浅谈超声弹性成像发展最终改动版
- 格式:docx
- 大小:44.84 KB
- 文档页数:10
新型医学影像技术超声弹性成像随着科学技术的不断进步,医学领域也出现了许多令人惊叹的新技术。
其中,超声弹性成像技术作为一种新型的医学影像技术,正逐渐被广泛应用于临床医疗中。
本文将介绍超声弹性成像技术的原理、应用以及对医学诊断的意义。
一、超声弹性成像技术原理超声弹性成像技术基于超声波在组织中的传播和反射特性,通过分析组织或器官在外部压力作用下的形变程度,来反映其组织结构和性质的一种非侵入性医学影像技术。
该技术利用超声波的声速和频率的变化,来获得组织的弹性信息,从而实现对组织的成像。
二、超声弹性成像技术的应用超声弹性成像技术在医学领域有着广泛的应用,尤其对于乳腺癌和肝病的诊断有着重要的意义。
1. 乳腺癌诊断乳腺癌是女性最常见的恶性肿瘤之一,早期发现和诊断对于治疗的成功至关重要。
传统的乳腺癌检查主要依赖于乳房的触诊和乳腺X线摄影,这种方法存在一定的局限性。
而超声弹性成像技术通过对乳房的组织弹性进行定量测量,能够更准确地判断乳腺组织的恶性程度,提高乳腺癌的诊断效果。
2. 肝病诊断肝病是世界范围内的重大健康问题,而超声弹性成像技术在肝病的诊断中有着重要的应用价值。
通过对肝脏组织的弹性特性进行评估,可以帮助医生判断肝脏的硬度程度,从而对肝病的类型和严重程度进行诊断。
这种非侵入性的检查方法比起传统的肝穿刺活检更加方便和安全。
三、超声弹性成像技术对医学诊断的意义超声弹性成像技术在医学诊断中具有重要的意义,主要体现在以下几个方面:1. 无创性诊断超声弹性成像技术是一种无创性的医学影像技术,不需要穿刺治疗或对人体造成其他形式的伤害,能够给患者带来更少的痛苦和不适感。
2. 提高准确性通过超声弹性成像技术可以获得定量的组织弹性信息,这有助于医生更加准确地判断患者的病情,提高诊断的准确性。
3. 指导治疗超声弹性成像技术可以实时监测组织的弹性变化,在手术导航和疾病治疗过程中提供重要的参考依据,帮助医生更好地进行手术操作和治疗决策。
超声弹性成像技术的研究进展刘义钢【期刊名称】《江西医药》【年(卷),期】2018(053)011【总页数】4页(P1345-1348)【关键词】超声;弹性成像;综述;组织;技术【作者】刘义钢【作者单位】南昌大学医学院,南昌 330006;南昌大学第二附属医院超声科,南昌330006【正文语种】中文【中图分类】R445.1组织的硬度与组织的结构密切相关,组织结构在很大程度上取决于组织的分子构成以及这些分子构成的组织形式。
然而,传统医学影像模式(包括超声、x-射线、计算机断层扫描、磁共振)都无法提供组织的硬度信息。
因此,超声弹性成像(ultrasounic elastography,UE)这一可以提供组织硬度的新技术被Ophir等[1]人提出来后,得到了广泛关注并快速发展,已成为超声领域的一个研究热潮。
1 超声弹性成像原理超声弹性成像是由于生物组织都具有硬度这一基本属性,不同组织间有着硬度的差异,这种差异可以用弹性参数来表示。
组织弹性参数的测定需要通过对组织的激励使组织发生形变,然后通过对形变前和形变后组织分别进行测量,才能获取组织的硬度差异。
因此,超声弹性成像的弹性参数需要对超声成像的结果进行计算分析才能获取。
超声弹性成像大致分为5步:⑴对目标组织进行初次超声成像并获取结果(形变前);⑵通过激励使目标组织发生形变;⑶对目标组织形变后进行二次超声成像并获取结果(形变后);⑷采用计算机对两次成像结果进行相关数据的分析,通过相关结果获得形变前后组织内部各散射点的相对位移值;⑸通过获得的相对位移值构建组织的整体位移场,并对其进行分析计算获取对应的应变图,最后重建获得目标组织的参数[2]。
在介质内应力均匀分布的情况下,硬度与形变/位移成反比。
2 超声弹性成像的技术分类依据激励组织发生形变方式的不同,将超声弹性成像分3种:⑴静态应变成像;⑵实时组织弹性成像;⑶声辐射力超声弹性成像。
静态应变成像和实时组织超声弹性成像是直接施压在被检组织表面,其激励来源于组织之外;而声辐射力超声弹性成像则是通过使组织内部发生应变,其激励来源于组织的内部。
浅谈对超声医学的发展现状与前景之探究【摘要】超声医学是一门利用超声波技术进行诊断与治疗的医学领域。
通过超声波的高频振荡,可以准确观察人体内部的结构与变化,为医生提供重要的诊断依据。
超声医学在临床各个领域都有广泛的应用,如妇产科、心脏病学、消化内科等。
随着技术的不断进步,超声医学的成像质量和精度也在不断提高,越来越多的疾病可以通过超声检查来进行诊断。
未来,随着科技的不断发展,超声医学在医学领域将有更加广阔的应用前景。
超声医学具有巨大的潜力,可以在不断拓展的领域中发挥重要作用。
对超声医学的期待也越来越高,希望能够通过这一技术来提高医疗水平,为患者提供更好的诊疗服务。
【关键词】超声医学,技术发展,应用领域,发展现状,未来前景,潜力,发展方向,期待1. 引言1.1 对超声医学的定义超声医学是一种运用超声波技术进行医学诊断和治疗的学科。
超声波是一种高频声波,可以穿透人体组织产生图像。
超声医学利用超声波的高频振动和回声特性,可以精确地观察人体内部器官的结构和功能,从而实现对疾病的诊断和监测。
超声医学的定义还包括超声波在医学领域的广泛应用,如超声心动图、超声胃镜、超声乳房检查等。
通过超声医学技术,医生可以及时发现和诊断疾病,提高治疗效果,减少不必要的手术风险。
超声医学是一门利用超声波技术对人体进行诊断和治疗的学科,具有非侵入性、安全性高、成本低等优点,被广泛应用于临床医学领域。
随着技术的不断进步和创新,超声医学在医学诊断、疾病治疗等方面的作用将越来越重要,对人类健康产生积极的推动作用。
1.2 对超声医学的重要性超声医学在临床诊断中具有独特的优势。
通过超声检查,医生可以直观地观察到人体内部的器官和结构,从而及时发现病变和异常情况。
与传统的X射线和CT检查相比,超声检查没有辐射损伤,对患者身体没有任何副作用,尤其适合孕妇和婴幼儿的检查。
超声医学在导诊和手术中发挥着重要作用。
在手术前,医生可以利用超声检查来评估病变的性质和位置,指导手术的方案和操作过程。
•述评•动态超声弹性成像的现状及展望李国洋 郑阳 刘燕霖 江宇轩 徐玮强 曹艳平DOI :10.3877/cma.j.issn.1672-6448.2019.08.001作者单位:100084 北京,清华大学航天航空学院工程力学系 生物力学与医学工程研究所通信作者:曹艳平,Email :caoyanping@基于生物软组织的力学性质变化,对其生理、病理状况进行评估有着悠久的历史[1],触诊即是其中最为典型的一种评估方法。
触诊是指医师通过手接触被检查部位等触觉行为直接感知人体特定组织器官的力学性质变化,并对疾病的发生和发展作出初步诊断的一种检查方式。
触诊的结果通常依赖医师的主观判断。
在医学昌明的今天,人们愈发意识到在体定量表征软组织力学性质的重要临床价值。
考虑到静态弹性成像原理上很难在体定量反演软组织力学特性参数,1998年Sarvazyan 等[2]最先提出利用瞬态作用的声辐射力在软组织内部激发剪切波,并通过测量剪切波传播速度定量表征软组织弹性性质。
其后20余年,动态超声弹性成像方法受到了广泛关注并得到了充分的发展。
以超音速剪切波弹性成像(supersonic shear imaging ,SSI )[3]技术为代表的多种动态超声弹性成像方法开始应用于临床试验研究,并在肝脏纤维化分期[4]、乳腺[5]和甲状腺[4]结节良恶性评估等领域展现出了良好的应用前景。
一般而言,动态超声弹性成像方法包含4个关键步骤(图1)。
其一,利用超声辐射力[2]在软组织中激发出剪切波。
不同动态超声弹性成像方法的主要区别在于激励施加方式的不同,如采用移动聚焦声束和多束平行非聚焦声束进行剪切波激励,这2种剪切波的激励方式分别为SSI 和梳状脉冲激励剪切波弹性成像(comb-push ultrasound shear elastography ,CUSE )[6]所采用。
移动聚焦声束激发的剪切波可以干涉叠加产生剪切波马赫锥,这种物理效应被称为弹性切伦科夫效应[7]。
浅谈对超声医学的发展现状与前景之探究超声医学是一种利用超声波在人体内部产生影像,以诊断和治疗疾病的医学技术。
它具有非侵入性、无辐射、操作简便等优点,成为现代医学中应用最广泛的成像技术之一。
本文将对超声医学的发展现状与前景进行探究。
超声医学的发展现状。
随着医学科技的不断进步,超声医学已经取得了很大的发展。
首先是超声成像技术的不断改进。
在超声医学的早期阶段,只能提供简单的二维影像,无法清晰显示组织结构。
而如今,随着超声探头的改进和信号处理算法的提升,超声成像技术已经可以提供高分辨率的三维影像,能够清晰显示心脏、肝脏、肺部等器官的结构和功能,大大提高了医生对疾病的诊断准确性。
其次是超声诊断技术的不断完善。
超声医学不仅可以提供器官的结构信息,还可以通过测量声速和声阻抗等参数,实现对组织的定量分析。
近年来,超声弹性成像技术的发展,使得医生可以通过对组织的硬度和弹性特性进行分析,帮助早期发现肿瘤、评估心脏功能等。
超声治疗技术的发展也为医学带来了新的机遇。
超声在医学中不仅可以用于诊断,还可以通过聚焦高强度超声波在人体内部产生热效应,用于治疗多种疾病。
超声聚焦技术已经在治疗肿瘤、神经疾病等领域取得了重要的进展。
超声医学在移动设备上的应用也是其发展的一个重要趋势。
传统的超声设备体积大、价格昂贵,只能在专业医疗机构中应用。
而如今,随着移动设备的普及和硬件技术的进步,越来越多的超声设备可以嵌入到手机、平板电脑等移动设备中,实现远程诊断和无线传输影像,为边远地区和医疗资源匮乏地区提供了更便捷和广泛的医疗服务。
超声医学是一种应用广泛且发展迅速的医学技术。
随着医学科技的进步和需求的增加,超声医学在成像技术、诊断技术、治疗技术和移动应用方面都有着广阔的发展前景。
我们相信,超声医学将继续引领医学影像技术的发展,并为人们的健康服务做出更大的贡献。
浅谈对超声医学的发展现状与前景之探究【摘要】超声医学是一项重要的医学技术,通过使用声波来进行诊断和治疗。
本文从超声医学的定义和重要性入手,分析了其技术特点和在临床应用中的优势。
同时探讨了超声医学的发展现状和未来前景,以及与人类健康的关系。
展望了超声医学的发展,并总结了文章的主要内容,为超声医学的进一步研究和应用提供了一定的指导和启示。
超声医学在未来将继续发展壮大,为人类健康事业做出更大的贡献。
【关键词】超声医学、发展现状、前景、技术特点、临床应用、健康关系、展望、总结、重要性、人类健康、探讨1. 引言1.1 超声医学的定义超声医学又称超声诊断或超声检查,是一种利用高频超声波在人体组织内部的传播规律和反射特性对人体进行检查和诊断的技术。
通过超声波的传播、吸收和散射等特性,可以获取人体内部组织的形态、结构和功能信息,从而实现对病变、损伤和异常情况的发现和诊断。
超声医学是一种无创、无辐射的诊断方法,具有安全、快速、准确等优点,已广泛应用于各个医学领域,并在临床诊断中发挥着重要作用。
超声医学的发展不仅推动了医学影像学的进步,还带来了医疗技术的革新和医疗质量的提升。
随着医疗技术的不断发展和完善,超声医学在现代医学中的地位和作用愈发凸显,成为不可或缺的重要手段和工具。
1.2 超声医学的重要性超声医学的重要性表现在其安全性和无创性上。
相比于传统的医学检查方法,如X线检查和CT检查等,超声检查不需要使用放射线或造影剂,避免了对人体的辐射伤害和过敏反应的风险。
超声医学成为了一种安全可靠的影像诊断方法,特别适用于儿童、孕妇和老年人等特殊人群。
超声医学在临床诊断中的广泛应用也凸显了其重要性。
不仅可以对心脏、肝脏、肾脏等重要器官进行检查,还可以用于胎儿检查、乳腺检查、甲状腺检查等多个方面。
通过超声检查,医生可以及时发现疾病、评估病情、指导治疗,为患者提供更加精准和有效的医疗服务。
超声医学的重要性不仅体现在其安全性和无创性上,还体现在其在临床诊断中的广泛应用和重要作用。
医学超声成像技术发展和新趋势医学超声成像技术是一种非侵入性的医学检查方法,它利用超声波在人体内部的传播和反射,通过计算机处理成图像,以达到诊断疾病的目的。
自从20世纪50年代医学超声成像技术问世以来,它已经成为了医学领域中最常用的检查方法之一。
随着科技的不断发展,医学超声成像技术也在不断地更新和改进,为医学诊断提供了更加精准和可靠的手段。
医学超声成像技术的发展历程医学超声成像技术最早是在20世纪50年代由美国的医学专家Floyd Firestone和George Ludwig发明的。
当时,他们利用超声波来检测人体内部的器官和组织,但是由于当时的技术水平还不够成熟,所以成像效果并不理想。
随着科技的不断发展,医学超声成像技术也得到了不断的改进和完善。
在20世纪60年代,医学超声成像技术已经开始应用于临床医学中,成为了一种非常重要的检查方法。
到了20世纪80年代,随着计算机技术的不断发展,医学超声成像技术也得到了极大的提升,成像效果更加清晰,应用范围也更加广泛。
医学超声成像技术的新趋势随着科技的不断发展,医学超声成像技术也在不断地更新和改进,为医学诊断提供了更加精准和可靠的手段。
以下是医学超声成像技术的新趋势:1. 三维超声成像技术三维超声成像技术是一种新型的医学超声成像技术,它可以将人体内部的器官和组织以三维的形式呈现出来,成像效果更加清晰。
三维超声成像技术可以帮助医生更加准确地诊断疾病,提高诊断的准确率。
2. 超声弹性成像技术超声弹性成像技术是一种新型的医学超声成像技术,它可以通过测量组织的弹性变形来诊断疾病。
这种技术可以帮助医生更加准确地诊断肿瘤等疾病,提高诊断的准确率。
3. 超声造影剂技术超声造影剂技术是一种新型的医学超声成像技术,它可以通过注射一种特殊的造影剂来增强超声成像的效果。
这种技术可以帮助医生更加准确地诊断疾病,提高诊断的准确率。
4. 超声导航技术超声导航技术是一种新型的医学超声成像技术,它可以通过计算机模拟来帮助医生更加准确地进行手术操作。
超声弹性成像技术在癌症诊断中的应用近年来,随着医学技术的不断进步和发展,癌症的治疗也在不断的完善。
而在癌症的诊断中,超声弹性成像技术的应用已经引起了广泛的关注。
超声弹性成像技术能够检测组织的硬度和弹性,对于癌症的诊断和治疗提供了有力的支持。
一、超声弹性成像技术的原理超声弹性成像技术是一种新型的医学成像技术,它是利用超声波的机械性质来检测组织的硬度和弹性。
其原理是利用超声波的机械波性质,向生物组织中注入低频振荡波,通过测量组织表面反射波的相位差和振幅差来确定组织的硬度和弹性。
二、超声弹性成像技术已经广泛应用于癌症的诊断中,并取得了很好的效果。
它可以快速、准确地诊断肿瘤和肿瘤周围组织的硬度和弹性,帮助医生及时做出正确的诊断,为癌症的治疗提供有力的支持。
其中,超声弹性成像技术在乳腺癌的诊断中应用较为广泛。
在正常的乳腺组织中,超声波的传播速度和组织的硬度是成正比的。
而在乳腺癌组织中,组织的硬度要比正常组织高出很多,因此超声波的传播速度也会更快。
通过超声弹性成像技术可以直观地看到癌症组织的硬度,可以有效地识别出癌症组织区域。
此外,超声弹性成像技术在肝癌和前列腺癌的诊断中也有着重要的应用。
在肝癌中,超声弹性成像技术可以检测到癌变的肝组织和健康的肝组织之间的硬度差别,帮助医生准确判断病变的位置和大小。
在前列腺癌中,超声弹性成像技术可以快速准确地检测前列腺组织的硬度,帮助医生确定癌变的范围和分级。
三、超声弹性成像技术的优势与传统的医学成像技术相比,超声弹性成像技术具有以下几个优势:首先,超声弹性成像技术是一种非侵入性的检测方法,不会对身体造成任何伤害。
其次,超声弹性成像技术可以检测到组织的硬度和弹性,可以直观地看到组织状态,因此可以提高诊断的准确性和可靠性。
最后,超声弹性成像技术操作简易、成本低廉,可以较为广泛地应用于医学领域。
四、超声弹性成像技术的发展前景随着医学技术的不断发展和进步,超声弹性成像技术在癌症诊断中的应用将会得到越来越广泛的推广和应用。
浅谈超声弹性成像发展何为弹性成像?这是一个超声成像术语,顾名思义这种成像模式旨在评估组织的弹性大小,提供更全面的疾病信息。
弹性是物质的一种固有属性,同密度、硬度、温度等一样,反映物质的一个特性。
日常生活中人们粗略评估物质的弹性主要看给一种物质施压外压后物质的形变大小,例如海绵与金属:施加大体相同的压力后海绵发生巨大的形变,人们认为它是软的;而金属受压后无明显的变化,人们认为它是硬的。
物质的硬度越大,其弹性越小;硬度越小,弹性越大。
为何要测量物质的弹性?正常组织中不同的解剖结构之间会存在弹性差异。
例如,在正常乳腺中,纤维组织通常比乳腺腺体组织硬,而乳腺腺体组织又比脂肪组织硬。
绵羊肾脏的肾实质与肾髓质或者肾锥体的弹性系数差异大约为6dB。
不同组织弹性模量的差别能达到几个数量级之上(如表1)。
表1 人体不同组织的弹性值传统的超声成像中,不同组织的回声强度差异大小主要取决于组织的声阻抗,而其弹性系数差异却远较声阻抗差大(如表2)。
表2 不同人体组织及介质的声阻抗及密度这决定了超声弹性成像对不同组织、同一组织的不同病理状态的分辨力较传统超声成像灰阶图高。
换言之,同一组织中弹性的变化通常与其病理现象有关,正常组织与病变组织之间存在巨大的弹性差异。
例如,恶性的病理损害,例如乳腺硬癌、前列腺癌、甲状腺癌及肝癌等,通常表现为硬的小结节。
越硬的物质受到外压时应变越小,硬度可反映物质的弹性大小。
一些弥散性的疾病例如肝硬化也会使得肝组织的硬度显着增大。
此外脂肪过多或者胶原质沉积也会改变组织的硬度。
什么是物质弹性的基本参数?杨氏模量(E),亦称弹性模量/弹性系数。
工程物理学上评估机械材料弹性大小的基本包括杨氏模量、刚性指数等,其实反映的都是物质的弹性。
杨氏模量,1807年由英国科学家young thomas提出,反映物质弹性与硬度的基本参数,单位为Kpa。
此弹性模量(杨氏模量)与人们日常生活中提到的弹性(好/不好)不同,超声弹性成像中用到的杨氏模量值与硬度呈正比。
即物质越硬,物质受压时产生的形变越小,弹性模量(杨氏模量)值越大。
如海绵与金属,施加同一大小的外力,海绵形变大而杨氏模量小,金属形变小而杨氏模量大。
怎么计算杨氏模量?目前的几种超声弹性成像模式中应用的推算公式主要包括2种:1.E=S/e(E为应变大小,间接反映弹性系数;S为外加压力;e为物质受压后形变的大小。
主要应用于静态型弹性成像以及定性型ARFI)2.E = 3ρC s2(E为弹性模量绝对值大小;ρ为组织密度;C s为人体组织内剪切波的传播速度。
主要应用于一维瞬时剪切波成像、点式剪切波速度测量法以及2D-剪切波弹性成像)以上提到剪切波,那么什么是剪切波,它有哪些特点呢?剪切波是一种对人体施加一定机械扰动后组织层面间产生的粘弹滑动力传播的横波(即波传播的方向与质点震动的方向垂直),属于机械波的一种,在液体及真空中不传播。
而剪切波又是一种极为微弱、振幅与传播距离(数个毫米)都极短的波,传播速度较慢(1-10m/s)且在组织中传播时间极短(10-20ms即衰减消失)。
越硬的介质中剪切波的传播速度越快。
根据公式2,测得剪切波的传播速度即可计算出局部组织的杨氏模量。
可是剪切波的独特特性使得捕捉并获得其传播参数极为困难。
实际上,人体几乎所有的脏器和组织密度均较为相近(如表1),传统超声纵波在人体组织传播的速度也较为近似(约1540m/s);而不同人体组织的杨氏模量差却十分巨大,同一组织中软硬不同的区域剪切波(依靠组织层面间的剪切滑动力传播)的传导速度亦是数倍甚至数百倍的差异。
真正的剪切波弹性成像从基本原理上是完全独立于传统超声成像的另外一种成像模式,科学、客观的反映人体组织的弹性。
超声弹性成像的发展历程及基本分类超声弹性成像最初于1990年左右出现,发展至今已有20余年的历史,经历了静态应力型弹性成像、一维瞬时剪切波成像与单点剪切波速度测量,到最近应用的2D-剪切波弹性成像。
2013年由欧洲超声生物学与医学委员会(EFSUMB)出版的《超声弹性成像分类及应用指南》(EFSUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography)中对目前的几种超声弹性成像模式从原理、应用步骤、临床应用价值、各种技术的优缺点等方面做了较为详细的介绍,根据成像原理的不同大致分为3大类:早期传统的静态型弹性成像、剪切波速度测量法及2D-实时剪切波弹性成像(SWE, shearwave elastography)。
不同的弹性成像模式原理及应用究竟有何不同呢?静态型弹性成像用于评估人体组织弹性大小是基于物质受压后产生形变大小不同的原理,评估的是受压物质的应变(strain)及应变率(strain ratio),主要包括:应变成像(strain elasto- graphy ,SE)以及应变率成像(strain-rate imaging ,SRI),代表技术产品有hitachi、toshiba等推出的彩色应变弹性成像(彩色的外压受力后形成的彩色应变图),而定性型ARFI( qualitative acoustic ridiational force impulse imaging ,即VTI技术,灰阶型应变图)亦归属于这类弹性成像范畴。
这种半定性的弹性成像技术计算物质受压后的形变:E=S/e(E为应变大小,S为外加压力,e为物质受压后形变的大小)。
其基本原理:利用外力沿着声束方向(轴向)缓慢压缩组织(通常在1%左右),分别采集组织压缩前、后的超声射频信号,然后估计组织的位移分布,从而计算得到组织内部的轴向应变分布。
假设要观察的组织横向边界无明显变化的条件下,组织受压后纵向应变分布同组织的弹性模量分布有很大的关联,弹性模量小(硬度小)的部位将比弹性模量大(硬度大)的部位有更大的应变,因此应变分布一定程度上能够代表硬度分布。
这种技术的外力成因又分为:手动外力式、生理助力式、机械振动式(如图1)。
然而这几种外力形成模式中施压外力的大小都不可知,从而这种弹性成像技术最大的弱点在于重复性不佳,人为依赖性过大。
另外,这种技术存在一些共同的缺陷:a.不同深度的组织形变大小不同,离外力施压源越远的组织受到的压力越小形变也越小,因此,图1 几种静态应变弹性成像的应力来源随着深度的增加静态应变弹性成像的准确度下降;b.同一组织深度上,病灶越大受力也越大,因而病灶大小对静态应力弹性成像的准确性影响也越大;c.静态弹性成像的彩色编码图提供占位整体的形变信息,导致占位病灶内部软硬度分布缺失;d.静态应变弹性图上呈现的是病灶相对于周边组织的相对硬度,在患者脏器存在弥漫性病变(如肝硬化、桥本氏甲状腺炎、结节性甲状腺肿等)的情况下,弹性成像本底硬度增加,占位病灶的硬度可能与本底相同或者比本底要软,此时极易导致恶性肿瘤的漏诊及误诊;e.这种应变弹性成像无法提供准确的弹性模量值。
图2 静态型弹性成像示例图后来研发的基于剪切波速度测量的弹性技术都致力于对人体组织的弹性模量进行定量。
基于剪切波的几种弹性成像模式都应用同一个弹性模量计算公式:E = 3ρC s2(E为弹性模量值大小,ρ为组织密度,C s为人体组织内剪切波的传播速度)。
依据欧超联2013发表的超声弹性成像技术分类及应用指南:基于剪切波的弹性技术发展经过了2个阶段。
最先产生的剪切波速度测值法,是继静态应力型弹性成像后一个较大的突破,初步做到了单点的弹性模量值定量测量。
两种代表技术为:TE(transient elasto- graphy,瞬时剪切波成像)和定量型ARFI(ARFI quantification,定量型声辐射力脉冲成像,欧超联弹性指南中称其为单点式剪切波弹性成像;另一种名称为ARFI-VTQ,acoustic radiation force impulse - virtual touch tissue quantification)。
图3 TE技术应用示例图TE技术的基本原理是在体表施压一个低频机械扰动产生垂直于体表传播的剪切波,通过超声检测组织内部的剪切波的振幅,相位及波速等参数来得到其机械属性相关信息。
目前主要应用于慢性肝病患者肝纤维化分期诊断(如图3)。
作为第一个可以定量提供人体组织弹性模量值的技术,它在传染病领域内受到了医生的很广泛的认可与应用,对肝炎患者早期肝纤维化的发现与分期诊断以及早期干预逆转肝纤维化作出了很重大的贡献。
然而它只能提供剪切波的机械信号,无通用超声图像,只是简单的测值,在临床中应用相当有限,目前只应用到肝脏,其他器官均不适用。
另外人们也发现了TE技术的其他众多缺点:a.TE技术测量剪切波平均速度值,测量深度不定,重复性不佳,因此每次测量需重复10次取平均值,操作时间长;b.产生剪切波的机械扰动体感明显,部分患者不易接受;c.探头使用6个月左右需更换,严重降低整体机器的性价比;d.由于其激发产生的剪切波垂直人体体表向深部传播,而剪切波液体中不传播,因此晚期伴腹水的失代偿期肝硬化患者不能应用;e.安装心脏起搏器及较为肥胖的患者亦不适用。
定量型ARFI问世有3年余的时间,目前应用于临床医学科研领域引起了不少医者的关注。
图4 定量型AFRI成像技术的成像原理基本原理是利用不同角度的声束聚焦到人体组织激发组织产生平行于体表扩散的剪切波,计算激发点旁的数毫米(固定的取样框)距离内剪切波传播的平均速度(如图4)。
它可以应用于肝脏和小器官,利用增加声束聚焦点声能来激发组织自发产生剪切波(增加剪切波的振幅与传播距离),测量剪切波通过固定取样框两端之间的速度平均值,得出取样框内组织杨氏模量的平均值(如图5),初步做到了相对于TE更为完善(可定位)的单点式剪切波速度测量。
由于不依赖于外力,剪切波在人体组织中传播的速度与组织的硬度关系密切(声能、温度等因素的影响可以忽略不计),ARFI-VTQ技术有效规避了传统静态弹性成像外力不可定的缺点。
图5 点式剪切波速度测量法示例图但是这种技术推出3年来在临床中的应用相当有限:a.由于其产生剪切波源所需的声能过大,一次聚焦后局部探头晶体过热因而需要3-8s冷却时间方可进行下次聚焦,从而做不到实时的测量;b.在实际应用中发现这种技术的可重复性及成功率欠佳,常需进行3次以上的测量取平均值应用,因而完成整个检查耗时较长,无法作为常规检查应用于临床;c.这种技术激发组织产生剪切波所需声能过大一直受到超声界的质疑,其应用于临床及科研对病人的损伤程度亦颇有争议,至今ARFI-VTQ技术未通过FDA认证;d.应用于肝硬度测量时,定量型AFRI技术只可提供剪切波的传播速度值,无法直接提供弹性模量值;e.部分使用类似技术的机器提供弹性模量值,但量程最大达到30Kpa,硬度超过30Kpa的组织无法测量,这与其超声成像采集帧频有限及后台信号收集处理平台不成熟都有关系。