第五届全国周培源大学生力学竞赛理论力学试题
- 格式:pdf
- 大小:135.53 KB
- 文档页数:2
全国周培源大学生力学竞赛考试范围(参考)Ⅰ.理论力学(一)静力学(1)掌握力、力矩和力系的基本概念及其性质。
能熟练地计算力的投影、力对点的矩和力对轴的矩。
(2)掌握力偶、力偶矩和力偶系的基本概念及其性质。
能熟练地计算力偶矩及其投影。
(3)掌握力系的主矢和主矩的基本概念及其性质。
掌握汇交力系、平行力系与一般力系的简化方法、熟悉简化结果。
能熟练地计算各类力系的主矢和主矩。
掌握重心的概念及其位置计算的方法。
(4)掌握约束的概念及各种常见理想约束力的性质。
能熟练地画出单个刚体及刚体系受力图。
(5)掌握各种力系的平衡条件和平衡方程。
能熟练地求解单个刚体和简单刚体系的平衡问题。
(6)掌握滑动摩擦力和摩擦角的概念。
会求解考虑滑动摩擦时单个刚体和简单平面刚体系的平衡问题。
(二)运动学(1)掌握描述点运动的矢量法、直角坐标法和自然坐标法,会求点的运动轨迹,并能熟练地求解点的速度和加速度。
(2)掌握刚体平移和定轴转动的概念及其运动特征、定轴转动刚体上各点速度和加速度的矢量表示法。
能熟练求解定轴转动刚体的角速度、角加速度以及刚体上各点的速度和加速度。
(3)掌握点的复合运动的基本概念,掌握并能应用点的速度合成定理和加速度合成定理。
(4)掌握刚体平面运动的概念及其描述,掌握平面运动刚体速度瞬心的概念。
能熟练求解平面运动刚体的角速度与角加速度以及刚体上各点的速度和加速度。
(三)动力学(1)掌握建立质点的运动微分方程的方法。
了解两类动力学基本问题的求解方法。
(2)掌握刚体转动惯量的计算。
了解刚体惯性积和惯性主轴的概念。
(3)能熟练计算质点系与刚体的动量、动量矩和动能;并能熟练计算力的冲量(矩),力的功和势能。
(4)掌握动力学普遍定理(包括动量定理、质心运动定理、对固定点和质心的动量矩定理、动能定理)及相应的守恒定理,并会综合应用。
(5)掌握建立刚体平面运动动力学方程的方法。
了解其两类动力学基本问题的求解方法。
(6)掌握达朗贝尔惯性力的概念,掌握平面运动刚体达朗贝尔惯性力系的简化。
第6届周培源全国大学生力学竞赛初赛(样题)时间3小时,满分120分一、奇怪的独木桥(25分)一位游客在某处发现有座独木桥,上面写着:禁止独自一人过桥。
他发现当地居民的确都是成双结队并且好像以某种相互配合的方式过桥。
他觉得很奇怪,为什么2个人可以过桥而1个人却不能。
等周围没有其它人时他想独自试试,结果没走到半程,就把独木桥压断了而掉入水中。
根据事后他的调查,小河宽4米,独木桥长6米,如图1所示横跨在小河上(支撑点可以认为是铰链约束)。
独木桥采用当地的轻质木材做成,等截面,允许最大弯矩为[]600N mM=⋅。
为方便假设每人的体重均为800N,而独木桥的重量不计。
请你分析一下:(1)本问题与力学中的什么内容有关系?(2)如果一个人想过桥,最多能走多远?(3)当地居民过桥时两人需要进行配合,你认为两人应如何配合才能安全过桥?图1 奇怪的独木桥二、模特儿与新型舞台(35分)2a a 有位模特儿在一种新型舞台上练习走台步。
该舞台类似长方形桌子,长为,宽为,有6条等长的桌腿(图2)。
每条桌腿都与水平地面有接触开关,如果接触处有压力就会使对应的一盏灯亮起来。
该模特儿发现,站到舞台不同的位置会有不同数目的灯亮起来,如图2,她站在舞台右上角附近时,左下角的灯就不亮。
如果把模特儿的重量认为是集中载荷,把舞台认为是刚体且不计质量,则(1)本问题与力学中的什么内容有关系?(2)如果模特儿站在舞台的正中央,会有几盏灯亮起来?(3)模特儿在不同区域时会有不同数目的灯亮起来,请在长方形舞台上确定各区域的边界并画出示意图,然后在该区域内写上亮灯的数目(提示,亮灯的数目有可能为6、5、4、3、2、1)。
aa a a图2 模特儿的新舞台 三、魔术师的表演(25分) 魔术师要表演一个节目。
其中一个道具是边长为的不透明立方体箱子,质量为a 1M;另一个道具是长为L 的均质刚性板AB ,质量为2M ,可绕光滑的A 铰转动;最后一个道具是半径为R 的刚性球,质量为3M ,放在刚性的水平面上。
力学竞赛理论力学部分练习题一、 四叶玫瑰线你能一笔画出图示曲线吗?如图所示为一四叶玫瑰曲线,其极坐标表达式为θρ2cos a =。
请你进行分析计算和设计:(1)写出图示四叶玫瑰线的直角坐标表达式; (2)利用理论力学知识设计一种机构来画出这一曲线。
题2图解:(1)对于四叶玫瑰曲线θρ2cos a =,在直角坐标系中可写成(图3-1)⎩⎨⎧==θρθρsin cos y x 将θρ2cos a =代入上式,得 ⎩⎨⎧==θθθθsin 2cos cos 2cos a y a x (1)利用三角函数的积化和差公式 )]cos()[cos(21cos cos βαβαβα-++=)]sin()[sin(21sin cos βαβαβα-++=可得 ⎪⎪⎩⎪⎪⎨⎧-=+=)sin 3(sin 2 )cos 3(cos 2θθθθa y a x (2)图3-1 图3-2(2)现设计一行星齿轮机构来画此曲线。
如图3-2所示的行星齿轮机构,小齿轮1O 在固定内齿轮O 内作纯滚动,其中内齿轮的半径为R ,小齿轮的半径为r ,画笔所在E 点离小齿轮圆心1O 的距离为e 。
随系杆1OO 的转动,其E 点的轨迹为⎩⎨⎧--=+-=ϕθϕθsin sin )( cos cos )( e r R y e r R x EE 利用小齿轮的纯滚动条件)(θϕθ+=r R ,有θϕrrR -=,代入上式可得⎪⎪⎩⎪⎪⎨⎧---=-+-=)sin(sin )( )cos(cos )( θθθθr r R e r R y rr R e r R x E E 作变换,令βϑ3=,上式可改写为⎪⎪⎩⎪⎪⎨⎧---=-+-=)3sin(3sin )( )3cos(3cos )( ββββr r R e r R y rr R e r R x E E (3) 对照式(2)⎪⎪⎩⎪⎪⎨⎧-=+=)sin 3(sin 2 )cos 3(cos 2θθθθa y a x 和式(3)中的系数,有2a e =, 2a r R =-, 13=-rrR 联解之,得a R 2=, a r 23=, 2ae = (4) 做一个如图3-2所示的行星齿轮绘图机构,取式(4)中的参数,即可画出θρ2cos a =的四叶玫瑰曲线。
全国大学生力学竞赛模拟试题(南京工程学院)一、四两拨千斤(25分)中国武术中有“四两拨千斤”的招式。
请你分析一下:(1)“四两拨千斤”与力学中的什么内容有关系?(2)试用力学原理简要解析一下“四两拨千斤”的关键所在?(3)试分析图示拔桩装置的力学原理。
二、小贩的不幸遭遇(35分)有一小贩推着装满货物的两轮车急匆匆地赶路回家。
途中经过一段很颠簸的路,路边一行人劝他走慢点,说你走的太急反而今晚到不了家。
小贩根本不信,仍然一味急行。
谁知没过多久,不幸车轴断了,小贩被困在半路,果然无法回家。
如果将木制车轴简化为图示简支梁,将货物简化为分别放置在梁上、处的质量同为的两个集中载荷,并已知车轴的直径为,车轴材料的弹性模量为,其强度极限为CD100kg30mm200GPa E=b380MPaσ=。
请你分析一下:(1)小贩的不幸遭遇与力学的什么内容有关?(2)如果慢行,小贩可能平安到家;因为急行,导致车轴断裂无法回家。
请分析其中奥秘,并通过计算,确定出有关参数。
(3)如果希望推车急行也能平安到家,小贩应该事先采取些什么措施?三、自动向上滚的轮子(25分)有这么一条轨道,一个轮子放在这轨道上,轮子不是向下,反而向上滚。
轮子由两个相同的圆锥底面相贴而成,轨道的形状如下图。
图(a)(b)分别为轨道的侧视图与俯视图。
图(c)为轮子的示意图。
请你分析一下:(1)本问题与力学中的什么内容有关系?(2)试用力学原理简单解析一下轮子往上滚动的原因。
(3)求出直轨道和轮子的尺寸以及夹角的关系。
请你分析一下:(1)本问题与力学中的什么内容有关系?(2)试用力学原理简单解析一下轮子往上滚动的原因。
(3)求出直轨道和轮子的尺寸以及夹角的关系。
四、难中的奖(35分)游乐场中常有一种游戏,让人站在三米以外,用篮球把六个易拉罐垒成的三层结构打翻,易拉罐被打中后平移不算成功,三次机会,如果能都打翻就有奖品。
一个人在旁边看了很久,不少人去试,但是都一无所获。
力学竞赛模拟题一、分析计算题:如何逃离大坑(30分)有一圆锥台形的大坑(图8-1),见图8-2,底面直径为8m ,深10m ,坑壁倾角600。
现假设有两人落入坑中。
(1) 若人与坑壁的摩擦因数为 1.0,请问两人是否可以沿坑壁爬上地面,为什么?(需作必要的计算)。
(2)如给他们两张梯子(图8-3)、两个销钉(图8-4)、两块板(图8-5)和一根带有弯钩的伸缩杆(图8-6,长约4~6m )。
梯子两端都有圆柱形孔(孔径略大于销钉的直径)。
假设它们的质量都不计,梯子、板、坑壁之间的摩擦也不计,人与梯子、板之间有摩擦,摩擦因数为0.8。
问两人利用这些工具是否可以离开坑到达地面?要说明过程及符合哪些力学原理。
(给出2种或2种以上方法本小题才能得满分)(3)两人是否可以不借助于任何工具,各自离开坑到达地面。
要说明方法和作必要的计算。
给出一种可行方法即可。
(本题人的几何尺寸不考虑)(命题人:河海大学陆晓敏,采用时请说明)解:(1)无法爬上去,因为:0045tan tan 60tan =>m ϕ图8-4图8-3图8-5图 8-2图 8-1图8-6(2)方法一:把梯子一头顶住坑角(一人压住),另一头靠在坑壁。
一人沿梯子先爬上去,然后拉住梯子,让另一人爬上去。
方法二:首先用销钉、梯子、拉杆安装成人字梯,调整拉杆的长度使梯子某一横杆与地面高度一致,把人字梯放在底面中间,然后两人各扛一块板,从人字梯两边同时上爬,以保证梯子不动(质心守恒),爬到上部后,把板搁在梯子和坑边的地面上(板要保持水平,不然,由于没有摩擦而不能平衡),最后两人同时登上板,沿板向相反方向走向坑边(两人要注意协调质心位置,使梯子不滑动,越慢越容易做到)。
(3)可以。
人只要通过跑步,绕坑壁转圈,当达到一定的速度后,人就可以沿坑壁逐渐上移,直至到达地面。
到达地面时所需的最小速度为:R m mg 2015tan ω= s ra d /5176.0=ω s m R v /06.5==ω (命题人:河海大学陆晓敏,采用时请说明)二、分析计算题(30分)边长4米的正方形房间,初始时刻四角各有一只臭虫。
周培源全国大学生力学竞赛模拟题(徐州工程学院)一 某杂技团作飞车走壁表演,设车由A 点开始沿路径AEDBCE 运动,路径的DBC 段为一圆的缺口,而α==<<BOD BOC ,不计摩擦。
(25分)(1)小车在DBC 段运动时与力学中的哪些知识相关? (2)问高度h 应为多少才能使小车越过缺口循上述路径运动? (3)又如欲使h 值为最小,则α角应为若干?题一图二 长为l 的钢尺,用两手食指在两端水平托起,当两手食指慢慢平行靠近时,钢尺首先只在一只手上滑动,当滑动一定长度后,又换为只在另一只手上滑动。
(35分)(1)用力学知识简要解释这一现象。
(2)钢尺沿长度方向自重的荷载集度为q ,钢尺与手之间的静摩擦因数为s f ,动摩擦因数为f ,求钢尺在首先滑动的手上能滑动的最大距离d 。
(3)钢尺的材料弹性模量为E ,横截面对中性轴的惯性矩为z I ,求当钢尺在首先滑动的手上滑动最大距离d 时,钢尺两端的转角。
三 人们常可见到这样的杂技表演:一人躺在地上,身上压着一块石板,另一人挥铁锤击石板,石板破了而其底下的人却安然无恙。
(25分)(1)请指出这一表演中所包含的力学概念(或力学问题)。
(2)如果铁锤的质量为1m ,击石头时的速度为1v ,石头的质量为2m ,两者间的恢复因数为k ,碰撞的能量损失为多少?(3)如果铁锤与石板的恢复系数.k=0.5,铁锤1m =5kg , 2m =75kg ,被表演者吸收转变为身体的变形能的能量为多少?四 一条长为2m 的黄铜管,外径D =150mm ,壁厚δ=5mm ,两端封闭,用直径d =2.5mm 的钢丝绕在上面,如图1所示(已知钢的弹性模量s E =200GPa ,泊松比s μ=0.25,黄铜的弹性模量c E =200GPa ,泊松比c μ=0.34)。
(35分)题四 图1(1)计算该钢丝中产生的最大应力如下:MPa 7.32785.21505.210200223maxmax max max =+⨯⨯=+=+====d D Ed d D dEEy I y EI I My z z z ρρσ如果钢丝的屈服极限为235Mpa ,上述算式是否正确,为什么?(2)如果在力F =400N 作用下用钢丝将管紧密地缠绕一层,计算该钢丝中产生的最大应力,求铜管的应力。