________法.【解析】总体(1 000名学生)中的个体(男、女学生)有明显差异,应采用分层抽样.【答案】分层抽样2.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法________.①简单随机抽样;②系统抽样;③分层抽样.【解析】由于各家庭有明显的差异,所以首先应用分层抽样的方法分别从农民、工人、知识分子这三类家庭中抽出若干户,即36户、2户、2户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样法.故整个抽样过程要用到①②③三种抽样法.【答案】①②③3.(2015·扬州高一月考)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人.【解析】设共抽取n个人,则n56+42×56=8,∴n=14.∴抽取的女运动员有14-8=6(人).【答案】 64.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.【解析】420×300=60(名).【答案】605.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则p1,p2,p3的大小关系是________.【解析】不管是简单随机抽样、系统抽样还是分层抽样,他们都是等概率抽样,每个个体被抽中的可能性相同概率均为nN.则p1=p2=p3.【答案】p1=p2=p36.(2015·淮安高二质检)某校高级职称教师26人,中级职称教师104人,其他教师若干人,为了了解该校教师的工资情况,按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师________人.【解析】设其他教师为x人,则5626+104+x=16x,解得x=52,∴x+26+104=182(人).【答案】1827.某单位共有老年、中年、青年职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为________.【解析】由题意,设老年职工人数为x,则中年职工人数为2x,所以x+2x+160=430,则x=90.故该样本中老年职工人数为90×32160=18.【答案】188.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.【解析】在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=2+3+5+12×16=88.【答案】88二、解答题9.某单位组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组,在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%,登山组的职工占参加活动的总人数的14,且该组中,青年人占5%,中年人占40%,老年人占10%,为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本,试确定:(1)游泳组中,青年人、中年人、老年人所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.【解】(1)设登山组人数为x;游泳组中,青年人、中年人、老年人各占比例分别为a,b,c;则有x·40%+3xb4x=47.5%,x·10%+3xc4x=10%,解得b=50%,c=10%,故a=100%-50%-10%=40%,即游泳组中、青年人、中年人、老年人各占比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人数为200×34×40%=60(人);抽取的中年人数为200×34×50%=75(人);抽取的老年人数为200×34×10%=15(人).10.一批产品有一级品100个,二级品60个,三级品40个,分别采用系统抽样和分层抽样,从这批产品中抽取一个容量为20的样本.【解】①系统抽样方法:将200个产品编号1,2,…,200,再将编号分为20段,每段10个编号,第一段为1~10号,…,第20段为191~200号.在第1段用抽签法从中抽取1个,如抽取了6号,再按预先给定规则,通常可用加间隔数10,第二段取16号,第三段取26号,…,第20段取196号,这样可得到一个容量为20的样本.②分层抽样方法:因为样本容量与总体的个体数的比为20∶200=1∶10,所以一、二、三级品中分别抽取产品的个数依次是100×110,60×110,40×110,即10,6,4.将一级品的100个产品按00,01,02,…,99编号,将二级品的60个产品按00,01,02,…,59编号,将三级品的40个产品按00,01,02,…,39编号,采用随机数表法,分别抽取10个,6个,4个.这样可得容量为20的一个样本.[能力提升]1.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽样的方法是________.(填序号)①简单随机抽样;②系统抽样;③先从中年人中剔除1人,再用分层抽样;④先从老年人中剔除1人,再用分层抽样.【解析】总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.【答案】④2.某校对全校男女学生共1 200名进行健康调查,选用分层抽样抽取一个容量为200的样本,已知男生比女生多抽了10人,则该校男生人数为________人.【解析】 由男生比女生多抽10人可知样本中有男生105人,女生95人,因此该校男生人数为1 200×105200=630.【答案】 6303.从某地区15 000位老人中用分层抽样法抽取500人,其生活能否自理的情况如下表所示:则在该地区生活的老人中男性比女性少________人.【解析】 从表中可知,500人中男性有200人,女性有300人.故该地区生活的老年人中男性比女性少15 000×⎝ ⎛⎭⎪⎫35-25=3 000(人). 【答案】 3 0004.(2015·无锡高二检测)某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n . 【导学号:90200042】【解】 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n 2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.。
(新课标)2018-2019学年苏教版高中数学必修三2.1.3 分层抽样课时目标1.理解分层抽样的概念.2.掌握分层抽样的使用条件和操作步骤,会用分层抽样法进行抽样.1.分层抽样的概念一般地,当总体由______________________组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,其中所分成的各个部分称为“__________”.2.分层抽样的步骤是:(1)将总体按一定标准________;(2)计算__________________________________________________________________;(3)将__________________的比确定各层应抽取的样本容量;(4)在每一层进行抽样(可用______抽样或________抽样)一、填空题1.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取______抽样方法.2.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为________.3.某工厂生产A、B、C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为________.4.下列问题中,最适合用分层抽样方法抽样的是_____________________________.①某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈;②从10台冰箱中抽出3台进行质量检查;③某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量;④从50个零件中抽取5个做质量检验.5.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为________个.6.某小学三个年级共有学生270人,其中一年级108人,二、三年级各81人,现要用抽样方法抽取10人形成样本,将学生按一、二、三年级依次统一编号为1,2, (270)如果抽得号码有下列四种情况:①5,9,100,107,111,121,180,195,200,265;②7,34,61,88,115,142,169,196,223,250;③30,57,84,111,138,165,192,219,246,270;④11,38,60,90,119,146,173,200,227,254;其中可能是由分层抽样得到,而不可能是由系统抽样得到的一组号码为________.(填序号)7.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.8.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.9.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.二、解答题10.某小学有1 800名学生,6个年级中每个年级的人数大致相同,男女生的比例也大致相同,要从中抽取48名学生,测试学生100米跑的成绩.你认为应该用什么样的方法?怎样抽样?为什么要用这个方法?11.某工厂有3条生产同一产品的流水线,每天生产的产品件数分别是3 000件,4 000件,8 000件.若要用分层抽样的方法从中抽取一个容量为150件产品的样本,应该如何抽样?能力提升12.某单位有技师18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n的样本,如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中剔除1个个体,求样本容量n.13.选择合适的抽样方法抽样,写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个.(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个.(3)有甲厂生产的300个篮球,抽取10个.(4)有甲厂生产的300个篮球,抽取30个.1.分层抽样的概念和特点当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样.分层抽样的优点是使样本具有较强的代表性,而且在各层抽样时又可灵活地选用不同的抽样法.2.三种抽样方法的选择简单随机抽样、系统抽样及分层抽样的共同特点是在抽样过程中每一个个体被抽取的机会都相等,体现了抽样方法的公平性和客观性.其中简单随机抽样是最基本的抽样方法,在系统抽样和分层抽样中都要用到简单随机抽样.当总体中的个体数较少时,常采用简单随机抽样;当总体中的个体数较多时,常采用系统抽样;当已知总体是由差异明显的几部分组成时,常采用分层抽样.2.1.3 分层抽样知识梳理1.差异明显的几个部分 层 2.(1)分层 (2)各层的个体数与总体的个体数的比 (3)各层个体数占总体的个体数 (4)简单随机 系统作业设计1.分层2.20解析 由于70070=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=20(所).3.70解析 由分层抽样方法得:33+4+7×n =15,解得n =70. 4.③解析 ①的总体容量较大,宜采用系统抽样方法;②的总体容量较小,用简单随机抽样法比较方便;③总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;④与②类似.5.5解析 由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个). 6.①④解析 按照分层抽样的方法抽取样本,一、二、三年级抽取的人数分别为:10827,8127,8127,即4人,3人,3人;不是系统抽样即编号的间隔不同,观察①、②、③、④知:①④符合题意,②是系统抽样,③中三年级人数为4人,不是分层抽样.7.7,4,6解析 应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6. 8.20解析 由题意可设A 、B 、C 中个体数分别为5k,3k,2k ,所以C 中抽取个体数为2k 5k +3k +2k×100=20.9.88解析 在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n =2+3+5+12×16=88. 10.解 应该用分层抽样的方法.因为小学的不同年级之间,男女生之间百米跑的成绩有较大差异,所以将1 800名学生按不同年级、性别分成12组,每组随机抽取4名,一共抽取48名学生.这样的抽样方法可使样本的结论与总体的结构保持一致.11.解 总体中的个体数N =3 000+4 000+8 000=15 000,样本容量n =150,抽样比例为n N =15015 000=1100,所以应该在第1条流水线生产的产品中随机抽取3 000×1100=30(件)产品,在第2条流水线生产的产品中随机抽取4 000×1100=40(件)产品,在第3条流水线生产的产品中随机抽取8 000×1100=80(件)产品.这里因为每条流水线所生产的产品数都较多,所以,在每条流水线的产品中抽取样品时,宜采用系统抽样方法.12.解 因为采用系统抽样和分层抽样时不用剔除个体,所以n 是36的约数,且36n是6的约数,即n 又是6的倍数,n =6,12,18或36,又n +1是35的约数,故n 只能是4,6,34,综合得n =6,即样本容量为6.13.解 (1)总体容量较小,用抽签法.①将30个篮球编号,号码为00,01, (29)②将以上30个编号分别写在完全一样的小纸条上,揉成小球,制成号签;③把号签放入一个不透明的袋子中,充分搅拌;④从袋子中逐个抽取3个号签,并记录上面的号码;⑤找出和所得号码对应的篮球即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样法.①确定抽取个数.因为3010=3,所以甲厂生产的应抽取213=7(个),乙厂生产的应抽取93=3(个);②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本.(3)总体容量较大,样本容量较小,宜用随机数表法.①将300个篮球用随机方式编号,编号为000,001, (299)②在随机数表中随机的确定一个数作为开始,如第8行第29列的数“7”开始.任选一个方向作为读数方向,比如向右读;③从数“7”开始向右读,每次读三位,凡不在000~299中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大宜用系统抽样法.①将300个篮球用随机方式编号,编号为001,002,003,…,300,并分成30段,其中每一段包含30030=10(个)个体; ②在第一段001,002,003,…,010这十个编号中用简单随机抽样抽出一个(如002)作为起始号码;③将编号为002,012,022,…,292的个体抽出,组成样本.。
【成才之路】2015-2016学年高中数学 第1章 北师大版必修3一、选择题1.(2015·北京文,4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )A.90 C .180 D.300[答案] C[解析] 由题意,总体中青年教师与老年教师比例为1 600900=169;设样本中老年教师的人数为x ,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即320x=169,解得x =180. 2.某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况.要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的中型商店数是( )A .2 B.3 C .5 D.13[答案] C[解析] 在整个抽样过程中,每个个体被抽到的概率为20300=115,则抽取的中型商店数为75×115=5.3.某城市有学校700所,其中大学20所,中学200所,小学480所.现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A .70 B.20 C .48 D.2 [答案] B[解析] 由分层抽样知,抽取中学数为70×200700=20,故选B.4.某工厂生产A 、B 、C 三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n 的样本,样本中A 型号产品有15件,那么样本容量n 为( )A .50 B.60 C .70 D.80[答案] C [解析] 由题意可知33+4+7=15n,解得n =70,故选C.5.从总数为N 的一批零件中抽取一个容量为30的样本,每个零件被抽取的可能性为25%,则N 为( )A .150 B.200 C .100 D.120[答案] D[解析] 根据简单随机抽样每个个体被抽取的概率等于n N进行计算.因为从含有N 个个体的总体中抽取一个容量为30的样本时,每次抽取一个个体时任一个体被抽到的概率为1N;在整个抽样过程中各个个体被抽到的概率为30N ;所以30N=0.25,从而有N =120.6.(2014·重庆文,3)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100 B.150 C .200 D.250[答案] A[解析] 由题意,得抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n =5 000×150=100.二、填空题7.某高校甲、 乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.[答案] 16[解析] 考查分层抽样.解答此题必须明确“每个个体被抽到的概率相同”及“每层以相同比例抽取”.所有学生数为150+150+400+300=1000人,则抽取比例为401000=125, 所以应在丙专业抽取400×125=16人.8.某校有学生2 000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高三学生的人数为________.[答案] 50[解析] 抽样比为2002 000=110,样本中高三学生的人数为500×110=50.三、解答题9.某家电视台在因特网上征集某电视节目现场参与观众,报名的总人数为12 000人,分别来自4个城区,其中东城区2 400人,西城区4 600人,南城区3 800人,北城区1 200人,用分层抽样的方式从中抽取60人参加现场的节目,应当如何抽取?写出抽取过程.[解析] 第一步:分层:按城区分为四层:东城区、西城区、南城区、北城区. 第二步:按比例确定每层抽取个体的个数.抽样比为6012 000=1200,所以在东城区抽取2 400×1200=12(人),在西城区抽取4 600×1200 =23(人),在南城区抽取 3 800×1200=19(人),在北城区抽取1 200×1200=6(人).第三步 在各层分别用简单随机抽样法抽取样本.第四步 确定样本.将各城区抽取的观众合在一起组成样本.10.某市有大型、中型与小型的商店共1 500家,它们的家数之比为1∶5∶9,要调查商店的每日零售额情况,要求抽取其中的30家商店进行调查,应当采取怎样的抽样方法?(1)能不能用简单随机抽样的方法对上述问题进行抽样?为什么?(2)根据大型、中型与小型的商店的家数之比,你能求出大型、中型与小型的商店占商店总数的比例吗?(3)怎样根据大型、中型与小型的商店的家数所占商店总数的比例,求出它们各自的家数?(4)如果按照大型、中型与小型的商店占商店总家数的比例来抽取30家商店进行调查,那么大型、中型与小型的商店各抽取多少家?[解析] (1)不能.因为在这个问题中,商店有大型、中型和小型之分,商店的每日零售额直接受到商店规模的影响,如果采用简单随机抽样的方法,可能抽样的结果不具有代表性.(2)由题意知大型商店所占的比例为11+5+9=115;中型商店所占的比例为51+5+9=13;小型所占的比例为91+5+9=35.(3)大型商店的家数为1 500×115=100;中型商店的家数为1 500×13=500;小型商店的家数为1 500×35=900.(4)大型、中型与小型的商店分别抽取115×30=2,13×30=10,35×30=18.一、选择题1.某林场有树苗30 000棵,其中松树苗4 000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )A .30 B.25 C .20 D.15[答案] C[解析] 由分层抽样知,样本中松树苗数为15030 000×4 000=20,故选C.2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A .6 B.8 C .10 D.12 [答案] B[解析] 设样本容量为N ,则N×3070=6,∴N =14,∴高二年级所抽人数为14×4070=8. 二、填空题3.假设吉利公司生产的“远景”、“金刚”、“自由舰”三种型号的轿车产量分别是1 600辆、6 000辆和2 000辆,为检验公司的产品质量,现从这三种型号的轿车中抽取48辆进行检验,这三种型号的轿车依次应抽取________、________、________.[答案] 8 30 10[解析] 因为汽车总量为1 600+6 000+2 000=9 600辆.要抽取48辆,∴抽样比例为489 600=1200,∴1 600×1200=8,6 000×1200=30,2 000×1200=10,∴应依次抽取8,30,10辆.4.(2014·天津文,9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.[答案] 60[解析] 根据题意,应从一年级本科生中抽取的学生人数为44+5+5+6×300=60.三、解答题5.一个地区共有5个乡镇,人口共3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的抽样方法?并写出具体过程.[解析] 因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:(1)将3万人分成5层,其中每一个乡镇为一层.(2)按照样本容量的比例随机抽取各乡镇应抽取的样本300×315=60(人),300×215=40(人),300×515=100(人),300×215=40(人),300×315=60(人),因此各乡镇抽取人数分别为60人、40人、100人、40人、60人.(3)将这300人组到一起,即得到所要抽取的样本.6.某网站欲调查网民对当地网页的满意程度,在登录的所有网民中,收回有效帖子共50 000份,其中持各种态度的份数如下表所示:打算从中抽选500份.为使样本更具有代表性,每类中各应抽选出多少份?[解析] 首先确定抽取比例,然后确定各层要抽取的份数,因为50050 000=1100,所以10 800100=108,12 400100=124,15 600100=156,11 200100=112,所以持四种态度的有效贴子应分别抽取108,124,156,112份进行调查.7.为了对某课题进行研究,用分层抽样的方法从三所高校A 、B 、C 的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).(1)求x 、y ;(2)若从高校B 相关的人中选2人作专题发言,应采用什么抽样法,请写出合理的抽样过程.[解析] (1)分层抽样是按各层相关人数和抽取人数的比例进行的所以有x54=13⇒x =18,3654=y3⇒y =2.(2)总体容量和样本容量较小,所以应采用抽签法,过程如下: 第一步,将36人随机的编号,号码为1,2,3,…,36; 第二步,将号码分别写在相同的纸片上,揉成团,制成号签;第三步,将号签放入一个不透明的容器中,充分搅匀,依次抽取2个号码,并记录上面的编号;第四步,把与号码相对的人抽出,即可得到所要的样本.。
分层抽样课时作业解析版[A.基础达标]1.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取1个容量为100的样本,记作①;某学校高一年级有12名女排运动员,要从中选出3名调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是( )A .①用简单随机抽样法;②用系统抽样法B .①用分层抽样法;②用简单随机抽样法C .①用系统抽样法;②用分层抽样法D .①用分层抽样法;②用系统抽样法解析:选B.对于①,总体由高收入家庭、中等收入家庭和低收入家庭差异明显的3部分组成,而所调查的指标与收入情况密切相关,所以应采用分层抽样法.对于②,总体中的个体数较少,而且所调查内容对12名调查对象是“平等”的,所以应采用简单随机抽样法.2.已知某单位有职工120人,其中男职工90人,现采用分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为( )A .30B .36C .40D .无法确定解析:选B.分层抽样中抽样比一定相同,设样本容量为n ,由题意得,n 120=2790,解得n =36.3.(2014·高考重庆卷)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250解析:选A.法一:由题意可得70n -70=3 5001 500,解得n =100,故选A. 法二:由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n =5 000×150=100.4.(2015·中山高一检测)某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A .6B .8C .10D .12解析:选B.设高二年级抽取x 人,则有630=x 40,解得x =8,故选B. 5.(2015·潍坊高一检测)某学校在校学生2 000人,为了学生的“德、智、体”全面发展,学校举行了跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的其中a ∶b ∶c =2∶5∶3,全校参与登山的人数占总人数的14.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三年级参与跑步的学生中应抽取( )A .15人B .30人C .40人D .45人解析:选D.全校参与登山的人数是2 000×14=500,所以参与跑步的人数是1 500,应抽取1 5002 000×200=150,c =150×310=45(人). 6.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取一个容量为50的样本,则应从高二年级抽取________名学生.解析:抽取比例与学生比例一致.设应从高二年级抽取x 名学生,则x ∶50=3∶10.解得x =15.答案:157.某公司生产三种型号的轿车,产量分别为1 200辆,6 000辆和2 000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应该抽取________辆,________辆,________辆.解析:因为461 200+6 000+2 000=1200,所以这三种型号的轿车依次应该抽取1 200×1200=6辆,6 000×1200=30辆,2 000×1200=10辆.即这三种型号的轿车依次应该抽取6辆、30辆、10辆进行检验.答案:6 30 108.某地区有农民、工人、知识分子家庭共计2 015家,其中农民家庭1 600户,工人家庭303户.现要从中抽出容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法中的________.(将你认为正确的选项的序号都填上)①简单随机抽样;②系统抽样;③分层抽样.解析:为了保证抽样的合理性,应对农民、工人、知识分子分层抽样,在各层中采用系统抽样和简单随机抽样,抽样时还要先用简单随机抽样剔除多余的个体.答案:①②③9.(2015·莱州高一检测)某校高一年级500名学生中,血型为O 的有200人,血型为A 的有125人,B 型的有125人,AB 型的有50人.为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,应如何抽样?写出血型为AB 型的抽样过程.解:因为40÷500=225,所以应用分层抽样法抽取血型为O 型的225×200=16(人),A 型的225×125=10(人),B 型的225×125=10(人),AB 型的225×50=4(人). AB 型的4人可以这样抽取:第一步,将50人随机编号,编号为1,2, (50)第二步,把以上50人的编号分别写在大小相同的小纸片上,揉成小球,制成号签. 第三步,把得到的号签放入一个不透明的袋子中,充分搅拌均匀.第四步,从袋子中逐个抽取4个号签,并记录上面的编号.第五步,根据所得编号找出对应的4人即可得到样本.10.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人所占比例分别为a 、b 、c ,则有x ×40%+3xb 4x =47.5%,x ×10%+3xc 4x=10%, 解得b =50%,c =10%,故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人所占比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人人数为200×34×40%=60(人); 抽取的中年人人数为200×34×50%=75(人); 抽取的老年人人数为200×34×10%=15(人). 即游泳组中,青年人、中年人、老年人分别应抽取的人数为60人,75人,15人.[B.能力提升]1.某鱼贩一次贩运草鱼、青鱼、鲢鱼、鲤鱼及鲫鱼各有80条、20条、40条、40条、20条,现从中抽取一个容量为20的样本进行质量检测,若采用分层抽样的方法抽取样本,则抽取的青鱼与鲤鱼共有( )A .6条B .8条C .10条D .12条解析:选 A.设抽取的青鱼与鲤鱼共有x 条,根据分层抽样的比例特点有20+4080+20+40+40+20=x 20,所以x =6. 2.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x 份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为( )A .60B .80C .120D .180解析:选C.11~12岁回收180份,其中在11~12岁学生问卷中抽取60份,则抽样比为13. ∵从回收的问卷中按年龄段分层抽取容量为300的样本,∴从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷总数为30013=900(份),则15~16岁回收问卷份数为:x =900-120-180-240=360(份).∴在15~16岁学生中抽取的问卷份数为360×13=120(份),故选C. 3.某校高一年级有x 名学生,高二年级有y 名学生,高三年级有z 名学生,采用分层抽样抽取一个容量为45的样本,高一年级被抽取20人,高二年级被抽取10人,高三年级共有学生300人,则此学校共有学生________人.解析:高三年级被抽取了45-20-10=15(人),设此学校共有学生N 人,则45N =15300,解得N =900.答案:9004.(2015·泰安质检)某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样由于不小心,表格中A 、C 两种产品的有关数据已被污染看不清楚了,统计员只记得A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 产品的数量是________件.解析:抽样比为130∶1 300=1∶10,又A 产品的样本容量比C 产品的样本容量多10,故C 产品的数量是[(3 000-1 300)-100]×12=800(件). 答案:8005.某校有在校高中生共1 600人,其中高一年级学生520人,高二年级学生500人,高三年级学生580人.如果想通过抽查其中的80人来调查学生的消费情况,考虑到不同年级学生的消费情况有明显差别,而同一年级内消费情况差异较小,问应采用怎样的抽样方法?高三年级学生中应抽查多少人?解:因不同年级的学生消费情况有明显差别,所以应采用分层抽样.因为520∶500∶580=26∶25∶29,于是将80分成比例为26∶25∶29的三部分.设三部分各抽个体数分别为26x ,25x ,29x ,由26x +25x +29x =80,解得x =1.所以高三年级学生中应抽查29人.6.(选做题)某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名初中生、4 000名高中生中进行问卷调查,如果要在所有答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3 000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?(3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取得到所需的样本?解:(1)由于这次活动对教职员工、初中生和高中生产生的影响不相同,所以应当采取分层抽样的方法进行抽样.∵样本容量为120,总体个数为500+3 000+4 000=7 500(名),则抽样比为1207 500=2125.∴500×2125=8(人),3 000×2125=48(人),4 000×2125=64(人),∴在教职员工、初中生、高中生中抽取的个体数分别是8、48、64.分层抽样的步骤是:第一步,分为教职员工、初中生、高中生共三层.第二步,确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8、48、64.第三步,各层分别按简单随机抽样的方法抽取样本.第四步,综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简单随机抽样有两种方法:抽签法或随机数表法.若用抽签法,则要做3 000个号签,费时费力,因此采用随机数表法抽取样本,步骤是:第一步,编号:将3 000份答卷都编上号码:0 001,0 002,…,3 000.第二步,在随机数表上随机选取一个起始位置.第三步,规定读数方向:向右连续取数字,以4个数为一组,碰到右边线时接下一行左边线继续向右连续取数,若读取的4位数大于3 000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.(3)由于4 000÷64=62.5不是整数,故应先使用简单随机抽样法从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第一部分个体的编号为1,2,…,62.从中随机抽取一个号码,若抽取的是23,则从第23号开始,每隔62个号码抽取一个,这样得到一个容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.。