《雷达原理》第五章
- 格式:pdf
- 大小:730.41 KB
- 文档页数:13
气象雷达操作规程第一章:引言随着科技的不断发展,气象雷达作为一项重要的气象观测工具,在天气预报、灾害预警等方面发挥着重要作用。
为了确保气象雷达的正确操作和准确观测,特制定本《气象雷达操作规程》。
第二章:基本原理1. 雷达原理:气象雷达是利用电磁波的反射、散射和衰减特性来探测大气中的降水和其他天气现象的仪器。
2. 雷达分辨率:雷达的分辨率是指雷达系统能够识别和分离出两个相邻回波之间的最小距离。
3. 雷达回波:雷达回波是指雷达发射出的脉冲波经过天气目标(如降水粒子)反射回来的电磁波。
第三章:雷达操作流程1. 开机与自检:按照设备使用说明,正确开启气象雷达,并进行自检,确保各系统正常运行。
2. 操作界面:进入雷达操作界面,熟悉各功能键和指示灯的作用,掌握基本操作方法。
3. 雷达图像调整:根据观测需求,调整雷达图像的范围、增益、颜色等参数,以获取清晰的观测结果。
4. 数据收集与分析:按照观测任务,选择合适的扫描模式和扫描策略,并记录、保存雷达回波数据。
第四章:雷达故障处理1. 常见故障:介绍常见的雷达故障类型,如信号干扰、天线故障等,并给出相应的处理方法。
2. 故障排除流程:指导操作人员在发生雷达故障时应按照一定的流程进行故障排除,保证雷达系统的正常运行。
第五章:操作安全与注意事项1. 安全操作:操作人员应严格遵守相关操作规程,确保自身和设备的安全。
2. 巡检与维护:定期巡检雷达设备,检查各部分的工作状态,并进行必要的维护和保养。
3. 数据保密:操作人员应严守数据保密的原则,确保雷达观测数据的安全性。
第六章:应急处理措施1. 气象灾害预警:在出现灾害性天气的情况下,操作人员应及时启动相应的应急处理措施,包括提高雷达观测频率、记录相关数据等。
2. 突发故障处理:突发故障时,操作人员应立即采取相应的应急措施,包括与相关人员联系沟通、及时修复故障等。
第七章:总结与展望本《气象雷达操作规程》是为了指导气象雷达的正确操作和准确观测而制定的,希望能够为广大雷达操作人员提供参考,并进一步推动气象雷达技术的发展。
激光雷达的原理和运用研究第一章引言激光雷达是一种基于激光技术的先进测距设备,广泛应用于地球观测、无人驾驶、机器人导航等领域。
本章将介绍激光雷达的背景和研究意义。
第二章激光雷达的原理2.1 激光原理激光雷达利用激光器产生的聚光的激光束进行测量。
激光是一种具有高单色性和高相干性的光束,通过受激辐射产生。
激光束的特点使得激光雷达能够实现高精度测距和测量。
2.2 激光雷达的工作原理激光雷达的工作原理基于时间或相位差测量的原理。
它通过发射激光束并接收反射回来的激光信号,然后根据信号的时间差或相位差来计算目标物体与激光雷达的距离。
第三章激光雷达的应用领域3.1 地球观测激光雷达在地球观测领域被广泛应用。
它可以通过测量地表高程,获取地形信息,用于制图和地质勘探。
此外,激光雷达还可以用于测量海洋表面的高度,监测海洋潮汐和洋流。
3.2 无人驾驶激光雷达是无人驾驶技术的关键之一。
它可以实时扫描周围环境,检测障碍物并计算距离,为无人车提供高精度的三维地图。
激光雷达还可以用于识别道路标志和交通信号,提高无人驾驶的安全性和可靠性。
3.3 机器人导航在机器人导航领域,激光雷达被广泛应用于建图和定位。
机器人载着激光雷达可以快速扫描周围环境,并生成精确的环境地图。
机器人可以利用这些地图来规划路径、避开障碍物,并精确定位自己的位置。
第四章激光雷达的技术挑战与发展方向4.1 抗干扰能力激光雷达在实际应用中,如何应对各种复杂场景、光照条件的变化和干扰成为挑战。
未来的研究方向之一是提高激光雷达的抗干扰能力,使其能够更好地应对不同的环境。
4.2 可视距外的探测目前,激光雷达的探测距离较为有限,特别是在大气条件不佳或者目标物体较远的情况下。
未来的研究方向之一是提高激光雷达的探测范围,以实现可视距外的探测。
第五章激光雷达的未来发展前景激光雷达作为一种非常有潜力的测距设备,将在未来得到广泛应用。
随着激光技术的进步和成本的降低,激光雷达将进一步提高精度和性能,并扩展到更多的应用领域,如智能交通、航空航天等。
《成像雷达技术》目录前言第一章概论1.1雷达成像及其发展概况1.2雷达成像的基本原理1.3本书的内容安排第二章距离高分辨和一维距离像2.1宽带信号的逆滤波、匹配滤波和脉冲压缩2.2线性调频信号和解线频调处理2.3散射点模型与一维距离像2.4一维距离像回波的相干积累2.5高距离分辨雷达的检测和测高第三章方位高分辨和合成阵列3.1合成阵列的特点3.2运动平台的合成孔径雷达的横向分辨3.3用波数域分析合成孔径雷达的横向分辨率第四章合成孔径雷达4.1条带模式合成孔径雷达成像的基本原理4.2合成孔径雷达在三维空间里的二维成像4.3场景高程起伏引起的几何失真4.4合成孔径雷达的性能指标4.5合成孔径雷达的电子反对抗第五章合成孔径雷达成像算法5.1距离徙动5.2距离-多普勒(R-D)算法及其改进算法5.3线频调变标(Chirp Scaling 简称CS)算法5.4频率变标(Frequency Scaling 简称FS)算法5.5距离徙动算法(RMA)5.6极坐标格式(PFA)算法第六章基于回波数据的合成孔径雷达运动补偿6.1多普勒参数估计6.2存在运动误差情况下的SAR模型6.3基于多普勒参数估计的运动参数估计6.4垂直航线运动分量的补偿6.5沿航线运动分量的补偿(速度不稳时的运动补偿)6.6PGA自聚焦6.7结合运动补偿的SAR成像及验证第七章逆合成孔径雷达7.1 ISAR成像的转台模型和平动补偿原理7.2平动补偿的包络对齐7.3平动补偿的初相校正7.4目标转动时散射点徙动及其补偿7.5机动目标的ISAR成像7.6用时频分析方法对非平稳运动目标成像第八章干涉合成孔径雷达8.1 InSAR高程测量的基本原理8.2 InSAR高程测量的过程8.3 InSAR观测去相关和预滤波8.4图像配准8.5降噪滤波8.6二维相位解缠绕8.7高程测量误差分析8.8地面动目标检测(GMTI)8.9单脉冲ISAR。
雷达原理习题集西安电子科技大学信息对抗技术系《雷达原理教研组》2007.9第一章1-1.已知脉冲雷达中心频率f 0=10000MHz ,回波信号 相对发射信号的延迟时间为500μs ,回波信号的 频率为10000.03MHz ,目标运动方向与目标所在 方向的夹角60︒,如图1-1所示,求此时目标距离R 、径向速度V r 与线速度V 。
解:波长m f c 03.0101031080=⨯==λ,多卜勒频率KHz MHz f d 3003.01000003.10000==-= 径向速度s m f V d r /450103015.024=⨯⨯==λ,线速度s m V V r/90060cos =︒=目标距离km t c R r 752105103248=⨯⨯⨯==-1-2.已知某雷达对σ=5m 2的大型歼击机最大探测距离为100Km ,a ) 如果该机采用隐身技术,使σ减小到0.1m 2,此时的最大探测距离为多少?b ) 在a )条件下,如果雷达仍然要保持100Km 最大探测距离,并将发射功率提高到10倍,则接收机灵敏度还将提高到多少?解:根据雷达方程,作用距离与目标RCS 的4次方根成正比,因此: a ) 此时的最大探测距离为km km R 6.3751.01004max =⨯= b ) 根据雷达方程,作用距离的4次方与目标RCS 、发射功率成正比,与灵敏度成反比,故当RCS 减小到50倍,发射功率提高到10倍,还需要将灵敏度提高到5倍(数值减小),才能达到相同的作用距离。
1-3. 画出p5图1.5中同步器、调制器、发射机功放、接收机高放和混频、中放输出信号的基解: 同步器调制器中放输出第二章2-1. 某雷达发射机峰值功率为800KW ,矩形脉冲宽度为3μs ,脉冲重复频率为1000Hz ,求该发射机的平均发射功率和工作比 解:平均发射功率368001031010002400() 2.4av tt r rP p P f W kW T ττ-===⨯⨯⨯⨯==工作比631010000.003r rD f T ττ-==⨯=⨯⨯=2-2. 一般在什么情况下选用主振放大式发射机?在什么情况下选用单级振荡式发射机?答:单级振荡式发射机简单、经济、效率高,相对体积重量小,使用方便,适用于对脉冲波形、频率精度和稳定度、射频信号相位调制要求不严格的非相参雷达系统;主振放大式发射机具有很高的脉冲波形和频率、相位稳定度,能够适用于对波形、频率、相位有复杂调制,且有很高的稳定性要求的雷达系统。