2012高考数学大一轮复习测试专题四
- 格式:doc
- 大小:76.50 KB
- 文档页数:3
2012届高考数学第一轮章节复习考试题(含答案和解释)第2章第10节一、选择题 1.(教材改编题)等边三角形的边长为x,面积为y,则y与x之间的函数关系式为( ) A.y=x2 B.y=12x2 C.y=32x2 D.y=34x2 [答案] D [解析] y=12•x•x•sin60°=34x2. 2.(2011长春模拟)某工厂的大门是一抛物线型水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一个壁灯,两壁灯之间的水平距离为6m,如图所示,则厂门的高为(水泥建筑物厚度忽略不计,精确到0.1m)( ) A.6.9m B.7.0m C.7.1m D.6.8m [答案] A [解析] 建立如图所示的坐标系,于是由题设条件知抛物线的方程为y=ax2(a<0).设点A点的坐标为(4,-h),则 C(3,3-h).将这两点的坐标代入y=ax2,可得-h=a•42,3-h=a•32,解得a=-37,h=487≈6.9. 所以厂门的高约为6.9m. 3.某文具用品店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每只定价5元,该店制定了两种优惠方法:①买一副球拍赠送一只羽毛球;②按总价的92%付款.某人计划购买4副球拍,羽毛球30只,两种优惠方法中,更省钱的一种是( ) A.不能确定 B.①②同样省钱C.②省钱 D.①省钱 [答案] D [解析] ①种方法需20×4+5×(30-4)=210元,②种方法需(20×4+5×30)×92%=211.6元.故①种方法省钱. 4.某种细胞在培养过程中正常情况下,时刻t(单位:分)与细胞数n(单位:个)的部分数据如下: t 0 20 60 140 n 1 2 8 128 根据表中数据,推测繁殖到1000个细胞时的时刻t最接近于( ) A.200 B.220 C.240 D.260 [答案] A [解析] 由表格中所给数据可以得出n与t的函数关系为n=2t20,令n=1000,得2t20=1000,又210=1024,所以时刻t最接近200分. 5.(2011•商丘一模)某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为( ) A.45.606 B.45.6 C.45.56 D.45.51 [答案] B [解析] 依题意可设甲销售x辆,则乙销售(15-x)辆,∴总利润S=5.06x-0.15x2+2(15-x) =-0.15x2+3.06x+30(x≥0).∴当x=10时,Smax=45.6(万元). 6.某市2008年新建住房100万平方米,其中有25万平方米经济适用房,有关部门计划以后每年新建住面积比上一年增加5%,其经济适用房每年增加10万平方米.按照此计划,当年建造的经济适用房面积首次超过该年新建住房面积一半的年份是(参考数据:1.052=1.10,1.053=1.16,1.054=1.22,1.055=1.28)( ) A.2010年 B.2011年 C.2012年 D.2013 [答案] C [解析] 设第n年新建住房面积为an=100(1+5%)n,经济适用房面积为bn=25+10n,由2bn>an得:2(25+10n)>100(1+5%)n利用已知条件解得n>3,所以在2012年时满足题意. 7.某学校制定奖励条例,对在教育教学中取得优异成绩的教职工实行奖励,其中有一个奖励项目是针对学生高考成绩的高低对任课教师进行奖励的.奖励公式为f(n)=k(n)(n-10),n>10(其中n是任课教师所在班级学生参加高考该任课教师所任学科的平均成绩与该科省平均分之差,f(n)的单位为元),而k(n)=0,n≤10,100,10<n≤15,200,15<n≤20,300,20<n≤25,400,n>25. 现有甲、乙两位数学任课教师,甲所教的学生高考数学平均分超出省平均分18分,而乙所教的学生高考数学平均分超出省平均分21分.则乙所得奖励比甲所得奖励多( ) A.600元 B.900元 C.1600元 D.1700 [答案] D [解析] ∵k(18)=200(元),∴f(18)=200×(18-10)=1600(元).又∵k(21)=300(元),∴f(21)=300×(21-10)=3300(元),∴f(21)-f(18)=3300-1600=1700(元). 8.(2011•长沙质检)某医院经调查发现:当还未开始挂号时,有N个人已经在排队等候挂号;开始挂号后,排队的人平均每分钟增加M个.假定挂号的速度是每个窗口每分钟K个人.当开放1个窗口时,40分钟后恰好不会出现排队现象.当同时开放2个窗口时,15分钟后恰好不会出现排队现象.根据以上信息,若要求8分钟不出现排队现象,则需要同时开放的窗口至少有( ) A.4个 B.5个 C.6个 D.7个 [答案] A [解析] 当开放一个窗口时,N+40M=40K;① 当开放两个窗口时,N+15M=30K.② 由①、②得N=60M,K=52M. 设8分钟后不出现排队现象需同时开放x个窗口,则N+8M≤8x•K,∴60M+80M≤8x•52M,即68M≤20Mx. ∴x≥3.8,又∵x∈N*,∴至少需同时开放4个窗口.二、填空题 9.如图,书的一页的面积为600cm2,设计要求书面上方空出2cm的边,下、左、右方都空出1cm的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________. [答案] 30cm,20cm [解析] 设书的长为a,宽为b,则ab=600,则中间文字部分的面积S=(a-2-1)(b -2)=606-(2a+3b)≤606-26×600=486,当且仅当2a=3b,即a =30,b=20时,Smax=486. 10.由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13,则现在价格为8100元的计算机经过15年的价格应降为________元. [答案] 2400 [解析] 设经过3个5年,产品价格为y,则y=8100×1-133=8100×827=2400(元). 11.(2011•南京模拟)某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元,又知总收入k是单位产品数Q的函数,k(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元. [答案] 2500 [解析] 总利润L(Q)=40Q-120Q2-10Q-2 000 =-120(Q-300)2+2500. 故当Q=300时,总利润最大,为2500万元.三、解答题 12.据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图像如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km). (1)当t=4时,求s的值; (2)将s随t变化的规律用数学关系式表示出来; (3)若N城位于M地正南方向,且距M地650km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由. [分析] 认真审题,准确理解题意,建立函数关系. [解析] (1)由图像可知,当t=4时,v=3×4=12,∴s =12×4×12=24. (2)当0≤t≤10时,s=12•t•3t=32t2,当10<t≤20时,s=12×10×30+30(t-10)=30t-150;当20<t≤35时,s=12×10×30+10×30+(t-20)×30-12×(t-20)×2(t-20)=-t2+70t-550. 综上可知s=32t2,t∈[0,10],30t -150,,20],-t2+70t-550,,35].(3)∵t∈[0,10]时,smax=32×102=150<650. t∈(10,20]时,smax =30×20-150=450<650. ∴当t∈(20,35]时,令-t2+70t-550=650. 解得t1=30,t2=40,∵20<t≤35,∴t=30,所以沙尘暴发生30h后将侵袭到N城. 13.某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100个,现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价每个定为多少元时,才能使每天所赚的利润最大?并求出最大值. [解析] 设每个提价为x元(x≥0),利润为y元,每天销售总额为(10+x)(100-10x)元,进货总额为8(100-10x)元,显然100-10x>0,即x<10,则y=(10+x)(100-10x)-8(100-10x) =(2+x)(100-10x) =-10(x-4)2+360(0≤x<10).当x=4时,y取得最大值,此时销售单价应为14元,最大利润为360元. 14.某厂生产一种机器的固定成本(即固定投入)为0.5万元,但每生产100台,需要增加可变成本(即另增加投入)0.25万元.市场对此产品的年需求量为500台,销售收入函数为R(x)=5x-x22(万元)(0≤x≤5),其中x是产品售出的数量(单位:百台). (1)把利润表示为年产量的函数; (2)年产量是多少时,工厂所得利润最大? (3)年产量是多少时,工厂才不亏本? [解析] (1)当x≤5时,产品能售出x台;当x>5时,只能售出5百台,故利润函数为L(x)=R(x)-C(x) =5x-x22-+-522-+即L(x)=4.75x -x22-0.5 -0.25x 当0≤x≤5时,L(x)=4.75x-x22-0.5,当x=4.75时,L(x)max=10.78125万元.当x>5时,L(x)<10.75. ∴生产475台时利润最大. (3)由0≤x≤54.75x-x22-0.5≥0 或x>512-0.25x≥0得,0.1≤x≤5或5<x≤48,∴产品年产量在10台到4800台时,工厂不亏本. 15.某加工厂需定期购买原材料,已知每公斤原材料的价格为1.5元,每次购买原材料需支付运费600元.每公斤原材料每天的保管费用为0.03元,该厂每天需消耗原材料400公斤,每次购买的原材料当天即开始使用(即有400公斤不需要保管). (1)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y1(元)关于x的函数关系式; (2)求该厂多少天购买一次原材料才能使平均每天支付的总费用y(元)最少,并求出这个最小值. [解析] (1)每次购买原材料后,当天用掉的400公斤原材料不需要保管,第二天用掉的400公斤原材料需保管1天,第三天用掉的400公斤原材料需保管2天,第四天用掉的400公斤原材料需保管3天,…,第x天(也就是下次购买原材料的前一天)用掉最后的400公斤原材料需保管x-1天.∴每次购买的原材料在x天内的保管费用为 y1=400×0.03[1+2+3+…+(x-1)]=6x2-6x. (2)由(1)可知,购买一次原材料的总的费用为6x2-6x+600+1.5×400x=6x2+594x+600(元),∴购买一次原材料平均每天支付的总费用为 y=600x+6x+594=2600x•6x+594=714. 当且仅当600x=6x,即x=10时,取得等号.∴该厂10天购买一次原材料可以使平均每天支付的总费用最少,最少费用为714元.教师备课平台 (一)数学思想与方法一、待定系数法在求解函数解析式中的应用要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)=g(x)的充要条件:对于一个任意的a值,都有f(a)=g(a);或者两个多项式各同类项的系数对应相等.待定系数法解题的关键是依据已知,正确列出等式或方程使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决.要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解.例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解. [例1] 已知二次函数f(x)满足:对任意实数x都有f(x)≥x,且当x∈(1,3)时,有f(x)≤18(x+2)2成立. (1)求证:f(2)=2;(2)若f(-2)=0,求f(x)的表达式; (3)设g(x)=f(x)-m2x,x∈[0,+∞),若g(x)图像上的点都位于直线y=14的上方,求实数m的取值范围. [分析] 本题的突破在于设出二次函数的一般式,根据已知条件列出关于参数a,b,c的方程或其他关系式来求解. [解析] (1)证明:设f(x)=ax2+bx+c(a≠0,b,c∈R),由条件知f(2)=4a+2b+c≥2恒成立.当取x=2时,f(2)=4a+2b+c≤18(2+2)2=2恒成立,∴f(2)=2. (2)∵4a+2b+c=2,4a-2b+c=0,∴4a+c=2b=1,∴b=12,c=1-4a,又f(x)≥x恒成立,即ax2+(b-1)x+c≥0恒成立,∴a>0,Δ=12-12-4a(1-4a)≤0,即4a-122≤0,∴a=18,∴c=1-4a=12. ∴f(x)=18x2+12x+12.(3)由分析条件知道,只要f(x)图像(在y轴右侧)总在直线y=m2x+14上方即可,也就是直线的斜率m2小于直线与抛物线相切时的斜率位置.于是y=18x2+12x+12,y=m2x+14. 利用相切时Δ=0,解得m=1+22,∴m∈-∞,1+22. 另解:g(x)=18x2+12-m2x +12>14在x∈[0,+∞)上恒成立,即x2+4(1-m)x+2>0在x∈[0,+∞)上恒成立,①Δ<0,即[4(1-m)]2-8<0,解得1-22<m<1+22;②Δ≥0,--,,解得m≤1-22. 总之,m∈-∞,1+22. 二、数形结合思想在解决函数问题中的应用一般地,方程的解、不等式的解集、函数的性质等进行讨论时,可以借助于函数的图像直观解决,简单明了. [例2] 若方程lg(-x2+3x-m)=lg(3-x)在x∈(0,3)内有唯一解,求实数m的取值范围. [分析] 将对数方程进行等价变形,转化为一元二次方程在某个范围内有实解的问题,再利用二次函数的图像进行解决. [解析] 原方程变形为3-x>0,-x2+3x-m=3-x,即x<3,-=1-m. 设曲线y1=(x-2)2,x∈(0,3)和直线y2=1-m,图像如图所示.由图可知:①当1-m=0时,有唯一解,m=1;②当1≤1-m<4时,有唯一解,即-3<m≤0,∴m=1或-3<m≤0,此题也可设曲线y1=-(x-2)2+1,x∈(0,3)和直线y2=m后画出图像求解.三、函数与方程的思想方法函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题.方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组 )来使问题获解.有时,还通过函数与方程的互相转化、接轨,达到解决问题的目的. [例3] 设不等式 2x-1>m(x2-1)对满足|m|≤2的一切实数m的取值都成立.求x的取值范围. [分析] 此问题由于常见的思维定势,易把它看成关于x的不等式讨论.然而,若变换一个角度以m为变量,即关于m的一次不等式(x2-1)m-(2x-1)<0在[-2,2]上恒成立的问题.即不等式问题变成函数在闭区间上的值域问题.设f(m)=(x2-1)m-(2x-1),则问题转化为求一次函数(或常数函数)f(m)的值在[-2,2]内恒为负值时参数x应该满足的条件,-[解析] 问题可变成关于m的一次不等式:(x2-1)m-(2x-1)<0在[-2,2]上恒成立,设f(m)=(x2-1)m-(2x-1),则=---,-=----,解得x∈7-12,3+12. 四、分类整合思想分类讨论思想在本板块中有突出的体现,指数函数、对数函数中对底数a的讨论尤其是重点,而在幂函数中对幂指数的正负的讨论也常有应用. [例4] 是否存在实数a,使函数f(x)=loga(ax2-x)在区间 [2,4]上是增函数,若存在,说明a可取哪些值;若不存在,说明理由. [解析] 设g(x)=ax2-x, (1)当a>1时,要使函数f(x)在[2,4]上是增函数,则g(x)在[2,4]上也是增函数则有12a≤2且g(2)=4a-2>0,解得a>12,∴a>1. (2)当0<a<1时,g(x)在[2,4]上必为减函数,则有12a≥4且g(4)=16a-4>0,无解.故a>1时,函数f(x)=loga(ax2-x)在区间[2,4]上是增函数.五、转化与化归思想转化与化归思想是中学重要的数学思想,如把对数式与指数式进行必需的转化,把指数或对数问题通过换元转化为二次函数或二次方程的问题等,其作用就是能将复杂的问题进行分解、化归为简单易求的问题. [例5] 当x∈[-1,1]时,若22x-1<ax+1(a>0)恒成立,试求实数a的取值范围. [分析] 如果直接求解,则需要讨论a与2的大小关系,而这里x又是区间[-1,1]上的变量,因此,讨论将变得复杂;如若能借助指数式与对数式之间的关系,则会将问题转化为一次函数,问题便迎刃而解. [解析] 22x-1<ax+1⇒(2x-1)lg2<(x+1)lga⇒x•lg4a-lg(2a)<0. 设f(x)=xlg4a-lg(2a),由x∈[-1,1]时,f(x)<0恒成立,得,-,即lg4a-,-lg4a-,解得a>2. 故实数a的取值范围是(2,+∞).六、抽象函数问题若题目中给出了抽象函数满足的关系式,在处理这类抽象函数的问题时,一般地,应将所给的关系式看作给定的运算法则,对某些变量进行适当的赋值,并且变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相关联.对某些变量进行适当的赋值是一般向特殊转化的必要手段. [例6] 函数f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y)-1,并且x>0时,f(x)>1. (1)求证:f(x)在R上是增函数; (2)若不等式f(a2+a-5)<2的解集为{a|-3<a<2},求f(2012)的值. [分析] 对于抽象函数问题,特殊值的代入是问题的突破口,利用题目中所给关系式是问题的着手点. [解析] (1)证明:设x1<x2,x1、x2∈R,∴x2-x1>0,∴f(x2-x1)>1. ∵f(x2)=f[(x2-x1)+x1] =f(x1)+f(x2-x1)-1>f(x1).∴函数f(x)在R上是增函数.(2)∵f(a2+a-5)<2,设f(m)=2,∴f(a2+a-5)<f(m),∵f(x)在R上是增函数,∴a2+a-5-m<0,又其解集为-3<a<2,∴-3×2=-5-m,∴m=1,即f(1)=2. 令x=n(n∈N*),y=1. ∴f(n+1)=f(n)+f(1)-1=f(n)+1. ∴数列{f(n)}是以f(1)=2为首项,公差d=1的等差数列.∴f(2012)=f(1)+(2012-1)×1=2013. (二)对抽象函数周期问题的综合探究抽象函数已逐渐成为近年高考热点,确定函数的周期是一大难点,须充分运用题目条件,寻找问题的切入点,本专题谈谈确定抽象函数周期的几种类型.重点谈以下几类问题:对于函数f(x),如果对于定义域中的任意x,(1)函数值之和等于零型;(2)函数图像有x=a,x=b两条对称轴型;(3)函数值互为倒数或负倒数型;(4)分式递推型.一、函数值之和等于零型即函数f(x)满足f(x+a)+f(x+b)=0(a≠b).对于定义域中任意x满足f(x+a)+f(x+b)=0(a≠b),即f(x+a)=-f(x+b),则f(x+2a)=f((x+a)+a)=-f((x+a)+b)=-f((x+b)+a)=f((x+b)+b),即f(x+2a)=f(x+2b)=f((x+2a)+2b-2a),等价于f(x+2b-2a)=f(x),故函数f(x)的周期T=2(b-a). [例1] 设函数f(x)是R 上的奇函数,且y=f(x)的图像关于直线x=12对称,则f(0)+f(1)+f(2)+f(3)+f(4)+f(5)等于________. [解析] y=f(x)的图像关于直线x=12对称,则f12+x=f12-x(*) 函数f(x)是R上的奇函数,则f12-x=-f-12+x. (*)式即f12+x+f-12+x=0, b =12,a=-12,f(x)的周期T=2(b-a)=2. 在(*)式中令x=12可得f(1)=f(0)=0,利用函数的周期为2,则f(0)=f(2)=f(4)=0=f(1)=f(3)=f(5),因此,f(0)+f(1)+f(2)+f(3)+f(4)+f(5)=0. [答案] 0 二、函数图像有x=a,x=b(a≠b)两条对称轴型函数图像有x=a,x=b两条对称轴,即f(x+a)=f(a-x),f(x+b)=f(b-x),改写为f(x+a)=f(a-x)=f(b-(x-a+b))=f(b+(x -a+b))=f(x+2b-a),即f(x+a)=f((x+a)+2b-2a),等价于f(x+2b-2a)=f(x),周期T=2(b-a). [例2] 函数f(x)在(-∞,+∞)上满足关系式f(2+x)=f(2-x),f(7+x)=f(7-x),且在闭区间[0,7]上,只有f(1)=f(3)=0. (1)判断函数y=f(x)的奇偶性; (2)求方程f(x)=0在闭区间[-2005,2005]上根的个数,并证明你的结论. [解析] (1)函数f(x)满足+=-+=-则f(x)的图像有x=2,x=7两条对称轴,f(x)在闭区间[0,7]上,只有f(1)=f(3)=0,而f(0)≠0,f(7)≠0,故函数f(x)不是奇函数;由对称性知由f(1)=f(3)=0得 f(11)=f(13)=0,且f(-7)=f(-9)=0,由f(-7)=0而f(7)≠0可得函数f(x)不是偶函数;因此函数y=f(x)是非奇非偶函数. (2)由(*)式还可以表示为f(x)=f(4-x), f(x)=f(14-x),由f(4-x)=f(14-x)可知函数f(x)的周期T=10(或直接利用上面的结论a=2,b=7,T=2(b-a)=10).f(x)在闭区间[0,7]上,只有f(1)=f(3)=0, f(11)=f(13)=0,f(-7)=f(-9)=0,且周期T=10,故方程f(x)=0在闭区间[0,10]和[-10,0]上都有两个解(分别为1,3和-7,-9),从而方程f(x)=0在闭区间[0,2005]上有402个解,在闭区间[-2005,0]上有400个解.所以在闭区间[-2005,2005]上根的个数为802个.三、两个函数值之积等于±1,即函数值互为倒数或负倒数型若f(x+a)•f(x+b)=1(a≠b),显然f(x+a)≠0,f(x+b)≠0,则f(x+a)=+,即f((x+a)+a)=++=++,而f((x+b)+a)=++,因此f((x+a)+a)=++=f((x+b)+b)=f((x+2a)+2b-2a),即f(x+2a)=f((x+2a)+2b -2a),函数f(x)的周期T=2(b-a);同理可证,若函数f(x)满足f(x+a)•f(x+b)=-1(a≠b),则周期T=2(b-a). [例3] 已知函数f(x)是R上的偶函数,且f(x+2)•f(x)=1,f(x)>0恒成立,则f(119)的值等于________. [解析] 由f(x+2)•f(x)=1可知f(x+4)=+=f(x),函数f(x)的周期为4,f(119)=f(4×30-1)=f(-1),函数f(x)是R上的偶函数且f(x)>0,则f(-1)=f(1),在f(x+2)•f(x)=1中,令x=-1得f(-1)•f(1)=f 2(-1)=1,f(119)=1. [答案] 1 四、分式递推型,即函数f(x)满足f(x+a)=1++-+由f(x+a)=1++-+,则f(x+a+a)=1++a +-+a+,f(x+a+b)=f((x+b)+a)=1+++-++,代入(*)式得f(x+2a)=-+,即f(x+2a)•f(x+2b)=-1,由上面的类型三,求出周期T =4(b-a). [例4] 已知函数f(x)在(-∞,+∞)上满足关系式f(x+2)=1+-若f(0)=2+3,则f(2012)等于________. [解析] 由题意f(x+2+2)=1++-+将f(x+2)=1+-代入(*)式整理得f(x+4)=1-,所以f(x+8)=1-+=f(x),函数f(x)的周期为8. f(2012)=f(251×8+4)=f(4). f(4)=1-=-12+3=3-2,∴f(2012)=3-2. [答案] 3-2。
4专题1课时作业一、选择题1.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1),…的前n 项之和为( )A .2n-1 B .n ·2n-n C .2n +1-n D .2n +1-n -2答案 D解析 记a n =1+2+22+…+2n -1=2n-1∴S n =2·2n-12-1-n =2n +1-2-n2.数列{a n }、{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前10项之和为( ) A.13B.512 C.12D.712 答案 B 解析b n =1a n =1n +1n +2=1n +1-1n +2S 10=b 1+b 2+b 3+…+b 10=12-13+13-14+14-15+…+111-112=12-112=512 3.已知等差数列公差为d ,且a n ≠0,d ≠0,则1a 1a 2+1a 2a 3+…+1a n a n +1可化简为( )A.nd a 1a 1+nd B.na 1a 1+ndC.da 1a 1+ndD.n +1a 1[a 1+n +1d ]答案 B 解析∵1a n a n +1=1d (1a n -1a n +1)∴原式=1d (1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1)=1d (1a 1-1a n +1)=na 1·a n +1,选B4.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2008的值为( )A.20052006B.20062007 C.20072008D.20082009答案 D解析 直线与x 轴交于(2n,0),与y 轴交于(0,2n +1), ∴S n =12·2n ·2n +1=1nn +1=1n -1n +1, ∴原式=(1-12)+(12-13)+…+(12008-12009)=1-12009=20082009二、填空题5.(1002-992)+(982-972)+…+(22-12)=____________. 答案 5050 解析 原式=100+99+98+97+…+2+1=100×100+12=50506.S n =122-1+142-1+…+12n 2-1=________. 答案n2n +1 解析 通项a n =12n 2-1=12n -12n +1=12(12n -1-12n +1)∴S n =12(1-13+13-15+…+12n -1-12n +1)=12(1-12n +1)=n 2n +17.(2010·《高考调研》原创题)某医院近30天每天因患甲型H1N1流感而入院就诊的人数依次构成数列{a n },已知a 1=1,a 2=2,且满足a n +2-a n =1+(-1)n(n ∈N *),则该医院30天内因患甲型H1N1流感而入院就诊的人数共有________.答案 255解析 当n 为偶数时,由题易得a n +2-a n =2,此时为等差数列;当n 为奇数时,a n +2-a n=0,此时为常数列,所以该医院30天内因患甲型H1N1流感而入院就诊的人数总和为S 30=15+15×2+15×142×2=255.三、解答题8.(2010·某某卷,文)已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及其前n 项和T n . 解析 (1)因为{a n }是首项为a 1=19,公差为d =-2的等差数列,所以a n =19-2(n -1)=-2n +21.S n =19n +n n -12·(-2)=-n 2+20n .(2)由题意知b n -a n =3n -1,所以b n =3n -1+a n =3n -1-2n +21.T n =S n +(1+3+…+3n -1)=-n 2+20n +3n-12.9.已知数列{a n }中,a 1=1,a 2=2,a n +2=a n q 2,(q ≠0) 求和:1a 1+1a 2+…+1a 2n.解 由题意得1a 2n -1=1a 1q 2-2n ,1a 2n =1a 2q 2-2n,于是1a 1+1a 2+…+1a 2n =(1a 1+1a 3+…+1a 2n -1)+(1a 2+1a 4+…+1a 2n )=1a 1(1+1q 2+1q 4+…+1q 2n -2)+1a 2(1+1q 2+1q 4+…+1q 2n -2)=32(1+1q 2+1q 4+…+1q2n -2).当q =1时,1a 1+1a 2+…+1a 2n =32(1+1q 2+1q 4+…+1q 2n -2)=32n ,当q ≠1时,1a 1+1a 2+…+1a 2n =32(1+1q 2+1q 4+…+1q 2n -2)=32(1-q -2n1-q -2)=32[q 2n-1q 2n -2q 2-1]. 故1a 1+1a 2+…+1a 2n=⎩⎪⎨⎪⎧32n , q =132[q 2n-1q 2n -2q 2-1], q ≠1.10.数列{a n }的前n 项和为S n =10n -n 2,求数列{|a n |}的前n 项和. 解析 易求得a n =-2n +11(n ∈N *). 令a n ≥0,得n ≤5;令a n <0,得n ≥6. 记T n =|a 1|+|a 2|+…+|a n |,则: (1)当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =10n -n 2. (2)当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+a 3+a 4+a 5-a 6-a 7-…-a n=2(a 1+a 2+a 3+a 4+a 5)-(a 1+a 2+a 3+a 4+a 5+a 6+…+a n ) =2S 5-S n =n 2-10n +50.综上,得T n =⎩⎪⎨⎪⎧-n 2+10nn ≤5时;n 2-10n +50n ≥6时.11.已知数列{a n }为等比数列.T n =na 1+(n -1)a 2+…+a n ,且T 1=1,T 2=4(1)求{a n }的通项公式. (2)求{T n }的通项公式. 解析 (1)T 1=a 1=1T 2=2a 1+a 2=2+a 2=4,∴a 2=2∴等比数列{a n }的公比q =a 2a 1=2 ∴a n =2n -1(2)解法一:T n =n +(n -1)·2+(n -2)·22+…+1·2n -1①2T n =n ·2+(n -1)22+(n -2)23+…+1·2n② ②-①得T n =-n +2+22+…+2n -1+2n=-n +21-2n1-2=-n +2n +1-2=2n +1-n -2解法二:设S n =a 1+a 2+…+a n ∴S n =1+2+…+2n -1=2n-1∴T n =na 1+(n -1)a 2+…+2a n -1+a n =a 1+(a 1+a 2)+…+(a 1+a 2+…+a n )=S 1+S 2+…+S n =(2-1)+(22-1)+…+(2n-1) =(2+22+ (2))-n =21-2n1-2-n=2n +1-n -212.设数列{a n }是公差大于0的等差数列,a 3,a 5分别是方程x 2-14x +45=0的两个实根. (1)求数列{a n }的通项公式; (2)设b n =a n +12n +1,求数列{b n }的前n 项和T n .解 (1)因为方程x 2-14x +45=0的两个根分别为5、9,所以由题意可知a 3=5,a 5=9,所以d =2,所以a n =a 3+(n -3)d =2n -1.(2)由(1)可知,b n =a n +12n +1=n ·12n ,∴T n =1×12+2×122+3×123+…+(n -1)×12n -1+n ·12n ①,∴12T n =1×122+2×123+…+(n -1)×12n +n ·12n +1②, ①-②得,12T n =12+122+123+…+12n -1+12n -n ·12n +1=1-n +22n +1,所以T n =2-n +22n .13.已知数列{a n }的首项a 1=23,a n +1=2a na n +1,n =1,2,….(1)证明:数列{1a n-1}是等比数列;(2)求数列{n a n}的前n 项和S n . 解 (1)∵a n +1=2a n a n +1,∴1a n +1=a n +12a n =12+12·1a n ,∴1a n +1-1=12(1a n -1),又a 1=23,∴1a 1-1=12.∴数列{1a n -1}是以12为首项,12为公比的等比数列. (2)由(1)知1a n -1=12·12n -1=12n ,即1a n =12n +1,∴n a n =n2n +n .设T n =12+222+323+…+n2n .①则12T n =122+223+…+n -12n +n2n +1.② ①-②得12T n =12+122+…+12n -n 2n +1=121-12n1-12-n 2n +1=1-12n -n2n +1, ∴T n =2-12n -1-n 2n ,又1+2+3+…+n =nn +12,∴数列{n a n }的前n 项和S n =2-2+n 2n +n n +12=n 2+n +42-n +22n .。
D 数列D1 数列的概念与简单表示法21.D1、D3、E1、M3 设数列{a n }的前n 项和S n 满足S n +1=a 2S n +a 1,其中a 2≠0. (1)求证:{a n }是首项为1的等比数列;(2)若a 2>-1,求证:S n ≤n2(a 1+a n ),并给出等号成立的充要条件.21.解:(1)证法一:由S 2=a 2S 1+a 1得a 1+a 2=a 2a 1+a 1,即a 2=a 2a 1. 因a 2≠0,故a 1=1,得a 2a 1=a 2. 又由题设条件知S n +2=a 2S n +1+a 1,S n +1=a 2S n +a 1,两式相减得S n +2-S n +1=a 2(S n +1-S n ), 即a n +2=a 2a n +1,由a 2≠0,知a n +1≠0,因此a n +2a n +1=a 2. 综上,a n +1a n=a 2对所有n ∈N *成立,从而{a n }是首项为1,公比为a 2的等比数列. 证法二:用数学归纳法证明a n =a n -12,n ∈N *.当n =1时,由S 2=a 2S 1+a 1,得a 1+a 2=a 2a 1+a 1,即a 2=a 2a 1,再由a 2≠0,得a 1=1, 所以结论成立.假设n =k 时,结论成立,即a k =a k -12,那么当n =k +1时,a k +1=S k +1-S k =(a 2S k +a 1)-(a 2S k -1+a 1)=a 2(S k -S k -1)=a 2a k =a k2, 这就是说,当n =k +1时,结论也成立.综上可得,对任意n ∈N *,a n =a n -12.因此{a n }是首项为1,公比为a 2的等比数列. (2)当n =1或2时,显然S n =n2(a 1+a n ),等号成立.设n ≥3,a 2>-1且a 2≠0,由(1)知a 1=1,a n =a n -12,所以要证的不等式化为 1+a 2+a 22+…+a n -12≤n2(1+a n -12)(n ≥3),即证:1+a 2+a 22+…+a n2≤n +12(1+a n2)(n ≥2).当a 2=1时,上面不等式的等号成立.当-1<a 2<1时,a r2-1与a n -r2-1(r =1,2,…,n -1)同为负; 当a 2>1时,a r2-1与a n -r 2-1(r =1,2,…,n -1)同为正. 因此当a 2>-1且a 2≠1时,总有(a r2-1)(a n -r2-1)>0,即a r 2+a n -r 2<1+a n2(r =1,2,…,n -1).上面不等式对r 从1到n -1求和得 2(a 2+a 22+…+a n -12)<(n -1)(1+a n2), 由此可得1+a 2+a 22+…+a n2<n +12(1+a n2).综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.证法二:当n =1或2时,显然S n ≤n 2(a 1+a n ),等号成立.当a 2=1时,S n =n =n2(a 1+a n ),等号也成立.当a 2≠1时,由(1)知S n =1-a n21-a 2,a n =a n -12,下证:1-a n21-a 2<n 2(1+a n -12)(n ≥3,a 2>-1且a 2≠1). 当-1<a 2<1时,上面不等式化为 (n -2)a n2+na 2-na n -12<n -2(n ≥3). 令f (a 2)=(n -2)a n2+na 2-na n -12. 当-1<a 2<0时,1-a n -22>0,故f (a 2)=(n -2)a n 2+na 2(1-a n -22)<(n -2)|a 2|n<n -2, 即所要证的不等式成立.当0<a 2<1时,对a 2求导得f ′(a 2)=n =ng (a 2).其中g (a 2)=(n -2)a n -12-(n -1)a n -22+1,则g ′(a 2)=(n -2)(n -1)(a 2-1)a n -32<0,即g (a 2)是(0,1)上的减函数,故g (a 2)>g (1)=0,从而f ′(a 2)=ng (a 2)>0,进而f (a 2)是(0,1)上的增函数,因此f (a 2)<f (1)=n -2,所要证的不等式成立.当a 2>1时,令b =1a 2,则0<b <1,由已知的结论知1-⎝ ⎛⎭⎪⎫1a 2n 1-1a 2<n 2⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a 2n -1, 两边同时乘以a n -12得所要证的不等式.综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.23.M2、D1 对于数集X ={-1,x 1,x 2,…,x n },其中0<x 1<x 2<…<x n ,n ≥2,定义向量集Y ={a |a =(s ,t ),s ∈X ,t ∈X },若对任意a 1∈Y ,存在a 2∈Y ,使得a 1·a 2=0,则称X 具有性质P ,例如{-1,1,2}具有性质P .(1)若x >2,且{-1,1,2,x }具有性质P ,求x 的值; (2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(3)若X 具有性质P ,且x 1=1、x 2=q (q 为常数),求有穷数列x 1,x 2,…,x n 的通项公式.23.解:(1)选取a 1=(x,2),Y 中与a 1垂直的元素必有形式(-1,b ), 所以x =2b ,从而x =4.(2)证明:取a 1=(x 1,x 1)∈Y ,设a 2=(s ,t )∈Y ,满足a 1·a 2=0. 由(s +t )x 1=0得s +t =0,所以s ,t 异号.因为-1是X 中唯一的负数,所以s ,t 之中一个为-1,另一个为1,故1∈X . 假设x k =1,其中1<k <n ,则0<x 1<1<x n .选取a 1=(x 1,x n )∈Y ,并设a 2=(s ,t )∈Y 满足a 1·a 2=0,即sx 1+tx n =0, 则s ,t 异号,从而s ,t 之中恰有一个为-1. 若s =-1,则x 1=tx n >t >x 1,矛盾; 若t =-1,则x n =sx 1<s ≤x n ,矛盾. 所以x 1=1.(3)设a 1=(s 1,t 1),a 2=(s 2,t 2),则a 1·a 2=0等价于s 1t 1=-t 2s 2, 记B =⎩⎨⎧s t|}s ∈X ,t ∈X ,|s |>|t |,则数集X 具有性质P 当且仅当数集B 关于原点对称.注意到-1是X 中的唯一负数,B ∩(-∞,0)={-x 2,-x 3,…,-x n }共有n -1个数,所以B ∩(0,+∞)也只有n -1个数.由于x n x n -1<x n x n -2<…<x n x 2<x nx 1,已有n -1个数,对以下三角数阵 x n x n -1<x n x n -2<…<x n x 2<x n x 1, x n -1x n -2<x n -1x n -3<…<x n -1x 1, …x 2x 1. 注意到x n x 1>x n -1x 1>…>x 2x 1,所以x n x n -1=x n -1x n -2=…=x 2x 1,从而数列的通项为x k =x 1⎝ ⎛⎭⎪⎫x 2x 1k -1=qk -1,k =1,2,…,n .7.D2、E1 设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是( )A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0 D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列7.C 本题考查等差数列的通项、前n 项和,数列的函数性质以及不等式知识,考查灵活运用知识的能力,有一定的难度.法一:特值验证排除.选项C 显然是错的,举出反例:-1,0,1,2,3,…满足数列{S n }是递增数列,但是S n >0不恒成立.法二:由于S n =na 1+n n -2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,根据二次函数的图象与性质知当d <0时,数列{S n }有最大项,即选项A 正确;同理选项B 也是正确的;而若数列{S n }是递增数列,那么d >0,但对任意的n ∈N *,S n >0不成立,即选项C 错误;反之,选项D 是正确的;故应选C.等差数列的求和公式与二次函数的图象的关系是解决本题的重要依据.图1-2D2 等差数列及等差数列前n 项和6.D2 在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143 D .1766.B 本小题主要考查等差数列的性质和求和公式.解题的突破口为等差数列性质的正确应用.由等差数列性质可知,a 4+a 8=a 1+a 11=16,S 11=a 1+a 112=88.5.D2 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.1011005.A 本小题主要考查等差数列的前n 项和公式与裂项相消求和法,解题的突破口为等差数列前奇数项和与中间项的关系及裂项相消求和法.由S 5=5a 3得a 3=3,又a 5=5,所以a n =n .∴1a n a n +1=1nn +=1n -1n +1,∴1a 1a 2+1a 2a 3+…+1a 100a 101=11-12+12-13+…+1100-1101=1-1101=100101,故选A. 10.D2 已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________.10.1 本题考查等差数列基本公式和基础运算,设等差数列{a n }的公差为d ,由S 2=a 3可得,a 1=a 3-a 2=d =12,所以a 2=2d =2×12=1.2.D2 等差数列 {a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3 D .42.B 根据已知条件得:⎩⎪⎨⎪⎧a 1+a 1+4d =10,a 1+3d =7, 即⎩⎪⎨⎪⎧2a 1+4d =10,a 1+3d =7, 解得2d =4,所以d =2.所以选择B.11.D2 已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.11.2n -1设等差数列的公差为d ,由于数列是递增数列,所以d >0,a 3=a 1+2d =1+2d ,a 2=a 1+d =1+d ,代入已知条件:a 3=a 22-4得:1+2d =(1+d )2-4,解得d 2=4,所以d =2(d =-2舍去),所以a n =1+(n -1)×2=2n -1.12.B3、D2设函数f (x )=2x -cos x ,{a n }是公差为π8的等差数列,f (a 1)+f (a 2)+…+f (a 5)=5π,则2-a 1a 5=()A .0 B.116π2C.18π2D.1316π212.D 设a 3=α,则a 1=α-π4,a 2=α-π8,a 4=α+π8,a 5=α+π4,由f (a 1)+f (a 2)+…+f (a 5)=5π,得2×5α-cos ⎝ ⎛⎭⎪⎫α-π4+cos ⎝ ⎛⎭⎪⎫α-π8+cos α+cos ⎝ ⎛⎭⎪⎫α+π8+cos ⎝ ⎛⎭⎪⎫α+π4=5π,即10α-(2+2+2+1)cos α=5π.当0≤α≤π时,左边是α的增函数,且α=π2满足等式;当α>π时,10α>10π,而(2+2+2+1)cos α<5cos α≤5,等式不可能成立; 当α<0时,10α<0,而-(2+2+2+1)cos α<5,等式也不可能成立. 故a 3=α=π2.2-a 1a 5=π2-⎝⎛⎭⎪⎫α-π4⎝ ⎛⎭⎪⎫α+π4=1316π2.19.D2、D5 设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <32.19.解:(1)∵a 1,a 2+5,a 3成等差数列, ∴2(a 2+5)=a 1+a 3.又∵2a 1=2S 1=a 2-22+1,2(a 1+a 2)=2S 2=a 3-23+1, ∴a 2=2a 1+3,a 3=6a 1+13. 因此4a 1+16=7a 1+13,从而a 1=1.(2)由题设条件知,n ≥2时, 2S n -1=a n -2n+1, 2S n =a n +1-2n +1+1.∴2a n =a n +1-a n -2n,于是a n +1=3a n +2n (n ≥2).而由(1)知,a 2=2a 1+3=5=3a 1+2, 因此对一切正整数n ,有a n +1=3a n +2n,所以a n +1+2n +1=3(a n +2n).又∵a 1+21=3,∴{a n +2n}是以3为首项,3为公比的等比数列. 故a n +2n=3n,即a n =3n-2n. (3)∵a n =3n-2n=3·3n -1-2n =3n -1+2(3n -1-2n -1)≥3n -1,∴1a n ≤13n -1. ∴1a 1+1a 2+…+1a n ≤1+13+132+…+13n -1=1-13n1-13<32.18.D2、D3、D5 已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.18.解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8,解得⎩⎪⎨⎪⎧a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7.故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -+n -2=32n 2-112n +10. 当n =2时,满足此式.综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.19.D2、D3、M2 已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,n =1,2,….(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,求数列{a n }的通项公式;(2)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.19.解:(1)对任意n ∈N *,三个数A (n ),B (n ),C (n )是等差数列,所以B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4.故数列{a n }是首项为1,公差为4的等差数列. 于是a n =1+(n -1)×4=4n -3.(2)①必要性:若数列{a n }是公比为q 的等比数列,则对任意n ∈N *,有a n +1=a n q .由a n>0知,A (n ),B (n ),C (n )均大于0,于是B n A n =a 2+a 3+…+a n +1a 1+a 2+…+a n =q a 1+a 2+…+a na 1+a 2+…+a n =q , C n B n =a 3+a 4+…+a n +2a 2+a 3+…+a n +1=q a 2+a 3+…+a n +1a 2+a 3+…+a n +1=q , 即B n A n =C nB n=q .所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列. ②充分性:若对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,则B (n )=qA (n ),C (n )=qB (n ).于是C (n )-B (n )=q ,得a n +2-a 2=q (a n +1-a 1),即a n +2-qa n +1=a 2-qa 1. 由n =1有B (1)=qA (1),即a 2=qa 1, 从而a n +2-qa n +1=0. 因为a n >0,所以a n +2a n +1=a 2a 1=q . 故数列{a n }是首项为a 1,公比为q 的等比数列.综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.12.D2 设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.12.35 考查等差数列的定义、性质;解题的突破口是利用等差数列的性质,将问题转化为研究数列的项与项数之间的关系求解.方法一:设c n =a n +b n ,∵{a n },{b n }是等差数列,∴{c n }是等差数列,设其公差为d ,则c 1=7,c 3=c 1+2d =21,解得d =7,因此,c 5=a 5+b 5=7+(5-1)×7=35.故填35.方法二:设c n =a n +b n ,∵{a n },{b n }是等差数列,∴{c n }是等差数列,∴2(a 3+b 3)=(a 1+b 1)+(a 5+b 5),即42=7+(a 5+b 5),因此a 5+b 5=42-7=35.故填35.17.D2、D5 设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列.(1)求数列{a n }的公比;(2)证明:对任意k ∈N +,S k +2,S k ,S k +1成等差数列.17.解:(1)设数列{a n }的公比为q (q ≠0,q ≠1),由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4,即2a 1q 2= a 1q 4+a 1q 3,由a 1≠0,q ≠0得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),所以q =-2. (2)证法一:对任意k ∈N +,S k +2+S k +1-2S k = (S k +2-S k )+(S k +1-S k )=a k +1+a k +2+a k +1 =2a k +1+a k +1·(-2) =0,所以,对任意k ∈N +,S k +2,S k ,S k +1成等差数列. 证法二: 对任意k ∈N +,2S k =2a 1-q k1-q,S k +2+S k +1=a 1-q k +21-q+a 1-q k +11-q =a 1- q k +2-q k +11-q,2S k -(S k +2+S k +1)=2a 1-q k1-q-a 1-q k +2-q k +11-q=a 11-q=a 1q k 1-q(q 2+q -2)=0, 因此,对任意k ∈N +,S k +2,S k ,S k +1成等差数列.1.D2 在等差数列{a n }中,a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20 D .251.B 因为{a n }是等差数列,所以a 2+a 4=a 1+a 5=1+5=6,所以S 5=a 1+a 52=5×62=15,选B.D3 等比数列及等比数列前n 项和13.D3 设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.13.32 本题主要考查等比数列的求和以及二元方程组的求解.当q =1时,由S 2=3a 2+2得a 2=-2,由S 4=3a 4+2得a 4=2,两者矛盾,舍去,则q ≠1,联立方程⎩⎪⎨⎪⎧a 1+a 1q =3a 1q +2,a 1-q 41-q=3a 1q 3+2,可解得⎩⎪⎨⎪⎧a 1=-1,q =32,故应填32.注意分类,必须对q =1加以讨论,否则直接利用等比数列的求和公式容易导致遗漏. 14.D3 已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式为a n =________.14.2n本小题主要考查等比数列的概念与性质.解题的突破口为灵活应用等比数列通项变形式,是解决问题关键.由已知条件{}a n 为等比数列,可知,2(a n +a n +2)=5a n +1⇒2(a n +a n ·q 2)=5a n q ⇒2q 2-5q+2=0⇒q =12或2,又因为{}a n 是递增数列, 所以q =2.由a 25=a 10得a 5=q 5=32,所以a 1=2,a n =a 1qn -1=2n.7.D3 定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x;③f (x )=|x |;④f (x )=ln|x |. 则其中是“保等比数列函数”的f (x )的序号为( ) A .①② B .③④ C .①③ D .②④7.C 设数列{a n }的公比为q .对于①,f a n +1f a n =a 2n +1a 2n =q 2,故数列{f (a n )}是公比为q 2的等比数列;对于②,f a n +1f a n=2a n +12a n =2a n +1-a n (不为常数),故数列{f (a n )}不是等比数列;对于③,f a n +1f a n =|a n +1||a n |=⎪⎪⎪⎪⎪⎪a n +1a n =|q |,故数列{f (a n)}是等比数列;对于④, f a n +1f a n =ln|a n +1|ln|a n |(不为常数),故数列{f (a n )}不是等比数列.由“保等比数列函数”的定义知应选C.4.D3 公比为32的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 16=( ) A .4 B .5 C .6 D .74.B 本题考查等比数列,等比中项的性质,对数运算等.(解法一)由等比中项的性质得a 3a 11=a 27=16,又数列{}a n 各项为正,所以a 7=4.所以a 16=a 7×q 9=32.所以log 2a 16=5.(解法二)设等比数列的公比为q ,由题意,a n >0,则a 3 · a 11 = a 27 = ⎝ ⎛⎭⎪⎫a 16 q 92= 126a 216= 24,所以a 216 = 210,解得a 16=25.故log 2a 16=5.6.D3 有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则lim n →∞(V 1+V 2+…+V n )=________.6.87 考查等比数列和无穷递缩等比数列的极限,此题只要掌握极限公式即可解决,是简单题型.由已知可知V 1,V 2,V 3,…构成新的等比数列,首项V 1=1,公比q =18,由极限公式得lim n →∞ (V 1+V 2+…+V n )=V 11-q=11-18=87. 21.D1、D3、E1、M3 设数列{a n }的前n 项和S n 满足S n +1=a 2S n +a 1,其中a 2≠0. (1)求证:{a n }是首项为1的等比数列;(2)若a 2>-1,求证:S n ≤n2(a 1+a n ),并给出等号成立的充要条件.21.解:(1)证法一:由S 2=a 2S 1+a 1得a 1+a 2=a 2a 1+a 1,即a 2=a 2a 1. 因a 2≠0,故a 1=1,得a 2a 1=a 2.又由题设条件知S n +2=a 2S n +1+a 1,S n +1=a 2S n +a 1,两式相减得S n +2-S n +1=a 2(S n +1-S n ), 即a n +2=a 2a n +1,由a 2≠0,知a n +1≠0,因此a n +2a n +1=a 2. 综上,a n +1a n=a 2对所有n ∈N *成立,从而{a n }是首项为1,公比为a 2的等比数列. 证法二:用数学归纳法证明a n =a n -12,n ∈N *.当n =1时,由S 2=a 2S 1+a 1,得a 1+a 2=a 2a 1+a 1,即a 2=a 2a 1,再由a 2≠0,得a 1=1, 所以结论成立.假设n =k 时,结论成立,即a k =a k -12,那么当n =k +1时,a k +1=S k +1-S k =(a 2S k +a 1)-(a 2S k -1+a 1)=a 2(S k -S k -1)=a 2a k =a k2, 这就是说,当n =k +1时,结论也成立.综上可得,对任意n ∈N *,a n =a n -12.因此{a n }是首项为1,公比为a 2的等比数列. (2)当n =1或2时,显然S n =n2(a 1+a n ),等号成立.设n ≥3,a 2>-1且a 2≠0,由(1)知a 1=1,a n =a n -12,所以要证的不等式化为 1+a 2+a 22+…+a n -12≤n2(1+a n -12)(n ≥3),即证:1+a 2+a 22+…+a n2≤n +12(1+a n2)(n ≥2).当a 2=1时,上面不等式的等号成立.当-1<a 2<1时,a r2-1与a n -r2-1(r =1,2,…,n -1)同为负; 当a 2>1时,a r2-1与a n -r 2-1(r =1,2,…,n -1)同为正. 因此当a 2>-1且a 2≠1时,总有(a r2-1)(a n -r2-1)>0,即a r 2+a n -r 2<1+a n2(r =1,2,…,n -1). 上面不等式对r 从1到n -1求和得 2(a 2+a 22+…+a n -12)<(n -1)(1+a n2), 由此可得1+a 2+a 22+…+a n2<n +12(1+a n2).综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.证法二:当n =1或2时,显然S n ≤n 2(a 1+a n ),等号成立.当a 2=1时,S n =n =n2(a 1+a n ),等号也成立.当a 2≠1时,由(1)知S n =1-a n21-a 2,a n =a n -12,下证:1-a n21-a 2<n 2(1+a n -12)(n ≥3,a 2>-1且a 2≠1). 当-1<a 2<1时,上面不等式化为 (n -2)a n2+na 2-na n -12<n -2(n ≥3). 令f (a 2)=(n -2)a n2+na 2-na n -12. 当-1<a 2<0时,1-a n -22>0,故f (a 2)=(n -2)a n 2+na 2(1-a n -22)<(n -2)|a 2|n<n -2, 即所要证的不等式成立.当0<a 2<1时,对a 2求导得f ′(a 2)=n =ng (a 2).其中g (a 2)=(n -2)a n -12-(n -1)a n -22+1,则g ′(a 2)=(n -2)(n -1)(a 2-1)a n -32<0,即g (a 2)是(0,1)上的减函数,故g (a 2)>g (1)=0,从而f ′(a 2)=ng (a 2)>0,进而f (a 2)是(0,1)上的增函数,因此f (a 2)<f (1)=n -2,所要证的不等式成立.当a 2>1时,令b =1a 2,则0<b <1,由已知的结论知1-⎝ ⎛⎭⎪⎫1a 2n 1-1a 2<n 2⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a 2n -1, 两边同时乘以a n -12得所要证的不等式.综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.22.D3、M3 函数f (x )=x 2-2x -3.定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5)、Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3; (2)求数列{x n }的通项公式.22.解:(1)用数学归纳法证明:2≤x n <x n +1<3. ①当n =1时,x 1=2,直线PQ 1的方程为y -5=f -52-4(x -4),令y =0,解得x 2=114,所以2≤x 1<x 2<3.②假设当n =k 时,结论成立,即2≤x k <x k +1<3.直线PQ k +1的方程为y -5=f x k +1-5x k +1-4(x -4),令y =0,解得x k +2=3+4x k +12+x k +1.由归纳假设知x k +2=3+4x k +12+x k +1=4-52+x k +1<4-52+3=3,x k +2-x k +1=-x k +1+x k +12+x k +1>0,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 由①、②知对任意的正整数n,2≤x n <x n +1<3. (2)由(1)及题意得x n +1=3+4x n2+x n .设b n =x n -3,则1b n +1=5b n+1,1b n +1+14=5⎝ ⎛⎭⎪⎫1b n +14, 数列⎩⎨⎧⎭⎬⎫1b n +14是首项为-34,公比为5的等比数列,因此1b n +14=-34·5n -1,即b n =-43·5n -1+1, 所以数列{x n }的通项公式为x n =3-43·5n -1+1.18.D2、D3、D5 已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.18.解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8,解得⎩⎪⎨⎪⎧a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7.故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -+n -2=32n 2-112n +10. 当n =2时,满足此式. 综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.19.D2、D3、M2 已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,n =1,2,….(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,求数列{a n }的通项公式;(2)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.19.解:(1)对任意n ∈N *,三个数A (n ),B (n ),C (n )是等差数列,所以B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4.故数列{a n }是首项为1,公差为4的等差数列. 于是a n =1+(n -1)×4=4n -3.(2)①必要性:若数列{a n }是公比为q 的等比数列,则对任意n ∈N *,有a n +1=a n q .由a n>0知,A (n ),B (n ),C (n )均大于0,于是B n A n =a 2+a 3+…+a n +1a 1+a 2+…+a n =q a 1+a 2+…+a na 1+a 2+…+a n =q , C n B n =a 3+a 4+…+a n +2a 2+a 3+…+a n +1=q a 2+a 3+…+a n +1a 2+a 3+…+a n +1=q ,即B n A n =C nB n=q .所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列. ②充分性:若对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,则B (n )=qA (n ),C (n )=qB (n ).于是C (n )-B (n )=q ,得a n +2-a 2=q (a n +1-a 1),即a n +2-qa n +1=a 2-qa 1. 由n =1有B (1)=qA (1),即a 2=qa 1, 从而a n +2-qa n +1=0. 因为a n >0,所以a n +2a n +1=a 2a 1=q . 故数列{a n }是首项为a 1,公比为q 的等比数列.综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.5.D3 已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-75.D 设数列{a n }的公比为q .由题意,⎩⎪⎨⎪⎧a 1q 3+a 1q 6=2,a 1q 4×a 1q 5=a 1q 3×a 1q 6=-8, 得⎩⎪⎨⎪⎧a 1q 3=-2,a 1q 6=4或⎩⎪⎨⎪⎧a 1q 3=4,a 1q 6=-2,解得⎩⎪⎨⎪⎧a 1=1,q 3=-2或⎩⎪⎨⎪⎧a 1=-8,q 3=-12.当⎩⎪⎨⎪⎧a 1=1,q 3=-2时,a 1+a 10=a 1(1+q 9)=1+(-2)3=-7;当⎩⎪⎨⎪⎧a 1=-8,q =-12时,a 1+a 10=a 1(1+q 9)=(-8)×⎝ ⎛⎭⎪⎫1+⎝ ⎛⎭⎪⎫-123=-7.综上,a 1+a 10=-7.故选D.图1-1 D4 数列求和18.D4 设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .10018.D 考查数列求和和转化思想,关键是发现数列为振幅越来越小的摆动数列. 令b n =sinn π25,周期为50,前n 项和记作:T n =b 1+b 2+…+b n ,根据三角函数图象的对称性,可知T 1,T 2,…,T 49均大于0,只有两个T 50=0,T 100=0,数列a n =1n sin n π25为振幅越来越小的摆动数列,||a n ≤||b n ,只有当n =1,50,100时相等,故S 1,S 2,…,S 100中正数个数为100.14.D4 数列{a n }的通项公式a n =n cos n π2+1,前n 项和为S n ,则S 2 012=________.14.3 018a 1=1cos π2+1=1,a 2=2cos π+1=-1, a 3=3cos3π2+1=1, a 4=4cos2π+1=5, a 5=5cos5π2+1=1, a 6=6cos3π+1=-5,a 7=7cos 7π2+1=1, a 8=8cos8π2+1=9; 该数列每四项的和为6,2 012 ÷4=503,所以S 2 012=6×503=3 018.16.D4、D5 数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为________. 16. 1 830令b n =a 4n -3+a 4n -2+a 4n -1+a 4n , 则b n +1=a 4n +1+a 4n +2+a 4n +3+a 4n +4. 因为a n +1+(-1)na n =2n -1, 所以a n +1=-(-1)n a n +2n -1. 所以a 4n -3=-a 4n -4+2(4n -4)-1,a 4n -2=a 4n -3+2(4n -3)-1, a 4n -1=-a 4n -2+2(4n -2)-1, a 4n =a 4n -1+2(4n -1)-1, a 4n +1=-a 4n +2×4n -1, a 4n +2=a 4n +1+2(4n +1)-1, a 4n +3=-a 4n +2+2(4n +2)-1, a 4n +4=a 4n +3+2(4n +3)-1,所以a 4n +4=a 4n +3+2(4n +3)-1=-a 4n +2+2(4n +2)-1+2(4n +3)-1 =-a 4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1 =a 4n -2×4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1 =a 4n +8, 即a 4n +4=a 4n +8.同理,a 4n +3=a 4n -1,a 4n +2=a 4n -2+8,a 4n +1=a 4n -3.所以a 4n +1+a 4n +2+a 4n +3+a 4n +4=a 4n +a 4n -1+a 4n -2+a 4n -3+16. 即b n +1=b n +16.故数列{b n }是等差数列. 又a 2-a 1=2×1-1,①a 3+a 2=2×2-1,② a 4-a 3=2×3-1,③②-①得a 3+a 1=2;②+③得a 2+a 4=8, 所以a 1+a 2+a 3+a 4=10, 即b 1=10.所以数列{a n }的前60项和即为数列{b n }的前15项和,即S 15=10×15+15×142×16=1830.20.B3、D4、M4 设A 是由m ×n 个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记S (m ,n )为所有这样的数表构成的集合.对于A ∈S (m ,n ),记r i (A )为A 的第i 行各数之和(1≤i ≤m ),c j (A )为A 的第j 列各数之和(1≤j ≤n );记k (A )为|r 1(A )|,|r 2(A )|,…,|r m (A )|,|c 1(A )|,|c 2(A )|,…,|c n (A )|中的最小值. (1)对如下数表A ,求k (A )的值;(2)设数表A ∈S (2,3)形如求k (A )的最大值;(3)给定正整数t ,对于所有的A ∈S (2,2t +1),求k (A )的最大值.20.解:(1)因为r 1(A )=1.2,r 2(A )=-1.2,c 1(A )=1.1,c 2(A )=0.7,c 3(A )=-1.8, 所以k (A )=0.7.(2)不妨设a ≤b .由题意得c =-1-a -b . 又因c ≥-1,所以a +b ≤0,于是a ≤0.r 1(A )=2+c ≥1,r 2(A )=-r 1(A )≤-1,c 1(A )=1+a ,c 2(A )=1+b ,c 3(A )=-(1+a )-(1+b )≤-(1+a ).所以k (A )=1+a ≤1.当a =b =0且c =-1时,k (A )取得最大值1.(3)对于给定的正整数t ,任给数表A ∈S (2,2t +1)如下:任意改变A 的行次序或列次序,或把A 中的每个数换成它的相反数,所得数表A *∈S (2,2t +1),并且k (A )=k (A *).因此,不妨设r 1(A )≥0,且c j (A )≥0(j =1,2,…,t +1). 由k (A )的定义知,k (A )≤r 1(A ),k (A )≤c j (A )(j =1,2,…,t +1). 又因为c 1(A )+c 2(A )+…+c 2t +1(A )=0,所以(t +2)k (A )≤r 1(A )+c 1(A )+c 2(A )+…+c t +1(A )=r 1(A )-c t +2(A )-…-c 2t +1(A )=∑j =1t +1a j -∑j =t +22t +1b j≤(t +1)-t ×(-1)=2t +1. 所以k (A )≤2t +1t +2.对数表A 0: -1+t -1t t +-1+t -1t t +则A 0∈S (2,2t +1),且k (A 0)=t +2.综上,对于所有的A ∈S (2,2t +1),k (A )的最大值为2t +1t +2.D5 单元综合18.D5已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N *,证明T n +12=-2a n +10b n (n ∈N *). 18.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组⎩⎪⎨⎪⎧2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧d =3.q =2,所以a n =3n -1,b n =2n ,n ∈N *. (2)证明:(方法一) 由(1)得T n =2a n +22a n -1+23a n -2+…+2n a 1,①2T n=22a n+23a n-1+…+2n a2+2n+1a1,②由②-①,得T n=-2(3n-1)+3×22+3×23+…+3×2n+2n+2=-2n-11-2+2n+2-6n+2=10×2n-6n-10.而-2a n+10b n-12=-2(3n-1)+10×2n-12=10×2n-6n-10,故T n+12=-2a n+10b n,n∈N*.(方法二:数学归纳法)①当n=1时,T1+12=a1b1+12=16,-2a1+10b1=16,故等式成立;②假设当n=k时等式成立,即T k+12=-2a k+10b k,则当n=k+1时,有T k+1=a k+1b1+a k b2+a k-1b3+…+a1b k+1=a k+1b1+q(a k b1+a k-1b2+…+a1b k)=a k+1b1+qT k=a k+1b1+q(-2a k+10b k-12)=2a k+1-4(a k+1-3)+10b k+1-24=-2a k+1+10b k+1-12,即T k+1+12=-2a k+1+10b k+1,因此n=k+1时,等式也成立.由①和②,可知对任意n∈N*,T n+12=-2a n+10b n成立.20.D5在等差数列{a n}中,a3+a4+a5=84,a9=73.(1)求数列{a n}的通项公式;(2)对任意m∈N*,将数列{a n}中落入区间(9m,92m)内的项的个数记为b m,求数列{b m}的前m项和S m.20.解:(1)因为{a n}是一个等差数列,a3+a4+a5=84,所以a3+a4+a5=3a4=84,即a4=28.设数列{a n}的公差为d,则5d=a9-a4=73-28=45,故d=9.由a4=a1+3d得28=a1+3×9,即a1=1,所以a n=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*).(2)对m∈N*,若9m<a n<92m,则9m+8<9n<92m+8,因此9m-1+1≤n≤92m-1.故得b m =92m -1-9m -1.于是S m =b 1+b 2+b 3+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1)=-81m1-81--9m1-9=92m +1-10×9m+180.20.D5 已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n ,当n 为何值时,T n 最大?并求出T n 的最大值.20.解:(1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2.③ (i)若a 2=0,由①知a 1=0. (ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.综上可得,a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1.令b n =lg 10a 1a n ,则b n =1-lg(2)n -1=1-12(n -1)lg2=12lg 1002n -1.所以数列{b n }是单调递减的等差数列公差为-12lg2,从而b 1>b 2>…>b 7=lg 108>lg1=0,当n ≥8时,b n ≤b 8=12lg 100128<12lg1=0,故n =7时,T n 取得最大值,且T n 的最大值为T 7=b 1+b 72=+1-2=7-212lg2.16.D5 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .16.解:(1)当n =k ∈N +时,S n =-12n 2+kn 取最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,因此k =4,从而a n =S n -S n -1=92-n (n ≥2),又a 1=S 1=72,所以a n =92-n .(2)因为b n =9-2a n 2n =n2n -1,T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1,所以T n =2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1.20.D5 已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b n a 2n +b 2n,n ∈N *. (1)设b n +1=1+b n a n,n ∈N *,求证:数列⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫b n a n 2是等差数列;(2)设b n +1=2·b n a n,n ∈N *,且{a n }是等比数列,求a 1和b 1的值.20.解:(1)由题设知a n +1=a n +b na 2n +b 2n=1+b na n1+⎝ ⎛⎭⎪⎫b n a n 2=b n +11+⎝ ⎛⎭⎪⎫b n a n 2,所以b n +1a n +1=1+⎝ ⎛⎭⎪⎫b n a n 2,从而⎝⎛⎭⎪⎫b n +1a n +12-⎝ ⎛⎭⎪⎫b n a n 2=1(n ∈N *),所以数列⎩⎨⎧⎭⎬⎫⎝⎛⎭⎪⎫b n an2是以1为公差的等差数列.(2)因为a n >0,b n >0,所以a n +b n22≤a 2n +b 2n <(a n +b n )2,从而1<a n +1=a n +b na 2n +b 2n≤ 2. (*) 设等比数列{a n }的公比为q ,由a n >0知q >0.下证q =1. 若q >1,则a 1=a 2q<a 2≤2,故当n >log q2a 1时,a n +1=a 1q n>2,与(*)矛盾;若0<q <1,则a 1=a 2q>a 2>1,故当n >log q 1a 1时,a n +1=a 1q n<1,与(*)矛盾.综上,q =1,故a n =a 1(n ∈N *),所以1<a 1≤ 2. 又b n +1=2·b n a n=2a 1·b n (n ∈N *),所以{b n }是公比为2a 1的等比数列.若a 1≠2,则2a 1>1,于是b 1<b 2<b 3.又由a 1=a 1+b n a 21+b 2n得b n =a 1±a 212-a 21a 21-1,所以b 1,b 2,b 3中至少有两项相同,矛盾.所以a 1=2,从而b n =a 1±a 212-a 21a 21-1= 2.所以a 1=b 1= 2.16.D5、E9 记为不超过实数x 的最大整数,例如,=2,=1,=-1.设a 为正整数,数列{x n }满足x 1=a ,x n +1=⎣⎢⎢⎡⎦⎥⎥⎤x n +⎣⎢⎡⎦⎥⎤a x n 2(n ∈N *).现有下列命题: ①当a =5时,数列{x n }的前3项依次为5,3,2; ②对数列{x n }都存在正整数k ,当n ≥k 时总有x n =x k ; ③当n ≥1时,x n >a -1;④对某个正整数k ,若x k +1≥x k ,则x k =[a ]. 其中的真命题有________.(写出所有真命题的编号)16.①③④ 对于①,x 1=a =5,x 2=⎣⎢⎡⎦⎥⎤5+12=3,x 3=⎣⎢⎢⎡⎦⎥⎥⎤3+⎣⎢⎡⎦⎥⎤532=⎣⎢⎡⎦⎥⎤3+12=2,①正确; 对于②,取a =3,则x 1=3,x 2=⎣⎢⎢⎡⎦⎥⎥⎤3+⎣⎢⎡⎦⎥⎤332=⎣⎢⎡⎦⎥⎤3+12=2,x 3=⎣⎢⎢⎡⎦⎥⎥⎤2+⎣⎢⎡⎦⎥⎤322=⎣⎢⎡⎦⎥⎤2+12=1,x 4=⎣⎢⎢⎡⎦⎥⎥⎤1+⎣⎢⎡⎦⎥⎤312=⎣⎢⎡⎦⎥⎤1+32=2.由此可知,n ≥2时,该数列所有奇数项等于1,所有偶数项等于2,故②错误; 对于③,由的定义知>x -1,而a 是正整数,故x n ≥0,且x n 是整数, 又n =1时,x 1=a ≥a >a -1,命题为真,于是,x n +1=⎣⎢⎢⎡⎦⎥⎥⎤x n +⎣⎢⎡⎦⎥⎤a x n 2,由于x n 和⎣⎢⎡⎦⎥⎤a x n 都是整数,故x n +1=⎣⎢⎢⎡⎦⎥⎥⎤x n +⎣⎢⎡⎦⎥⎤a x n 2≥x n +⎣⎢⎡⎦⎥⎤a x n 2-12>x n +a x n -12-12≥2x n ·ax n2-1=a -1,③正确;对于④,当x k +1≥x k 时,得⎣⎢⎢⎡⎦⎥⎥⎤x k +⎣⎢⎡⎦⎥⎤a x k 2≥x k ,从而x k +⎣⎢⎡⎦⎥⎤a x k 2-x k ≥0, 即⎣⎢⎡⎦⎥⎤a x k -x k ≥0,∴a x k-x k ≥⎣⎢⎡⎦⎥⎤a x k -x k ≥0,即a x k-x k ≥0,解得x k ≤a , 结合③得:a -1<x k ≤a ,故x k =[]a . ④正确.17.D2、D5 设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列.(1)求数列{a n }的公比;(2)证明:对任意k ∈N +,S k +2,S k ,S k +1成等差数列.17.解:(1)设数列{a n }的公比为q (q ≠0,q ≠1),由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4,即2a 1q 2= a 1q 4+a 1q 3,由a 1≠0,q ≠0得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),所以q =-2. (2)证法一:对任意k ∈N +,S k +2+S k +1-2S k = (S k +2-S k )+(S k +1-S k )=a k +1+a k +2+a k +1 =2a k +1+a k +1·(-2) =0,所以,对任意k ∈N +,S k +2,S k ,S k +1成等差数列. 证法二: 对任意k ∈N +,2S k =2a 1-q k1-q,S k +2+S k +1=a 1-q k +21-q+a 1-q k +11-q =a 1- q k +2-q k +11-q,2S k -(S k +2+S k +1)=2a 1-q k1-q-a 1-q k +2-q k +11-q=a 11-q=a 1q k 1-q(q 2+q -2)=0, 因此,对任意k ∈N +,S k +2,S k ,S k +1成等差数列.16.D4、D5 数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为________. 16. 1 830令b n =a 4n -3+a 4n -2+a 4n -1+a 4n , 则b n +1=a 4n +1+a 4n +2+a 4n +3+a 4n +4. 因为a n +1+(-1)na n =2n -1, 所以a n +1=-(-1)n a n +2n -1. 所以a 4n -3=-a 4n -4+2(4n -4)-1,a 4n -2=a 4n -3+2(4n -3)-1, a 4n -1=-a 4n -2+2(4n -2)-1, a 4n =a 4n -1+2(4n -1)-1, a 4n +1=-a 4n +2×4n -1, a 4n +2=a 4n +1+2(4n +1)-1, a 4n +3=-a 4n +2+2(4n +2)-1, a 4n +4=a 4n +3+2(4n +3)-1,所以a 4n +4=a 4n +3+2(4n +3)-1=-a 4n +2+2(4n +2)-1+2(4n +3)-1 =-a 4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1 =a 4n -2×4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1 =a 4n +8, 即a 4n +4=a 4n +8.同理,a 4n +3=a 4n -1,a 4n +2=a 4n -2+8,a 4n +1=a 4n -3.所以a 4n +1+a 4n +2+a 4n +3+a 4n +4=a 4n +a 4n -1+a 4n -2+a 4n -3+16. 即b n +1=b n +16.故数列{b n }是等差数列. 又a 2-a 1=2×1-1,①a 3+a 2=2×2-1,② a 4-a 3=2×3-1,③②-①得a 3+a 1=2;②+③得a 2+a 4=8, 所以a 1+a 2+a 3+a 4=10, 即b 1=10.所以数列{a n }的前60项和即为数列{b n }的前15项和,即S 15=10×15+15×142×16=1830.19.D2、D5 设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.。
新高考数学一轮复习考点知识专题讲解与练习考点知识总结4基本不等式高考概览高考在本考点的常考题型为选择题、填空题,分值为5分,中等难度考纲研读1.了解基本不等式的证明过程2.会用基本不等式解决简单的最大(小)值问题一、基础小题1.若0<a<12,则a(1-2a)的最大值是()A.18B.14C.12D.1答案 A解析由0<a<12,得1-2a>0,则a(1-2a)=12·2a(1-2a)≤12⎣⎢⎡⎦⎥⎤2a+(1-2a)22=18,当且仅当a=14时取等号.故选A.2.已知m>0,n>0,2m+n=1,则14m+2n的最小值为()A.4 B.22C.92D.16答案 C解析 由于m >0,n >0,2m +n =1,则14m +2n =(2m +n )⎝ ⎛⎭⎪⎫14m +2n =52+n 4m +4m n ≥52+2n 4m ·4m n =92,当且仅当n =23,m =16时取等号.故选C. 3.设x >0,则函数y =x +22x +1-32的最小值为( ) A .0 B .12 C .1 D .32 答案 A解析 由于x >0,则y =x +22x +1-32=⎝ ⎛⎭⎪⎫x +12+1x +12-2≥2⎝ ⎛⎭⎪⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数y 的最小值为0.故选A.4.已知a >0,b >0,若不等式2a +1b ≥n2a +b 恒成立,则n 的最大值为( )A .9B .12C .16D .20 答案 A解析 因为a >0,b >0,所以2a +b >0,2a +1b ≥n 2a +b⇒(2a +b )⎝ ⎛⎭⎪⎫2a +1b ≥n ,(2a +b )⎝ ⎛⎭⎪⎫2a +1b =5+2a b +2b a ≥5+22a b ·2b a =9(当且仅当a =b 时,取等号),要想不等式2a +1b≥n2a +b恒成立,只需n ≤9,即n 的最大值为9.故选A. 5.若3x +2y =2,则8x +4y 的最小值为( ) A .4 B .42 C .2 D .2 2解析∵3x+2y=2,∴8x+4y=23x+22y≥223x·22y=223x+2y=4,当且仅当3x=2y,即x=13,y=12时等号成立,∴8x+4y的最小值为4.故选A.6.已知向量a=(1,x-1),b=(y,2),其中x>0,y>0.若a⊥b,则xy的最大值为()A.14B.12C.1 D.2答案 B解析因为a=(1,x-1),b=(y,2),a⊥b,所以a·b=y+2(x-1)=0,即2x+y=2.又因为x>0,y>0,所以2x+y≥22xy,当且仅当x=12,y=1时等号成立,即22xy≤2,所以xy≤12,所以当且仅当x=12,y=1时,xy取到最大值,最大值为12.故选B.7.若a>0,b>0,且1a+1b=ab,则a2+b2的最小值为()A.2 B.22C.4 D.4 2 答案 C解析∵a>0,b>0,∴1a +1b=ab≥21ab,∴ab≥2,当且仅当a=b=2时等号成立,∴a2+b2≥2ab≥4,当且仅当a=b=2时等号成立.综上,a2+b2的最小值为4.故选C.8.已知函数f(x)=cosπx(0<x<2),若a≠b,且f(a)=f(b),则1a+4b的最小值为()A.92B.9 C.18 D.36解析函数f(x)=cosπx(0<x<2)的图象的对称轴为直线x=1.因为a≠b,且f(a)=f(b),所以a+b=2,所以1a +4b=⎝⎛⎭⎪⎫1a+4b(a+b)×12=12⎝⎛⎭⎪⎫5+ba+4ab≥12×⎝⎛⎭⎪⎫5+2ba·4ab=92,当且仅当a=23,b=43时取等号,故1a+4b的最小值为92.故选A.9.(多选)设x∈(0,+∞),y∈(0,+∞),S=x+y,P=xy,以下四个命题中正确的是()A.若P=1,则S有最小值2 B.若S+P=3,则P有最大值1C.若S=2P,则S有最小值4 D.若S+P=3,则S有最大值2答案AB解析对于A,若xy=1,则S=x+y≥2xy=2(当且仅当x=y=1时取等号),故A 正确;对于B,若x+y+xy=3,则3=x+y+xy≥2xy+xy,解得0<xy≤1(当且仅当x=y=1时取等号),故B正确;对于C,若x+y=2xy,则x+y=2xy≤(x+y)22,可得x+y≥2(当且仅当x=y=1时取等号),故C错误;对于D,若x+y+xy=3,则3=x+y+xy≤x+y+(x+y)24,解得x+y≥2(当且仅当x=y=1时取等号),故D错误.10.(多选)下列说法正确的是()A.x+1x(x>0)的最小值是2 B.x2+2x2+2的最小值是 2C.x2+5x2+4的最小值是2 D.2-3x-4x的最大值是2-4 3解析 当x >0时,x +1x ≥2x ·1x =2⎝ ⎛⎭⎪⎫当且仅当x =1x ,即x =1时取等号,A 正确;∵x 2≥0,∴x 2+2x 2+2=x 2+2≥2,B 正确;x 2+5x 2+4=x 2+4+1x 2+4=x 2+4+1x 2+4,令t =x 2+4,则t ∈[2,+∞),∵y =t +1t 在[2,+∞)上单调递增,∴t +1t ≥2+12=52,即x 2+5x 2+4≥52,C 错误;当x <0时,2-3x -4x 无最大值,D 错误.故选AB.11.若正实数x ,y 满足x +2y +2xy -8=0,则x +2y 的最小值为________. 答案 4解析 ∵正实数x ,y 满足x +2y +2xy -8=0,∴x +2y +⎝⎛⎭⎪⎫x +2y 22-8≥0.设x +2y =t >0,∴t +14t 2-8≥0,∴t 2+4t -32≥0,即(t +8)(t -4)≥0,∴t ≥4,即x +2y ≥4,当且仅当x =2,y =1时取等号,故x +2y 的最小值为4.12.正项等比数列{a n }中,存在两项a m ,a n ,使得a m a n =2a 1,且a 6=a 5+2a 4,则m +n =________,1m +9n 的最小值是________.答案 4 4解析 由于数列{a n }是正项等比数列,由a 6=a 5+2a 4得q 2=q +2,解得q =2(负根舍去).由a m a n =2a 1,得2m +n -2=22,m +n =4.故1m +9n =14⎝ ⎛⎭⎪⎫1m +9n (m +n )=14⎝ ⎛⎭⎪⎫1+9+n m +9m n ≥14⎝⎛⎭⎪⎫10+2n m ·9m n =14×(10+6)=4,当且仅当m =1,n =3时,1m +9n取得最小值4.二、高考小题13.(2022·全国乙卷)下列函数中最小值为4的是()A.y=x2+2x+4 B.y=|sin x|+4 |sin x|C.y=2x+22-x D.y=ln x+4 ln x答案 C解析对于A,因为y=x2+2x+4=(x+1)2+3,所以当x=-1时,y取得最小值,且y min=3,所以A不符合题意;对于B,因为y=|sin x|+4|sin x|≥2|sin x|·4|sin x|=4,所以y≥4,当且仅当|sin x|=4|sin x|,即|sin x|=2时取等号,但是根据正弦函数的性质可知|sin x|=2不可能成立,因此可知y>4,所以B不符合题意;对于C,因为y=2x+22-x ≥22x·22-x=4,当且仅当2x=22-x,即x=2-x,x=1时取等号,所以y min=4,所以C符合题意;对于D,当0<x<1时,ln x<0,y=ln x+4ln x<0,所以D不符合题意.14.(2022·浙江高考)已知α,β,γ是互不相同的锐角,则在sin αcos β,sin βcos γ,sin γcos α三个值中,大于12的个数的最大值是()A.0 B.1 C.2 D.3答案 C解析因为α,β,γ是互不相同的锐角,所以sinα,cos β,sin β,cos γ,sin γ,cosα均为正数.由基本不等式可知sin αcos β≤sin2α+cos2β2,sinβcos γ≤sin2β+cos2γ2,sinγcosα≤sin 2γ+cos 2α2.三式相加可得sin αcos β+sin βcos γ+sin γcos α≤32,当且仅当sin α=cos β,sin β=cos γ,sin γ=cos α,即α=β=γ=π4时取等号,因为α,β,γ是互不相同的锐角,所以sin αcos β+sin βcos γ+sin γcos α<32,所以这三个值不会都大于12.若取α=π6,β=π3,γ=π4,则sin π6cos π3=12×12=14<12,sin π3cos π4=32×22=64>24=12,sin π4cos π6=22×32=64>12,所以这三个值中大于12的个数的最大值为2.故选C.15.(2022·上海高考)下列不等式恒成立的是( ) A .a 2+b 2≤2ab B .a 2+b 2≥-2ab C .a +b ≥2|ab | D .a 2+b 2≤-2ab 答案 B解析 显然当a <0,b >0时,不等式a 2+b 2≤2ab 不成立,故A 错误;∵(a +b )2≥0,∴a 2+b 2+2ab ≥0,∴a 2+b 2≥-2ab ,故B 正确;显然当a <0,b <0时,不等式a +b ≥2|ab |不成立,故C 错误;显然当a >0,b >0时,不等式a 2+b 2≤-2ab 不成立,故D 错误.故选B.16.(多选)(2022·新高考Ⅰ卷)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12 B .2a -b >12 C .log 2a +log 2b ≥-2 D .a +b ≤ 2 答案 ABD解析 对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=2⎝ ⎛⎭⎪⎫a -122+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2⎝⎛⎭⎪⎫a +b 22=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD.17.(2022·天津高考)若a >0,b >0,则1a +ab 2+b 的最小值为________. 答案 2 2解析 ∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b+b ≥22b ·b =22,当且仅当1a =a b 2且2b =b ,即a =b =2时等号成立,∴1a +ab2+b 的最小值为2 2. 三、模拟小题18.(2022·浙江杭州富阳中学高三上第一次二校联考)已知正实数a ,b 满足1a +9b =6,则(a +1)(b +9)的最小值是( )A .8B .16C .32D .36 答案 B解析 因为正实数a ,b 满足1a +9b =6,所以6=1a +9b ≥29ab ,即ab ≥1,当且仅当1a =9b 时,即a =13,b =3时取等号.因为1a +9b =6,所以b +9a =6ab ,所以(a +1)(b +9)=9a +b +ab +9=7ab +9≥7+9=16.故(a +1)(b +9)的最小值是16.故选B.19.(2022·湖北新高考联考协作体高三上新起点考试)已知a >0,b >0且a +b =1,若不等式1a +1b >m 恒成立,m ∈N *,则m 的最大值为( )A .3B .4C .5D .6 答案 A解析 ∵不等式1a +1b >m 恒成立,∴⎝ ⎛⎭⎪⎫1a +1b min >m ,又a +b =1,a >0,b >0∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=1+b a +a b +1≥2+2b a ·a b =4,当且仅当a =b =12时等号成立,∴⎝ ⎛⎭⎪⎫1a +1b min=4,∴m <4,又m ∈N *,∴m =3.故选A.20.(2022·河北省“五个一”名校联盟高三第一次联考)已知x >0,y >0,且x +4y -xy =0,若不等式a ≤x +y 恒成立,则a 的取值范围是( )A .(-∞,6]B .(-∞,7]C .(-∞,8]D .(-∞,9] 答案 D解析 ∵x >0,y >0,x +4y -xy =0,∴4x +1y =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫4x +1y =5+x y +4y x .∵x y+4yx≥2x y ·4y x =4(当且仅当x y =4yx,即x =2y =6时取等号),∴x +y ≥5+4=9.又不等式a ≤x +y 恒成立,∴a ≤9.21.(2022·辽宁六校高三上学期期初联考)已知定义在R 上的偶函数f (x )=|x -m +1|-2,若正实数a ,b 满足f (a )+f (2b )=m ,则2a +3b 的最小值为( )A .85B .8+435 C .835D .2105 答案 B解析 ∵f (x )为R 上的偶函数,∴f (-x )=f (x ),即|-x -m +1|-2=|x -m +1|-2,即(-x -m +1)2=(x -m +1)2,整理得2(m -1)x =-2(m -1)x ,∴m =1,∴f (x )=|x |-2.∴f (a )+f (2b )=a -2+2b -2=1,即a +2b =5.∴2a +3b =15⎝ ⎛⎭⎪⎫2a +3b (a +2b )=15⎝ ⎛⎭⎪⎫8+4b a +3a b ≥15⎝ ⎛⎭⎪⎫8+24b a ·3a b =8+435(当且仅当4b a =3a b ,即2b =3a 时取等号),∴2a +3b 的最小值为8+435.故选B.22.(多选)(2022·湖南省长沙市长郡中学上学期适应性调查考试)小王从甲地到乙地往返的速度分别为a 和b (a <b ),其全程的平均速度为v ,则( )A .a <v < abB .v =abC .ab <v <a +b 2D .v =2ab a +b答案 AD解析 设甲、乙两地之间的距离为s ,则全程所需的时间为s a +s b ,∴v =2ss a +s b =2ab a +b .∵b >a >0,∴v =2ab a +b <2ab 2ab =ab ;另一方面,v =2ab a +b <2⎝⎛⎭⎪⎫a +b 22a +b=a +b 2,v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a ,则a <v <ab .故选AD. 23.(多选)(2022·河北石家庄第一中学高三上教学质量检测(一))以下结论正确的是( )A .x 2+1x 2≥2B .x 2+3+1x 2+3的最小值为2 C .若a 2+2b 2=1,则1a 2+1b 2≥3+2 2 D .若a +b =1,则1a +1b≥4 答案 AC解析 对于A ,x 2+1x 2≥2x 2·1x 2=2,当且仅当x 2=1时等号成立,故A 正确;对于B ,x 2+3+1x 2+3≥2x 2+3·1x 2+3=2,当且仅当x 2+3=1时等号成立,但x 2+3≥3≠1,故B 错误;对于C ,1a 2+1b 2=⎝ ⎛⎭⎪⎫1a 2+1b 2·(a 2+2b 2)=3+2b 2a 2+a 2b 2≥3+22,当且仅当a 2=2-1,b 2=2-22时等号成立,故C 正确;对于D ,当a >0,b >0,a +b =1时,1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+a b +b a ≥4,但当a +b =1时,不一定有a >0,b >0,故D 错误.故选AC.24.(多选)(2022·辽宁葫芦岛协作校高三上第一次考试)下列函数中,最小值为9的是( )A .y =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫x +4x B .y =1sin 2x +4cos 2xC .y =lg x +4lg x -5D .y =(2x 2+1)(4x 2+8)(x 2+1)2答案 AB解析 y =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫x +4x =5+x 2+4x 2≥5+24=9,当且仅当x 2=2时,等号成立.y =1sin 2x +4cos 2x =⎝ ⎛⎭⎪⎫1sin 2x +4cos 2x (sin 2x +cos 2x )=5+cos 2x sin 2x +4sin 2x cos 2x ≥5+24=9,当且仅当tan 2x =12时,等号成立.当lg x -5小于0时,y =lg x +4lg x -5无最小值.y =(2x 2+1)(4x 2+8)(x 2+1)2=4(2x 2+1)(x 2+2)(x 2+1)2≤4×⎣⎢⎡⎦⎥⎤(2x 2+1)+(x 2+2)22(x 2+1)2=9,当且仅当x 2=1时,等号成立,则y =(2x 2+1)(4x 2+8)(x 2+1)2的最大值为9.故选AB. 25.(2022·福建晋江磁灶中学高三上阶段测试(一))若lg x +lg y =0,则4x +9y 的最小值为________.答案 12解析 因为lg x +lg y =0,所以xy =1(x >0,y >0),所以4x +9y ≥24x ·9y =12.等号成立的条件为4x =9y ,即x =32,y =23时取得最小值.26.(2022·河北正定中学高三开学考试)已知x ,y >0,且1x +3+1y =12,则x +y 的最小值为________.答案 5解析x +y =2[(x +3)+y ]⎝ ⎛⎭⎪⎫1x +3+1y -3=2⎝ ⎛⎭⎪⎫2+y x +3+x +3y -3≥2⎝ ⎛⎭⎪⎫2+2y x +3·x +3y -3=5,当且仅当y x +3=x +3y ,即x =1,y =4时,等号成立,所以x +y 的最小值为5.一、高考大题1.(2022·全国Ⅲ卷)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }≥34.证明 (1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +bc +ca =-12(a 2+b 2+c 2). 由abc =1得a ,b ,c 均不为0,则a 2+b 2+c 2>0,∴ab +bc +ca =-12(a 2+b 2+c 2)<0.(2)不妨设max{a ,b ,c }=a ,由a +b +c =0,abc =1可知,a >0,b <0,c <0.∵a =-b -c ,a =1bc ,∴a 3=a 2·a =(b +c )2bc =b 2+c 2+2bc bc≥2bc +2bc bc =4. 当且仅当b =c 时,取等号,∴a≥34,即max{a,b,c}≥34.2.(2022·全国Ⅰ卷)已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,又abc=1,故有a2+b2+c2≥ab+bc+ca=ab+bc+caabc =1a+1b+1c.当且仅当a=b=c=1时,等号成立.所以1a +1b+1c≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥33(a+b)3(b+c)3(c+a)3=3(a+b)(b+c)(c+a)≥3×(2ab)×(2bc)×(2ca)=24.当且仅当a=b=c=1时,等号成立.所以(a+b)3+(b+c)3+(c+a)3≥24.二、模拟大题3.(2022·福建龙岩高三检测)已知x,y∈(0,+∞),x2+y2=x+y.(1)求1x +1y 的最小值;(2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.解 (1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xy xy =2,当且仅当x =y =1时,等号成立,所以1x+1y 的最小值为2.(2)不存在.理由如下:因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ).又x ,y ∈(0,+∞),所以0<x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎡⎦⎥⎤(x +1)+(y +1)22≤4,当且仅当x =y =1时,等号成立. 因此不存在x ,y 满足(x +1)(y +1)=5.4.(2022·广东省珠海市高三模拟)某商场预计全年分批购入电视机3600台,其中每台价值2000元,每批购入的台数相同,且每批均需付运费400元,储存购入的电视机全年所付保管费与每批购入的电视机的总价值(不含运费)成正比,比例系数为k ,若每批购入400台,则全年需要支付运费和保管费共43600元.(1)求k 的值;(2)请问如何安排每批进货的数量,使支付运费与保管费的和最少?并求出相应的最少费用.解 (1)由题意,当每批购入400台时,全年的运费为400×3600400=3600(元),每批购入的电视机的总价值为400×2000=800000(元),所以保管费为k·800000(元).因为全年需要支付运费和保管费共43600元,所以3600+k·800000=43600,解得k=0.05.(2)设每批进货x台,则运费为400×3600x =1440000x,保管费为0.05×2000x=100x.所以支付运费与保管费的和为1440000x+100x,因为1440000x +100x≥21440000x×100x=24000,当且仅当1440000x=100x,即x=120时取到等号,所以每批进货120台,支付运费与保管费的和最少,最少费用为24000元.5.(2022·江苏镇江模拟)某校为丰富师生课余活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S(平方米)的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且点P在斜边BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].设矩形AMPN健身场地每平方米的造价为37kS元,再把矩形AMPN以外(阴影部分)铺上草坪,每平方米的造价为12kS元(k为正常数).(1)试用x 表示S ,并求S 的取值范围;(2)写出总造价T 与面积S 的函数关系式;(3)如何选取|AM |,才能使总造价T 最低(不要求求出最低造价)?解 (1)在Rt △PMC 中,显然|MC |=30-x ,∠PCM =60°,|PM |=|MC |tan ∠PCM =3(30-x ),∴矩形AMPN 的面积S =|PM |·|AM |=3x (30-x ),x ∈[10,20],由x (30-x )≤⎝ ⎛⎭⎪⎫x +30-x 22=225, 可知当x =15时,S 取得最大值,为2253,当x =10或20时,S 取得最小值,为2003,∴2003≤S ≤2253,即S 的取值范围为[2003,2253].(2)矩形AMPN 健身场地造价T 1=37k S ,又△ABC 的面积为12×30×303=4503,∴草坪造价T 2=12k S(4503-S ). ∴总造价T =T 1+T 2=25k ⎝⎛⎭⎪⎫S +2163S , 2003≤S ≤225 3.(3)∵S +2163S≥1263,当且仅当S=2163,S即S=2163时等号成立,此时3x(30-x)=2163,解得x=12或x=18.∴选取|AM|为12米或18米时,能使总造价T最低.。
N 选修4系列N1 选修4-1 几何证明选讲22.N1如图1-8,⊙O 和⊙O ′相交于A ,B 两点,过A 作两圆的切线分别交两圆于C ,D 两点,连结DB 并延长交⊙O 于点E .证明:(1)AC ²BD =AD ²AB ; (2)AC =AE .图1-822.证明:(1)由AC 与⊙O ′相切于A ,得∠CAB =∠ADB , 同理∠ACB =∠DAB ,所以△ACB ∽△DAB .从而AC AD =AB BD, 即AC ²BD =AD ²AB . (2)由AD 与⊙O 相切于A ,得 ∠AED =∠BAD , 又∠ADE =∠BDA ,得 △EAD ∽△ABD .从而AE AB =AD BD, 即AE ²BD =AD ²AB . 结合(1)的结论,得AC =AE .21 A .N1 如图1-7,AB 是圆O 的直径,D ,E 为圆O 上位于AB 异侧的两点,连结BD 并延长至点C ,使BD =DC ,连结AC ,AE ,DE .求证:∠E =∠C .图1-721A.证明:如图,连结OD ,因为BD =DC ,O 为AB 的中点, 所以OD ∥AC ,于是∠ODB =∠C .因为OB =OD ,所以∠ODB =∠B .于是∠B =∠C .因为点A ,E ,B ,D 都在圆O 上,且D ,E 为圆O 上位于AB 异侧的两点,所以∠E 和∠B 为同弧所对的圆周角,故∠E =∠B .所以∠E =∠C .15.N1如图1-6所示,点D 在⊙O 的弦AB 上移动,AB =4,连结OD ,过点D 作OD 的垂线交⊙O 于点C ,则CD 的最大值为________.图1-615. 2 因为CD =OC 2-OD 2,且OC 为⊙O 的半径,是定值,所以当OD 取最小值时,CD 取最大值.显然当OD ⊥AB 时,OD 取最小值,故此时CD =12AB =2,即为所求的最大值.12.N1 正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =37.动点P从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( )A .16B .14C .12D .1012.B 取单位长度为7的正方形,(1)直接作出图形可得到结果,如图所示,(2)建立坐标系,取正方形边长为7分单位,计算7次可得第7次时该点的横坐标与E 点相同,根据对称性应选择14次.5.N1如图1-3,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E,则( ) A.CE²CB=AD²DBB.CE²CB=AD²ABC.AD²AB=CD2D.CE²EB=CD25.A 本题考查了平面几何圆与三角形,特别是重点考查了射影定理等知识.对于A,CE²CB=CD2=AD²DB;对于B,CE²CB=CD2≠AC2=AD²AB;对于C,CD2=AD²DB≠AD²AB;对于D,ED2=CE²EB≠CD2.15.N1如图1-3,圆O的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与OC的延长线交于点P,则PA=________.15. 3 考查平面几何中圆周角定理以及弦切角定理等,解题关键是通过连接OA,在△AOP中利用勾股定理求出.连接OA,则OA⊥PA,根据圆周角定理得:∠AOP=60°,所以PO=2,OA=1,在直角三角形AOP中利用勾股定理得:PA=OP2-OA2= 3.11.N1如图1-3,过点P的直线与⊙O相交于A,B两点.若PA=1,AB=2,PO=3,则⊙O的半径等于________.图1-311. 6 设圆的半径为r,由圆的割线定理可得,PA²PB=(PO-r)(PO+r),把PA=1,PB=1+2=3,PO=3代入求解得3=9-r2,∴r= 6.22.N1如图1-6,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(1)CD=BC;(2)△BCD ∽△GBD .22.证明:(1)因为D ,E 分别为AB ,AC 的中点, 所以DE ∥BC .又已知CF ∥AB ,故四边形BCFD 是平行四边形,所以CF =BD =AD .而CF ∥AD ,连结AF , 所以四边形ADCF 是平行四边形,故CD =AF . 因为CF ∥AB ,所以BC =AF ,故CD =BC .(2)因为FG ∥BC ,故GB =CF . 由(1)可知BD =CF , 所以GB =BD .而∠DGB =∠EFC =∠DBC ,故△BCD ∽△GBD .15 B. N1 如图1-5,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF ⊥DB ,垂足为F ,若AB =6,AE =1,则DF ²DB =________.图1-515B . 5 本题考查了射影定理的知识,解题的突破口是找出直角三角形内的射影定理.连接AD ,在Rt △ABD 中,DE ⊥AB ,所以DE 2=AE ³EB =5,在Rt △EBD 中,EF ⊥DB ,所以DE 2=DF ³DB =5.13.N1 如图1-3所示,已知AB 和AC 是圆的两条弦,过点B 作圆的切线与AC 的延长线相交于点D .过点C 作BD 的平行线与圆相交于点E ,与AB 相交于点F ,AF =3,FB =1,EF =32,则线段CD 的长为________.图1-313.43 本题考查选修4-1几何证明选讲中圆的性质,考查推理论证及运算求解能力,中档题.由相交弦的性质可得|AF |³|FB |=|EF |³|FC |, ∴|FC |=|AF |³|FB ||EF |=3³132=2,又∵FC ∥BD ,∴AC AD =FC BD =AF AB =34,即BD =83,由切割定理得|BD |2=|DA |³|DC |=4|DC |2,解之得|DC |=43.N2 选修4-2 矩阵21 B .N2 已知矩阵A 的逆矩阵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-143412 -12,求矩阵A 的特征值.21 B .解:因为A -1A =E ,所以A =(A -1)-1.因为A-1=⎣⎢⎢⎡⎦⎥⎥⎤-143412-12,所以A =(A -1)-1=⎣⎢⎡⎦⎥⎤2 321,于是矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -3-2 λ-1=λ2-3λ-4.令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.21A .N2 设曲线2x 2+2xy +y 2=1在矩阵A =⎝⎛⎭⎫a b 01(a >0)对应的变换作用下得到的曲线为x 2+y 2=1.(1)求实数a ,b 的值; (2)求A 2的逆矩阵.21A .解: (1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的像是P ′(x ′,y ′).由⎝⎛⎭⎫x ′y ′=⎝⎛⎭⎫a b 01⎝⎛⎭⎫x y =⎝⎛⎭⎫ax bx +y ,得⎩⎪⎨⎪⎧x ′=ax ,y ′=bx +y .又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1,即a 2x 2+(bx +y )2=1, 整理得(a 2+b 2)x 2+2bxy +y 2=1.依题意得⎩⎪⎨⎪⎧ a 2+b 2=2,2b =2,解得⎩⎪⎨⎪⎧a =1,b =1,或⎩⎪⎨⎪⎧a =-1,b =1.因为a >0,所以⎩⎪⎨⎪⎧a =1,b =1.(2)由(1)知,A =⎝⎛⎭⎫11 01,A 2=⎝⎛⎭⎫11 01⎝⎛⎭⎫11 01=⎝⎛⎭⎫12 01,所以|A 2|=1,(A 2)-1=⎝⎛⎭⎫1-2 01.3.C3、N2 函数f (x )=⎪⎪⎪⎪⎪⎪2 cos x sin x -1的值域是________.3.⎣⎢⎡⎦⎥⎤-52,-32 考查二阶矩阵和三角函数的值域,以矩阵为载体,实为考查三角函数的值域,易错点是三角函数的化简.f (x )=-2-sin x cos x =-2-12sin2x ,又-1≤sin2x ≤1,所以f (x )=-2-12sin2x 的值域为⎣⎢⎡⎦⎥⎤-52,-32.N3 选修4-4 坐标系与参数方程12.N3 已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若|EF |=|MF |,点M 的横坐标是3,则p =________.12.2 本题考查抛物线的参数方程及抛物线的性质,考查运算求解能力及转化思想,中档题.将参数方程⎩⎪⎨⎪⎧x =2pt 2,y =2pt 化为普通方程为y 2=2px (p >0),并且F ⎝ ⎛⎭⎪⎫p2,0,E ⎝⎛⎭⎪⎫-p 2,±6p , 又∵|EF |=|MF |=|ME |,即有3+p2=⎣⎢⎡⎦⎥⎤p 2-⎝⎛⎭⎪⎫-p 22+ ±6p -0 2,解之得p =±2(负值舍去),即p =2.10. N3 如图1-1所示,在极坐标系中,过点M (2,0)的直线l 与极轴的夹角α=π6,若将l 的极坐标方程写成ρ=f (θ)的形式,则f (θ)=________.图1-110.1sin ⎝ ⎛⎭⎪⎫π6-θ 考查极坐标方程,关键是写出直线的极坐标方程,再按要求化简.由已知得直线方程为y =(x -2)tan π6,化简得x -3y -2=0,转化为极坐标方程为:ρcos θ-3ρsin θ-2=0,解得ρ=2cos θ-3sin θ=1sin ⎝ ⎛⎭⎪⎫π6-θ,所以f (θ)=1sin ⎝ ⎛⎭⎪⎫π6-θ.15 C. N3 直线2ρcos θ=1与圆ρ=2cos θ相交的弦长为________.15C. 3 本题考查了极坐标的相关知识,解题的突破口为把极坐标化为直角坐标.由2ρcos θ=1得2x =1①,由ρ=2cos θ得ρ2=2ρcos θ,即x 2+y 2=2x ②,联立①②得y =±32,所以弦长为 3. 23.N3在直角坐标系xOy .圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程. 23.解:(1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ.解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3.故圆C 1与圆C 2交点的坐标为⎝ ⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫2,-π3.注:极坐标系下点的表示不唯一. (2)(解法一)由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t-3≤t ≤ 3.(或参数方程写成⎩⎪⎨⎪⎧x =1,y =y -3≤y ≤3)(解法二)在直角坐标系下求得弦C 1C 2的方程为x =1(-3≤y ≤3).将x =1代入⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得ρcos θ=1,从而ρ=1cos θ.于是圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =tan θ,-π3≤θ≤π3. 23.N3已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝⎛⎭⎪⎫2,π3.(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围. 23.解:(1)由已知可得A 2cos π3,2sin π3, B 2cos π3+π2,2sin π3+π2, C 2cos π3+π,2sin π3+π, D 2cos π3+3π2,2sin π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1). (2)设P (2cos φ,3sin φ),令S =|PA |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是.21 C .N3在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程. 21C .解:在ρsin ⎝⎛⎭⎪⎫θ-π3=-32中令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4, 所以圆C 的半径PC =2 2+12-2³1³2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ. 9.N3 在直角坐标系xOy中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.9.32 考查直线与椭圆的参数方程,此类问题的常规解法是把参数方程转化为普通方程求解,此题的关键是,得出两曲线在x 轴上的一个公共点,即为曲线C 1与x 轴的交点,化难为易.曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t (t 为参数)的普通方程是2x +y -3=0,曲线C 2的普通方程是x 2a 2+y 29=1,两曲线在x 轴上的一个公共点,即为曲线C 1与x 轴的交点⎝ ⎛⎭⎪⎫32,0,代入曲线C 2,得⎝ ⎛⎭⎪⎫322a 2+029=1,解得a =32. 16.N3在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立坐标系.已知射线θ=π4与曲线⎩⎪⎨⎪⎧x =t +1,y = t -1 2(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________.16.⎝ ⎛⎭⎪⎫52,52 曲线⎩⎨⎧x =t +1,y =()t -12化为直角坐标方程是y =()x -22,射线θ=π4化为直角坐标方程是y =x ()x ≥0.联立⎩⎨⎧y =()x -22,y =x ()x ≥0,消去y 得x 2-5x +4=0,解得x 1=1,x 2=4.所以y 1=1,y 2=4.故线段AB 的中点的直角坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22,即⎝ ⎛⎭⎪⎫52,52.21B. N3 在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝⎛⎭⎪⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.21B. 解:(1)由题意知,M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎪⎫0,233,又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝ ⎛⎭⎪⎫1,33,故直线OP 的平面直角坐标方程为y =33x . (2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎪⎫0,233,所以直线l 的平面直角坐标方程为3x +3y -23=0. 又圆C 的圆心坐标为(2,-3),半径r =2,圆心到直线l 的距离d =|23-33-23|3+9=32<r ,故直线l 与圆C 相交.13.N3 在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈R )的距离是________.13. 3 本题考查极坐标与直角坐标的互化,圆的方程,点到直线的距离.应用极坐标与直角坐标的互化公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ 将圆ρ=4sin θ化为直角坐标方程为x 2+()y -22=4,直线θ=π6化为直角坐标方程为y =33x .因为x 2+()y -22=4的圆心为()0,2,所以圆心()0,2到直线y =33x ,即3x -3y =0的距离为d =||2³()-3()33+32= 3.9.N3 直线⎩⎪⎨⎪⎧x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数为________.9.2 本题主要考查直线和圆的位置关系,考查参数方程和普通方程之间的转化等基础知识,考查数形结合思想的运用.方程转化为普通方程,直线为x +y =1,圆为x 2+y 2=9,法一:圆心到直线的距离为d =|1|2=12<3,所以直线与圆相交,答案为2.法二:联立方程组⎩⎪⎨⎪⎧x 2+y 2=9,x +y =1,消去y 可得x 2-x -4=0,Δ>0,所以直线和圆相交,答案为2.14.N3 (坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t(t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.14.(1,1) 本题考查参数方程与直角坐标方程之间的转化,突破口是把参数方程转化为直角坐标方程,利用方程思想解决,C 1的直角坐标方程为:y 2=x (x ≥0),C 2的直角坐标方程为:x 2+y 2=2,联立方程得:⎩⎪⎨⎪⎧y 2=x ,x 2+y 2=2,解得⎩⎪⎨⎪⎧x =1,y =1,所以交点坐标为(1,1).图1-315.N3 (1)(坐标系与参数方程选做题)曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.N4(2)(不等式选做题)在实数范围内,不等式|2x -1|+|2x +1|≤6的解集为________.15.(1)ρ=2cos θ 考查极坐标方程与普通方程的转化;解题的突破口是利用点P 的直角坐标(x ,y )与极坐标(ρ,θ)的关系转化.由于ρ2=x 2+y 2,ρcos θ=x ,因此x 2+y 2-2x =0的极坐标方程为ρ=2cos θ.(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32≤x ≤32 考查绝对值不等式的解法,以及分类讨论思想;解题的突破口是利用零点讨论法去掉绝对值符号,将不等式转化为一般不等式(组)求解.当x >12时,原不等式可化为2x -1+2x +1≤6,解得x ≤32,此时12<x ≤32;当x <-12时,原不等式可化为-2x+1-2x -1≤6,解得x ≥-32,此时-32≤x <-12;当-12≤x ≤12时,原不等式可化为1-2x+2x +1≤6,解得x ∈R ,此时-12≤x ≤12.综上,原不等式的解集为⎣⎢⎡⎦⎥⎤-32,32.24.N3在直角坐标系xOy 中,设倾斜角为α的直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(t 为参数)与曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)相交于不同两点A ,B .(1)若α=π3,求线段AB 中点M 的坐标;(2)若|PA |²|PB |=|OP |2,其中P (2,3),求直线l 的斜率.解:设直线l 上的点A ,B 对应参数分别为t 1,t 2.将曲线C 的参数方程化为普通方程x 24+y 2=1.(1)当α=π3时,设点M 对应参数为t 0.直线l 方程为⎩⎪⎨⎪⎧x =2+12t ,y =3+32t (t 为参数).代入曲线C 的普通方程x 24+y 2=1,得13t 2+56t +48=0,则t 0=t 1+t 22=-2813,所以,点M 的坐标为⎝⎛⎭⎪⎫1213,-313.(2)将⎩⎨⎧x =2+t cos α,y =3+t sin α代入曲线C 的普通方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0,因为|PA |²|PB |=|t 1t 2|=12cos 2α+4sin 2α,|OP |2=7,所以12cos 2α+4sin 2α=7.得tan 2α=516.由于Δ=32cos α(23sin α-cos α)>0,故tan α=54. 所以直线l 的斜率为54.N4 选修4-5 不等式选讲23.N4 已知a ∈R ,设关于x 的不等式|2x -a |+|x +3|≥2x +4的解集为A . (1)若a =1,求A ;(2)若A =R ,求a 的取值范围.23.解:(1)当x ≤-3时,原不等式化为-3x -2≥2x +4,综合得x ≤-3.当-3<x ≤12时,原不等式化为-x +4≥2x +4,综合得-3<x ≤0.当x >12时,原不等式为3x +2≥2x +4,得x ≥2.综上,A ={x |x ≤0或x ≥2}.(2)当x ≤-2时,|2x -a |+|x +3|≥0≥2x +4成立.当x >-2时,|2x -a |+|x +3|=|2x -a |+x +3≥2x +4,得x ≥a +1或x ≤a -13,所以a +1≤-2或a +1≤a -13,得a ≤-2,综上,a 的取值范围为a ≤-2.15 A .N4 若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 15A. -2≤a ≤4 本题考查了不等式解法的相关知识,解题的突破口是理解不等式的几何意义.|x -a |+|x -1|≤3表示的几何意义是在数轴上一点x 到1的距离与到a 的距离之和小于或等于3个单位长度,此时我们可以以1为原点找离此点小于或等于3个单位长度的点即为a 的取值范围,不难发现-2≤a ≤4.24.N4已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪⎪⎪f x -2f ⎝ ⎛⎭⎪⎫x 2≤k 恒成立,求k 的取值范围.24.解:(1)由|ax +1|≤3得-4≤ax ≤2. 又f (x )≤3的解集为{x |-2≤x ≤1},所以 当a ≤0时,不合题意. 当a >0时,-4a ≤x ≤2a,得a =2.(2)记h (x )=f (x )-2f ⎝ ⎛⎭⎪⎫x 2,则h (x )=⎩⎪⎨⎪⎧1, x ≤-1,-4x -3, -1<x <-12,-1, x ≥-12,所以|h (x )|≤1,因此k ≥1.24.N4已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含,求a 的取值范围. 24.解:(1)当a =-3时,f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4; 所以f (x )≥3的解集为{x |x ≤1}∪{x |x ≥4}. (2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |. 当x ∈时,|x -4|-|x -2|≥|x +a | ⇔4-x -(2-x )≥|x +a | ⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值范围为.21 D .N4 已知实数x ,y 满足:|x +y |<13,|2x -y |<16,求证:|y |<518.21D .证明:因为3|y |=|3y |=|2(x +y )-(2x -y )|≤2|x +y |+|2x -y |, 由题设知|x +y |<13,|2x -y |<16,从而3|y |<23+16=56,所以|y |<518.10.N4 不等式|2x +1|-2|x -1|>0的解集为________.10.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >14考查解含绝对值不等式,此题的关键是转化为|2x +1|>2|x -1|,再两边平方,轻松求解.不等式转化为|2x +1|>2|x -1|,两边平方得(2x +1)2>4(x -1)2,化简得4x >1,解得x >14,故解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >14.6.N4 设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +cx +y +z=( )A.14B.13C.12D.346.C 由柯西不等式得(a 2+b 2+c 2)(x 2+y 2+z 2)=10³40≥(ax +by +cz )2=202,显然上式应取等号,此时a =kx ,b =ky ,c =kz ,则a 2+b 2+c 2=k 2(x 2+y 2+z 2)=40k 2=10,得k =12(舍去负值),所以a +b +c x +y +z =a x =k =12.故选C. 9.N4 不等式|x +2|-|x |≤1的解集为________.9.⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-12 当x ≤-2,不等式化为:-x -2+x ≤1,即-2≤1恒成立,所以此时解集为:{x |x ≤-2};当-2<x ≤0时,不等式化为:x +2+x ≤1,解得x ≤-12,所以不等式的解集是:⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-2<x ≤-12.当x >0时,不等式化为:x +2-x ≤1,即2≤1,此时解集为空集.综上,不等式的解集为:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-12. 21C. N4 已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为. (1)求m 的值;(2)若a ,b ,c ∈R ,且1a +12b +13c =m ,求证:a +2b +3c ≥9.21C. 解:(1)因为f (x +2)=m -|x |,f (x +2)≥0等价于|x |≤m , 由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }. 又f (x +2)≥0的解集为,故m =1.(2)由(1)知1a +12b +13c=1,又a ,b ,c ∈R ,由柯西不等式得a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c ≥⎝⎛⎭⎪⎫a ²1a+2b ²12b+3c ²13c 2=9. N5 选修4-7 优选法与试验设计。
G立体几何G1 空间几何体的结构9.G1设四面体的六条棱的长分别为1,1,1,1,2和a,且长为a的棱与长为2的棱异面,则a的取值范围为( )A.(0,2) B.(0,3)C.(1,2) D.(1,3)图1-29.A 如图1-2所示,设AB=a,CD=2,BC=BD=AC=AD=1,则∠ACD=∠BCD=45°,要构造一个四面体,则△ACD与共面BCD不能重合,当△BCD与△ACD重合时,a=0;当A、B、C、D四点共面,且A、B两点在DC的两侧时,在△ABC中,∠ACB=∠ACD+∠BCD =45°+45°=90°,AB=AC2+BC2=2,所以a的取值范围是(0,2).8.G1、G2将正方体(如图1-3①所示)截去两个三棱锥,得到图②所示的几何体,则该几何体的左视图为( )图1-3图1-48.B 分析题目中截几何体所得的新的几何体的形状,结合三视图实线和虚线的不同表示可知对应的左视图应该为B.15.G1、G12若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则________(写出所有正确结论的编号).①四面体ABCD每组对棱相互垂直;②四面体ABCD每个面的面积相等;③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180°;④连接四面体ABCD每组对棱中点的线段相互垂直平分;⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长.15.②④⑤ 如图,把四面体ABCD 放入长方体中,由长方体中相对面中相互异面的两条面对角线不一定相互垂直可知①错误;由长方体中△ABC ≌△ABD ≌△DCB ≌△DCA ,可知四面体ABCD 每个面的面积相等,同时四面体ABCD 中过同一顶点的三个角之和为一个三角形的三个内角之和,即为180°,故②正确,③错误;长方体中相对面中相互异面的两条面对角线中点的连线相互垂直,故④正确;从四面体ABCD 每个顶点出发的三条棱可以移到一个三角形中,作为一个三角形的三条边,故⑤正确.答案为②④⑤.5.G1 一个高为2的圆柱,底面周长为2π,该圆柱的表面积为________. 5.6π 考查圆柱的表面积,利用圆的周长求得圆柱的底面半径. 由圆柱的底面周长可得底面圆的半径,2πr =2π,∴r =1, 得圆柱的表面积S =2πr 2+2πh =2π+4π=6π.19.G1、G11 如图1-1,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =π2,AB =2,AC =23,PA =2,求:图1-1(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示). 19.解:(1)S △ABC =12×2×23=23,图1-2三棱锥P -ABC 的体积为V =13S △ABC ×PA =13×23×2=433. (2)取PB 的中点E ,连接DE 、AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2, cos ∠ADE =22+22-22×2×2=34,所以∠ADE =arccos 34.因此,异面直线BC 与AD 所成的角的大小是arccos 34.G2 空间几何体的三视图和直观图10.G2 一个几何体的三视图如图1-2所示(单位:m),则该几何体的体积为________m 3.图1-210.30 由三视图可得该几何体为两个直四棱柱的组合体,其体积V =3×4×2+12(1+2)×1×4=30.13.G2 一个几何体的三视图如图1-3所示,则该几何体的体积为________.图1-313.12+π 本小题主要考查三视图和体积公式.解题的突破口为通过观察分析三视图,得出几何体的形状,是解决问题的根本.由三视图可知, 几何体是一个长方体与一个圆柱构成的组合体,所以该几何体的体积为V =V 长方体+V 圆柱=4×3×1+π×12×1=12+π.7.G2 如图1-2,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )图1-3A .6B .9C .12D .187.B 根据三视图可知该几何体是三棱锥,其底面是斜边长为6的等腰直角三角形(斜边上的高为3),有一条长为3的侧棱垂直于底面,所以该几何体的体积是V =13×12×6×3×3=9,故选B.3. G2、G7 已知某三棱锥的三视图(单位:cm)如图1-1所示,则该三棱锥的体积是( ) A .1 cm 3B .2 cm 3C .3 cm 3D .6 cm 3图1-13.A 本题考查三棱锥的三视图与体积计算公式,考查学生对数据的运算能力和空间想象能力.由三视图可知,该几何体为一个正三棱锥,则V =13Sh =13×12×1×2×3=1.8.G1、G2将正方体(如图1-3①所示)截去两个三棱锥,得到图②所示的几何体,则该几何体的左视图为( )图1-3图1-48.B 分析题目中截几何体所得的新的几何体的形状,结合三视图实线和虚线的不同表示可知对应的左视图应该为B.15.G2已知某几何体的三视图如图1-4所示,则该几何体的体积为________.图1-41-515. 12 π由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是V =π×22×1×2+π×12×4=12π.7.G2 某几何体的三视图如图1-1所示,它的体积为( )图1-1A .72πB .48πC .30πD .24π7.C 根据三观图知该几何体是由半球与圆锥构成,球的半径R =3,圆锥半径R =3,高为4,所以V 组合体=V 半球+V 圆锥=12×43π×33+13π×32×4=30π,所以选择C.4.G2 一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( ) A .球 B .三棱锥 C .正方体 D .圆柱4.D 球的三视图大小、形状相同,三棱锥的三视图也可能相同,正方体三种视图也相同,只有D 不同.12.G2、G7 某几何体的三视图如图1-2所示,则该几何体的体积等于________.图1-212.56 如图,根据三视图还原的实物图为底面是直角梯形的直四棱柱,其体积为V =Sh =12()2+5×4×4=56.7.G2、G7 某三棱锥的三视图如图1-4所示,该三棱锥的表面积是( )图1-4A .28+6 5B .30+6 5C .56+12 5D .60+12 57.B 本题考查三棱锥的三视图与表面积公式.由三视图可知,几何体为一个侧面和底面垂直的三棱锥,如图所示,可知S 底面=12×5×4=10,S 后=12×5×4=10, S 左=12×6×25=65, S 右=12×4×5=10,所以S 表=10×3+65=30+6 5.4.G2 某几何体的正视图和侧视图均如图1-1所示,则该几何体的俯视图不可能...是( )图1-14.C 本题考查三视图,意在考查考生三视图的辨析,以及对三视图的理解和掌握.选项A, B, D,都有可能,选项C的正视图应该有看不见的虚线,故C是不可能的.本题由于对三视图的不了解,易错选D,三视图中看不见的棱应该用虚线标出.7.G2若一个几何体的三视图如图1-2所示,则此几何体的体积为( )A.11 2B.5C.9 2D.4图1-27.D 该几何体是直六棱柱,由左视图知其高为1,由主视图和俯视图知其底面面积S =(1+3)×1=4,因此其体积为4,故选D.G3 平面的基本性质、空间两条直线G4空间中的平行关系19.G4、G5如图1-6,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.图1-6(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.19.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)证法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC,又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC,又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.证法二:延长AD,BC交于点F,连接EF.因为CB=CD,∠BCD=120°.所以∠CBD=30°.因为△ABD 为正三角形.所以∠BAD =60°,∠ABC =90°, 因此∠AFB =30°, 所以AB =12AF .又AB =AD ,所以D 为线段AF 的中点.连接DM ,由点M 是线段AE 的中点, 因此DM ∥EF .又DM ⊄平面BEC ,EF ⊂平面BEC , 所以DM ∥平面BEC .18.G4、G7 如图1-5,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′; (2)求三棱锥A ′-MNC 的体积.(锥体体积公式V =13Sh ,其中S 为底面面积,h 为高)图1-518.解:(1)(证法一)连结AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱,所以M 为AB ′中点,又因为N 为B ′C ′的中点,所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′,AC ′⊂平面A ′ACC ′,因此MN ∥平面A ′ACC ′.(证法二)取A ′B ′中点P ,连结MP ,NP ,M 、N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′,所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′, 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′,而MN ⊂平面MPN . 因此MN ∥平面A ′ACC ′. (2)(解法一)连结BN ,由题意A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′, 所以A ′N ⊥平面NBC . 又A ′N =12B ′C ′=1,故V A ′-MNC =V N -A ′MC =12V N -A ′BC =12V A ′-NBC =16.(解法二)V A ′-MNC =V A ′-NBC -V M -NBC =12V A ′-NBC =16.16.G4、G5、G7 如图1-9(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图1-9(2).(1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由.图1-916.解:(1)证明:因为D ,E 分别为AC ,AB 的中点, 所以DE ∥BC . 又因为DE ⊄平面A 1CB ,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE,所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如下图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP,由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.16.G4、G5如图1-4,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.图1-416.证明:(1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC,又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.5.G4、G5设l是直线,α,β是两个不同的平面( )A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.B 本题考查了线面、面面平行,线面、面面垂直等简单的立体几何知识,考查学生对书本知识的掌握情况以及空间想象、推理能力.对于选项A,若l∥α,l∥β,则α∥β或平面α与β相交;对于选项B,若l∥α,l⊥β,则α⊥β;对于选项C,若α⊥β,l⊥α,则l∥β或l在平面β内;对于选项D,若α⊥β,l∥α,则l与β平行、相交或l在平面β内.G5空间中的垂直关系19.G5如图1-7,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=42,DE=4,现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合于点G,得到多面体CDEFG.(1)求证:平面DEG ⊥平面CFG ; (2)求多面体CDEFG 的体积.图1-719.解:(1)证明:因为DE ⊥EF ,CF ⊥EF ,所以四边形CDEF 为矩形, 由GD =5,DE =4,得GE =GD 2-DE 2=3.由GC =42,CF =4,得FG =GC 2-CF 2=4,所以EF =5. 在△EFG 中,有EF 2=GE 2+FG 2,所以EG ⊥GF , 又因为CF ⊥EF ,CF ⊥FG ,得,CF ⊥平面EFG ,所以CF ⊥EG ,所以EG ⊥平面CFG ,即平面DEG ⊥平面CFG . (2)如图,在平面EGF 中,过点G 作GH ⊥EF 于点H ,则GH =EG ·GF EF =125.因为平面CDEF ⊥平面EFG ,得GH ⊥平面CDEF ,V CDEFG =13S CDEF ·GH =16.14.G5 如图1-4,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是图1-414.90° 因为ABCD -A 1B 1C 1D 1为正方体,故A 1在平面CDD 1C 1上的射影为D 1, 即A 1M 在平面CDD 1C 1上的射影为D 1M ,而在正方形CDD 1C 1中,由tan ∠DD 1M =tan ∠CDN =12,可知D 1M ⊥DN ,由三垂线定理可知,A 1M ⊥DN .20.G5、G6、G10、G11 已知在直三棱柱ABC -A 1B 1C 1中,AB =4,AC =BC =3,D 为AB 的中点.(1)求异面直线CC 1和AB 的距离;(2)若AB 1⊥A 1C ,求二面角A 1-CD -B 1的平面角的余弦值.图1-320.解:(1)因AC =BC ,D 为AB 的中点,故CD ⊥AB .又直三棱柱中,CC 1⊥面ABC ,故CC 1⊥CD ,所以异面直线CC 1和AB 的距离为CD =BC 2-BD 2= 5.(2)解法一:由CD ⊥AB ,CD ⊥BB 1,故CD ⊥面A 1ABB 1,从而CD ⊥DA 1,CD ⊥DB 1,故∠A 1DB 1为所求的二面角A 1-CD -B 1的平面角.因A 1D 是A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1,∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A ,因此AA 1AD =A 1B 1AA 1,得AA 21=AD ·A 1B 1=8. 从而A 1D =AA 21+AD 2=23,B 1D =A 1D =23, 所以在△A 1DB 1中,由余弦定理得cos ∠A 1DB 1=A 1D 2+DB 21-A 1B 212·A 1D ·DB 1=13.解法二:如下图,过D 作DD 1∥AA 1交A 1B 1于D 1,在直三棱柱中,由(1)知DB ,DC ,DD 1两两垂直,以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ).由AB 1→⊥A 1C →得AB 1→·A 1C →=0,即8-h 2=0,因此h =2 2.图1-4故DA 1→=(-2,0,22),DB 1→=(2,0,22),DC →=(0,5,0). 设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即⎩⎨⎧5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1).设平面B 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥DB 1→,即⎩⎨⎧5y 2=0,2x 2+22z 2=0,取z 2=-1,得n =(2,0,-1),所以cos 〈m ,n 〉=m·n |m |·|n |=2-12+1·2+1=13.所以二面角A 1-CD -B 1的平面角的余弦值为13.5.G4、G5 设l 是直线,α,β是两个不同的平面( ) A .若l ∥α,l ∥β,则α∥β B .若l ∥α,l ⊥β,则α⊥β C .若α⊥β,l ⊥α,则l ⊥β D .若α⊥β,l ∥α,则l ⊥β5.B 本题考查了线面、面面平行,线面、面面垂直等简单的立体几何知识,考查学生对书本知识的掌握情况以及空间想象、推理能力.对于选项A ,若l ∥α,l ∥β,则α∥β或平面α与β相交;对于选项B ,若l ∥α,l ⊥β,则α⊥β;对于选项C ,若α⊥β,l ⊥α,则l ∥β或l 在平面β内;对于选项D ,若α⊥β,l ∥α,则l 与β平行、相交或l 在平面β内.20.G4、G5、G11 如图1-5,在侧棱垂直底面的四棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,AD ⊥AB ,AB =2,AD =2,BC =4,AA 1=2,E 是DD 1的中点,F 是平面B 1C 1E 与直线AA 1的交点.(1)证明:(i)EF ∥A 1D 1; (ii)BA 1⊥平面B 1C 1EF ;(2)求BC 1与平面B 1C 1EF 所成的角的正弦值.图1-520.解:(1)证明:(ⅰ)因为C 1B 1∥A 1D 1,C 1B 1⊄平面A 1D 1DA ,所以C 1B 1∥平面A 1D 1DA , 又因为平面B 1C 1EF ∩平面A 1D 1DA =EF , 所以C 1B 1∥EF , 所以A 1D 1∥EF .(ⅱ)因为BB 1⊥平面A 1B 1C 1D 1, 所以BB 1⊥B 1C 1. 又因为B 1C 1⊥B 1A 1, 所以B 1C 1⊥平面ABB 1A 1, 所以B 1C 1⊥BA 1.在矩形ABB 1A 1中,F 是AA 1的中点,tan ∠A 1B 1F =tan ∠AA 1B =22, 即∠A 1B 1F =∠AA 1B , 故BA 1⊥B 1F , 所以BA 1⊥平面B 1C 1EF .(2)设BA 1与B 1F 交点为H ,连结C 1H .由(1)知BA 1⊥平面B 1C 1EF ,所以∠BC 1H 是BC 1与面B 1C 1EF 所成的角. 在矩形AA 1B 1B 中,AB =2,AA 1=2,得BH =46.在直角△BHC 1中,BC 1=25,BH =46,得 sin ∠BC 1H =BH BC 1=3015, 所以BC 1与平面B 1C 1EF 所成角的正弦值是3015.17.G5、G11 如图1-4,在四棱锥P -ABCD 中,底面ABCD 是矩形,AD ⊥PD ,BC =1,PC =23,PD =CD =2.(1)求异面直线PA 与BC 所成角的正切值; (2)证明平面PDC ⊥平面ABCD ;(3)求直线PB 与平面ABCD 所成角的正弦值.图1-417.解:(1)如图所示,在四棱锥P -ABCD 中,因为底面ABCD 是矩形,所以AD =BC 且AD ∥BC ,又因为AD ⊥PD ,故∠PAD 为异面直线PA 与BC 所成的角.在Rt △PDA 中,tan ∠PAD =PDAD=2. 所以,异面直线PA 与BC 所成角的正切值为2.(2)证明:由于底面ABCD 是矩形,故AD ⊥CD ,又由于AD ⊥PD ,CD ∩PD =D ,因此AD ⊥平面PDC ,而AD ⊂平面ABCD ,所以平面PDC ⊥平面ABCD .(3)在平面PDC 内,过点P 作PE ⊥CD 交直线CD 于点E ,连接EB .由于平面PDC ⊥平面ABCD ,而直线CD 是平面PDC 与平面ABCD 的交线,故PE ⊥平面ABCD .由此得∠PBE 为直线PB 与平面ABCD 所成的角.在△PDC 中,由于PD =CD =2,PC =23,可得∠PCD =30°. 在Rt △PEC 中,PE =PC sin30°= 3.由AD ∥BC ,AD ⊥平面PDC ,得BC ⊥平面PDC ,因此BC ⊥PC . 在Rt △PCB 中,PB =PC 2+BC 2=13. 在Rt △PEB 中,sin ∠PBE =PE PB =3913. 所以直线PB 与平面ABCD 所成角的正弦值为3913. 18.G5、G7 直三棱柱ABC -A 1B 1C 1中,AB =AA 1,∠CAB =π2.(1)证明:CB 1⊥BA 1;(2)已知AB =2,BC =5,求三棱锥C 1-ABA 1的体积.图1-718.解:(1)证明:如图,连结AB 1,∵ABC -A 1B 1C 1是直三棱柱,∠CAB =π2,∴AC ⊥平面ABB 1A 1,故AC ⊥BA 1.又∵AB =AA 1,∴四边形ABB 1A 1是正方形, ∴BA 1⊥AB 1,又CA ∩AB 1=A . ∴BA 1⊥平面CAB 1,故CB 1⊥BA 1.(2)∵AB =AA 1=2,BC =5,∴AC =A 1C 1=1, 由(1)知,A 1C 1⊥平面ABA 1,∴VC 1-ABA 1=13S △ABA 1·A 1C 1=13×2×1=23.19.G5、G7 如图1-4,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点. (1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.图1-419.解:(1)证明:由题设知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1. 又DC 1⊂平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,所以∠CDC 1=90°,即DC 1⊥DC .又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC .(2)设棱锥B -DACC 1的体积为V 1,AC =1.由题意得V 1=13×1+22×1×1=12. 又三棱柱ABC -A 1B 1C 1的体积V =1, 所以(V -V 1)∶V 1=1∶1.故平面BDC 1分此棱柱所得两部分体积的比为1∶1.19.G4、G5如图1-6,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.图1-6(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.19.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)证法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC,又因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC,又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC,又MN ∩DN =N , 故平面DMN ∥平面BEC , 又DM ⊂平面DMN , 所以DM ∥平面BEC . 证法二:延长AD ,BC 交于点F ,连接EF . 因为CB =CD ,∠BCD =120°. 所以∠CBD =30°.因为△ABD 为正三角形.所以∠BAD =60°,∠ABC =90°, 因此∠AFB =30°, 所以AB =12AF .又AB =AD ,所以D 为线段AF 的中点.连接DM ,由点M 是线段AE 的中点, 因此DM ∥EF .又DM ⊄平面BEC ,EF ⊂平面BEC , 所以DM ∥平面BEC .19.G5、G7 如图1-7,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是等腰梯形,AD ∥BC ,AC ⊥BD .(1)证明:BD ⊥PC ;(2)若AD =4,BC =2,直线PD 与平面PAC 所成的角为30°,求四棱锥P -ABCD 的体积. 19.解:(1)证明:因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD .图1-8又AC ⊥BD ,PA ,AC 是平面PAC 内的两条相交直线,所以BD ⊥平面PAC .而PC ⊂平面PAC ,所以BD ⊥PC .(2)设AC 和BD 相交于点O ,连结PO ,由(1)知,BD ⊥平面PAC ,所以∠DPO 是直线PD 和平面PAC 所成的角.从而∠DPO =30°.由BD ⊥平面PAC ,PO ⊂平面PAC 知,BD ⊥PO . 在Rt △POD 中,由∠DPO =30°得PD =2OD .因为四边形ABCD 为等腰梯形,AC ⊥BD ,所以△AOD ,△BOC 均为等腰直角三角形.从而梯形ABCD 的高为12AD +12BC =12×(4+2)=3,于是梯形ABCD 的面积S =12×(4+2)×3=9.在等腰直角三角形AOD 中,OD =22AD =22,所以PD =2OD =42,PA =PD 2-AD 2=4. 故四棱锥P -ABCD 的体积为V =13×S ×PA =13×9×4=12.19.G5、G7 某个实心零部件的形状是如图1-7所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A 1B 1C 1D 1-ABCD ,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD -A 2B 2C 2D 2.图1-7(1)证明:直线B 1D 1⊥平面ACC 2A 2;(2)现需要对该零部件表面进行防腐处理.已知AB =10,A 1B 1=20,AA 2=30,AA 1=13(单位:cm),每平方厘米的加工处理费为0.20元,需加工处理费多少元?19.解:(1)因为四棱柱ABCD -A 2B 2C 2D 2的侧面是全等的矩形, 所以AA 2⊥AB ,AA 2⊥AD ,又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD . 根据棱台的定义可知,BD 与B 1D 1共面.又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是 由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1, 又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD -A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S四棱柱上底面+S 四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1-ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形. 所以S 2=S 四棱台下底面+S 四棱台侧面 =(A 1B 1)2+4×12(AB +A 1B 1)h 等腰梯形的高=202+4×12(10+20)132-⎣⎢⎡⎦⎥⎤12-2 =1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元).18.G5、G12 如图1-5所示,在四棱锥P -ABCD 中,AB ⊥平面PAD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△PAD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ;(2)若PH =1,AD =2,FC =1,求三棱锥E -BCF 的体积; (3)证明:EF ⊥平面PAB .图1-518.解:(1)由于AB ⊥平面PAD ,PH ⊂平面PAD , 故AB ⊥PH .又因为PH 为△PAD 中AD 边上的高, 故AD ⊥PH .∵AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD ,∴PH ⊥平面ABCD .(2)由于PH ⊥平面ABCD ,E 为PB 的中点,PH =1,故E 到平面ABCD 的距离h =12PH =12.又因为AB ∥CD ,AB ⊥AD ,所以AD ⊥CD , 故S △BCF =12·FC ·AD =12·1·2=22.因此V E -BCF =13S △BCF ·h =13·22·12=212.(3)证明:过E 作EG ∥AB 交PA 于G ,连接DG . 由于E 为PB 的中点,所以G 为PA 的中点. 因为DA =DP ,故△DPA 为等腰三角形, 所以DG ⊥PA .∵AB ⊥平面PAD ,DG ⊂平面PAD , ∴AB ⊥DG .又∵AB ∩PA =A ,AB ⊂平面PAB ,PA ⊂平面PAB , ∴DG ⊥平面PAB .又∵GE 綊12AB ,DF 綊12AB ,∴GE 綊DF .所以四边形DFEG 为平行四边形,故DG ∥EF . 于是EF ⊥平面PAB .19.G5、G11 如图1-3,长方体ABCD -A 1B 1C 1D 1中,底面A 1B 1C 1D 1是正方形,O 是BD 的中点,E 是棱AA 1上任意一点.(1)证明:BD ⊥EC 1;(2)如果AB =2,AE =2,OE ⊥EC 1,求AA 1的长.图1-319.解:(1)证明:连接AC ,A 1C 1.由底面是正方形知,BD⊥AC.因为AA1⊥平面ABCD,BD⊆平面ABCD,所以AA1⊥BD.又由AA1∩AC=A,所以BD⊥平面AA1C1C.再由EC1⊆平面AA1C1C知,BD⊥EC1.(2)设AA1的长为h,连接OC1.在Rt△OAE中,AE=2,AO=2,故OE2=(2)2+(2)2=4.在Rt△EA1C1中,A1E=h-2,A1C1=2 2.故EC21=(h-2)2+(22)2.在Rt△OCC1中,OC=2,CC1=h,OC21=h2+(2)2.因为OE⊥EC1,所以OE2+EC21=OC21,即4+(h-2)2+(22)2=h2+(2)2,解得h=3 2.所以AA1的长为3 2.16.G4、G5、G7如图1-9(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图1-9(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.图1-916.解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE,所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如下图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP,由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.16.G4、G5如图1-4,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.图1-416.证明:(1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC,又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.19.G5、G7、G11如图1-1,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=22,PA=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.图1-119.解:方法一:(1)证明:因为底面ABCD为菱形,所以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.设AC ∩BD =F ,连结EF .因为AC =22,PA =2,PE =2EC ,故 PC =23,EC =233,FC =2, 从而PC FC=6,AC EC= 6.因为PC FC =AC EC,∠FCE =∠PCA ,所以 △FCE ∽△PCA ,∠FEC =∠PAC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED .(2)在平面PAB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面PAB ⊥平面PBC . 又平面PAB ∩平面PBC =PB , 故AG ⊥平面PBC ,AG ⊥BC .BC 与平面PAB 内两条相交直线PA ,AG 都垂直,故BC ⊥平面PAB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,PD =PA 2+AD 2=2 2.设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD ⊄平面PBC ,BC ⊂平面PBC ,故AD ∥平面PBC ,A 、D 两点到平面PBC 的距离相等,即d =AG = 2.设PD 与平面PBC 所成的角为α,则sin α=d PD =12.所以PD 与平面PBC 所成的角为30°.方法二:(1)以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (22,0,0),D (2,b,0),其中b >0,则P (0,0,2),E ⎝⎛⎭⎪⎫423,0,23,B (2,-b,0). 于是PC →=(22,0,-2),BE →=⎝ ⎛⎭⎪⎫23,b ,23,DE →=⎝ ⎛⎭⎪⎫23,-b ,23,从而PC →·BE →=0,PC →·DE →=0,故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)AP →=(0,0,2),AB →=(2,-b,0).设m =(x ,y ,z )为平面PAB 的法向量,则m ·AP →=0,m ·AB →=0, 即2z =0且2x -by =0, 令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC →=0,n ·BE →=0,即22p -2r =0且2p 3+bq +23r =0, 令p =1,则r =2,q =-2b,n =⎝⎛⎭⎪⎫1,-2b,2.因为面PAB ⊥面PBC ,故m ·n =0,即b -2b=0,故b =2,于是n =(1,-1,2),DP→=(-2,-2,2),cos 〈n ,DP →〉=n ·DP →|n ||DP →|=12,〈n ,DP →〉=60°.因为PD 与平面PBC 所成的角和〈n ,DP →〉互余, 故PD 与平面PBC 所成的角为30°.G6 三垂线定理20.G5、G6、G10、G11 已知在直三棱柱ABC -A 1B 1C 1中,AB =4,AC =BC =3,D 为AB 的中点.(1)求异面直线CC 1和AB 的距离;(2)若AB 1⊥A 1C ,求二面角A 1-CD -B 1的平面角的余弦值.图1-320.解:(1)因AC =BC ,D 为AB 的中点,故CD ⊥AB .又直三棱柱中,CC 1⊥面ABC ,故CC 1⊥CD ,所以异面直线CC 1和AB 的距离为CD =BC 2-BD 2= 5.(2)解法一:由CD ⊥AB ,CD ⊥BB 1,故CD ⊥面A 1ABB 1,从而CD ⊥DA 1,CD ⊥DB 1,故∠A 1DB 1为所求的二面角A 1-CD -B 1的平面角.因A 1D 是A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1,∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A ,因此AA 1AD =A 1B 1AA 1,得AA 21=AD ·A 1B 1=8. 从而A 1D =AA 21+AD 2=23,B 1D =A 1D =23, 所以在△A 1DB 1中,由余弦定理得cos ∠A 1DB 1=A 1D 2+DB 21-A 1B 212·A 1D ·DB 1=13.解法二:如下图,过D 作DD 1∥AA 1交A 1B 1于D 1,在直三棱柱中,由(1)知DB ,DC ,DD 1两两垂直,以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ).由AB 1→⊥A 1C →得AB 1→·A 1C →=0,即8-h 2=0,因此h =2 2.图1-4故DA 1→=(-2,0,22),DB 1→=(2,0,22),DC →=(0,5,0). 设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即⎩⎨⎧5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1).设平面B 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥DB 1→,即⎩⎨⎧5y 2=0,2x 2+22z 2=0,取z 2=-1,得n =(2,0,-1),所以cos 〈m ,n 〉=m·n |m |·|n |=2-12+1·2+1=13.所以二面角A 1-CD -B 1的平面角的余弦值为13.G7 棱柱与棱锥13.G7 如图1-3所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.图1-313.16本题考查棱锥的体积公式,考查空间想象力与转化能力,容易题. VA -DED 1=VE -DD 1A =13×12×1×1×1=16.7.G7 如图1-2,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为________cm 3.图1-27.6 本题考查四棱锥体积的求解以及对长方体性质的运用. 解题突破口为寻找四棱锥的高.连AC 交BD 于点O ,因四边形ABCD 为正方形,故AO 为四棱锥A -BB 1D 1D 的高,从而V =13×2×32×322=6. 3. G2、G7 已知某三棱锥的三视图(单位:cm)如图1-1所示,则该三棱锥的体积是( ) A .1 cm 3B .2 cm 3C .3 cm 3D .6 cm 3图1-13.A 本题考查三棱锥的三视图与体积计算公式,考查学生对数据的运算能力和空间想象能力.由三视图可知,该几何体为一个正三棱锥,则V =13Sh =13×12×1×2×3=1.18.G5、G7 直三棱柱ABC -A 1B 1C 1中,AB =AA 1,∠CAB =π2.(1)证明:CB 1⊥BA 1;(2)已知AB =2,BC =5,求三棱锥C 1-ABA 1的体积.图1-718.解:(1)证明:如图,连结AB 1,∵ABC -A 1B 1C 1是直三棱柱,∠CAB =π2,∴AC ⊥平面ABB 1A 1,故AC ⊥BA 1.又∵AB =AA 1,∴四边形ABB 1A 1是正方形, ∴BA 1⊥AB 1,又CA ∩AB 1=A . ∴BA 1⊥平面CAB 1,故CB 1⊥BA 1.(2)∵AB =AA 1=2,BC =5,∴AC =A 1C 1=1, 由(1)知,A 1C 1⊥平面ABA 1,∴VC 1-ABA 1=13S △ABA 1·A 1C 1=13×2×1=23.19.G5、G7如图1-7,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是等腰梯形,AD ∥BC ,AC ⊥BD .(1)证明:BD ⊥PC ;(2)若AD =4,BC =2,直线PD 与平面PAC 所成的角为30°,求四棱锥P -ABCD 的体积. 19.解:(1)证明:因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD .图1-8又AC ⊥BD ,PA ,AC 是平面PAC 内的两条相交直线,所以BD ⊥平面PAC . 而PC ⊂平面PAC ,所以BD ⊥PC .(2)设AC 和BD 相交于点O ,连结PO ,由(1)知,BD ⊥平面PAC ,所以∠DPO 是直线PD 和平面PAC 所成的角.从而∠DPO =30°.由BD ⊥平面PAC ,PO ⊂平面PAC 知,BD ⊥PO . 在Rt △POD 中,由∠DPO =30°得PD =2OD .因为四边形ABCD 为等腰梯形,AC ⊥BD ,所以△AOD ,△BOC 均为等腰直角三角形.从而梯形ABCD 的高为12AD +12BC =12×(4+2)=3,于是梯形ABCD 的面积S =12×(4+2)×3=9.在等腰直角三角形AOD 中,OD =22AD =22,所以PD =2OD =42,PA =PD 2-AD 2=4. 故四棱锥P -ABCD 的体积为V =13×S ×PA =13×9×4=12.19.G5、G7 某个实心零部件的形状是如图1-7所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A 1B 1C 1D 1-ABCD ,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD -A 2B 2C 2D 2.图1-7(1)证明:直线B 1D 1⊥平面ACC 2A 2;(2)现需要对该零部件表面进行防腐处理.已知AB =10,A 1B 1=20,AA 2=30,AA 1=13(单位:cm),每平方厘米的加工处理费为0.20元,需加工处理费多少元?19.解:(1)因为四棱柱ABCD -A 2B 2C 2D 2的侧面是全等的矩形, 所以AA 2⊥AB ,AA 2⊥AD ,又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD . 根据棱台的定义可知,BD 与B 1D 1共面.又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是 由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1, 又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD -A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S四棱柱上底面+S 四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1-ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形. 所以S 2=S 四棱台下底面+S 四棱台侧面 =(A 1B 1)2+4×12(AB +A 1B 1)h 等腰梯形的高=202+4×12(10+20)132-⎣⎢⎡⎦⎥⎤12-2 =1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元).19.G7、G12 如图1-3所示,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 为棱DD 1上的一点.(1)求三棱锥A -MCC 1的体积;(2)当A 1M +MC 取得最小值时,求证:B 1M ⊥平面MAC .图1-319.解:(1)由长方体ABCD -A 1B 1C 1D 1知,AD ⊥平面CDD 1C 1,∴点A 到平面CDD 1C 1的距离等于AD =1, 又S △MCC 1=12CC 1×CD =12×2×1=1,∴VA -MCC 1=13AD ·S △MCC 1=13.(2)将侧面CDD 1C 1绕DD 1逆时针转90°展开,与侧面ADD 1A 1共面(如图),当A 1,M ,C 共线时,A 1M +MC 取得最小值. 由AD =CD =1,AA 1=2,得M 为DD 1中点.连接C 1M ,在△C 1MC 中,MC 1=2,MC =2,CC 1=2. ∴CC 21=MC 21+MC 2,得∠CMC 1=90°,即CM ⊥MC 1.又由长方体ABCD -A 1B 1C 1D 1知,B 1C 1⊥平面CDD 1C 1,∴B 1C 1⊥CM . 又B 1C 1∩C 1M =C 1,∴CM ⊥平面B 1C 1M ,得CM ⊥B 1M ; 同理可证,B 1M ⊥AM ,又AM ∩MC =M ,∴B 1M ⊥平面MAC .16.G4、G5、G7 如图1-9(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图1-9(2).(1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由.图1-916.解:(1)证明:因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,所以DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD,所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE,所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如下图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP,由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A 1C ⊥DP . 所以A 1C ⊥平面DEP . 从而A 1C ⊥平面DEQ .故线段A 1B 上存在点Q ,使得A 1C ⊥平面DEQ .7.G2、G7 某三棱锥的三视图如图1-4所示,该三棱锥的表面积是( )图1-4A .28+6 5B .30+6 5C .56+12 5D .60+12 57.B 本题考查三棱锥的三视图与表面积公式.由三视图可知,几何体为一个侧面和底面垂直的三棱锥,如图所示,可知S 底面=12×5×4=10,S 后=12×5×4=10, S 左=12×6×25=65, S 右=12×4×5=10,所以S 表=10×3+65=30+6 5.12.G2、G7 某几何体的三视图如图1-2所示,则该几何体的体积等于________.图1-212.56 如图,根据三视图还原的实物图为底面是直角梯形的直四棱柱,其体积为V =Sh =12()2+5×4×4=56.19.G5、G7、G11 如图1-1,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =22,PA =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.图1-119.解:方法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC ,又PA ⊥底面ABCD ,所以PC ⊥BD .设AC ∩BD =F ,连结EF .因为AC =22,PA =2,PE =2EC ,故。
D 数列D1 数列的概念与简单表示法14.D1 已知f (x )=11+x,各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2010=a 2012,则a 20+a 11的值是________.14.135+326 考查数列的递推关系和函数的综合问题,考查考生的推理能力和转化与方程思想.当n 为奇数时,由递推关系可得,a 3=11+1=12,a 5=11+a 3=23,依次可推得a 7=35,a 9=58,a 11=813,又a 2010=a 2012=11+a 2010,由此可得出当n 为偶数的时候,所有的偶数项是相等的,即a 2=…=a 2010=a 2012,其值为方程x =11+x,即x 2+x -1=0的根,解得x =-1±52,又数列为正数数列,所以a 20=-1+52, 所以a 20+a 11=135+326.D2 等差数列及等差数列前n 项和19.D2、D4 已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n . 19.解:(1)由S n =2n 2+n 得 当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1, 当n =1时,也符合 所以a n =4n -1,n ∈N *, 由4n -1=a n =4log 2b n +3得b n =2n -1,n ∈N *.(2)由(1)知a nb n =(4n -1)·2n -1,n ∈N *,所以T n =3+7×2+11×22+…+(4n -1)·2n -1,2T n =3×2+7×22+…+(4n -5)·2n -1+(4n -1)·2n,所以2T n -T n =(4n -1)2n-=(4n -5)2n+5,故T n =(4n -5)2n +5,n ∈N *.12.B2、D2 设函数f (x )=(x -3)3+x -1,{a n }是公差不为0的等差数列,f (a 1)+f (a 2)+…+f (a 7)=14,则a 1+a 2+…+a 7=( )A .0B .7C .14D .21 12.D 记公差为d , 则f (a 1)+f (a 2)+…+f (a 7)=(a 1-3)3+(a 2-3)3+…+(a 7-3)3+(a 1+a 2+…+a 7)-7=(a 4-3d -3)3+(a 4-2d -3)3+…+(a 4+2d -3)3+(a 4+3d -3)3+7a 4-7 =7(a 4-3)3+7×3(a 4-3)+7a 4-7.由已知,7(a 4-3)3+7×3(a 4-3)+7a 4-7=14, 即7(a 4-3)3+7×3(a 4-3)+7(a 4-3)=0, ∴(a 4-3)3+4(a 4-3)=0.因为f (x )=x 3+4x 在R 上为增函数,且f (0)=0, 故a 4-3=0,即a 4=3,∴a 1+a 2+…+a 7=7a 4=7×3=21.21.B12、D2 设函数f (x )=x2+sin x 的所有正的极小值点从小到大排成的数列为{x n }.(1)求数列{x n }的通项公式;(2)设{x n }的前n 项和为S n ,求sin S n .21.解:(1)因为f ′(x )=12+cos x =0,cos x =-12.解得x =2k π±23π(k ∈Z ).由x n 是f (x )的第n 个正极小值点知,x n =2n π-23π(n ∈N *).(2)由(1)可知,S n =2π(1+2+…+n )-23n π=n (n +1)π-2n π3.所以sin S n =sin ⎝⎛⎭⎪⎫nn +π-2n π3.因为n (n +1)表示两个连续正整数的乘积,n (n +1)一定为偶数.所以sin S n =-sin ⎝⎛⎭⎪⎫2n π3.当n =3m -2(m ∈N *)时,sin S n =-sin ⎝ ⎛⎭⎪⎫2m π-43π=-32; 当n =3m -1(m ∈N *)时, sin S n =-sin ⎝ ⎛⎭⎪⎫2m π-23π=32; 当n =3m (m ∈N *)时,sin S n =-sin2m π=0.综上所述,sin S n=⎩⎪⎨⎪⎧-32,n =3m -m ∈N *,32,n =3m -m ∈N *,0,n =3m ()m ∈N *.10.D2 已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________,S n =________.10.1 14n ()n +1 本题考查等差数列的基础量运算.设{a n }的公差为d ,由S 2=a 3可得d =a 1=12,故a 2=a 1+d =1,S n =na 1+nn -2d =14n (n +1).17.D2、D3、K2 在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.17.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8, 解得d =1,q =2, 所以a n =n ,b n =2n -1.(2)分别从{a n },{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2). 故所求的概率P =29.20.D2、D3、D5 已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.20.解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8,解得⎩⎪⎨⎪⎧a 1=2d =-3,或⎩⎨⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7,故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3,记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -+n -2=32n 2-112n +10. 当n =2时,满足此式. 综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.4.D2 在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( ) A .12 B .16 C .20 D .244.B 本小题主要考查等差数列性质的应用.解题的突破口为正确识记性质,应用性质.由等差数列的性质m +n =i +j ,m ,n ,i ,j ∈N *,则a m +a n =a i +a j ,故而a 4+a 8=a 2+a 10=16,答案应该选B.20.D2 已知等差数列{a n }的前5项和为105,且a 10=2a 5. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中不大于72m的项的个数记为b m ,求数列{b m }的前m 项和S m .20.解:(1)设数列{a n }的公差为d ,前n 项和为T n , 由T 5=105,a 10=2a 5,得到⎩⎪⎨⎪⎧5a 1+-2d =105,a 1+9d =a 1+4d ,解得a 1=7,d =7.因此a n =a 1+(n -1)d =7+7(n -1)=7n (n ∈N *). (2)对m ∈N *.若a n =7n ≤72m,则n ≤72m -1.因此b m =72m -1.所以数列{b m }是首项为7,公比为49的等比数列, 故S m =b 1-qm1-q=-49m 1-49=2m-48=72m +1-748. 16.D2、D5 已知等比数列{a n }的公比q =-12.(1)若a 3=14,求数列{a n }的前n 项和;(2)证明:对任意k ∈N +,a k ,a k +2,a k +1成等差数列. 16.解:(1)由a 3=a 1q 2=14及q =-12,得a 1=1,所以数列{a n }的前n 项和S n =1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=2+⎝ ⎛⎭⎪⎫-12n -13.(2)证明:对任意k ∈N +, 2a k +2-(a k +a k +1)=2a 1qk +1-(a 1qk -1+a 1q k )=a 1qk -1(2q 2-q -1),由q =-12得2q 2-q -1=0,故2a k +2-(a k +a k +1)=0.所以,对任意k ∈N +,a k ,a k +2,a k +1成等差数列.16.D2、D3 已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1){a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.16.解:(1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧2a 1+2d =8,2a 1+4d =12.解得a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n . (2)由(1)可得S n =n a 1+a n2=n+2n2=n (n +1). 因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2. 从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去).因此k =6.D3 等比数列及等比数列前n 项和11.D3 首项为1,公比为2的等比数列的前4项和S 4=________.11.15 由等比数列的前n 项和公式得S 4=-241-2=15.14.D3 已知等比数列{a n }为递增数列.若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =________.14.2 本小题主要考查等比数列的概念与性质.解题的突破口为灵活应用等比数列通项变形式,是解决问题的关键.由已知条件{a n }为等比数列,则2(a n +a n +2)=5a n +1⇒2(a n +a n ·q 2)=5a n q ⇒2q 2-5q +2=0⇒q =12或2,又因为{a n }是递增数列, 所以q =2.14.D3 等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________. 14. -2设数列{a n }的公比为q .由S 3+3S 2=0,得4a 1+4a 2+a 3=0,则4a 1+4a 1q +a 1q 2=0.显然a 1≠0,所以4+4q +q 2=0,解得q =-2.7.D3 定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x;③f (x )=|x |;④f (x )=ln|x |.则其中是“保等比数列函数”的f (x )的序号为( ) A .①② B .③④ C .①③ D .②④ 7.C不妨设x n =a n ,且{a n }是公比为q 的等比数列.对于①,由f (x )=x 2,得f x nf x n -1=x 2n x 2n -1 = a 2n a 2n -1=⎝ ⎛⎭⎪⎫a n a n -12 = q 2,所以①符合条件;对于②,由f (x )=2x ,得f x n f x n -1=2x n 2x n -1=2a n 2a n -1=2a n -a n -1,显然不符合条件;对于③,由f (x )=|x |,得f x n f x n -1=|x n ||x n -1|=|a n ||a n -1|=⎪⎪⎪⎪⎪⎪a n a n -1=|q |,符合条件;对于④,由f (x )=ln|x |,得f x n f x n -1=ln|x n |ln|x n -1|=ln|a n |ln|a n -1|,显然也不符合条件.故选C.12.D3 若等比数列{a n }满足a 2a 4=12,则a 1a 23a 5=________.12.14 根据等比数列的性质得:a 2a 4=a 1a 5=a 23,所以a 1a 23a 5=12×12=14. 16.D2、D3 已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1){a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.16.解:(1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧2a 1+2d =8,2a 1+4d =12.解得a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n . (2)由(1)可得S n =n a 1+a n2=n+2n2=n (n +1). 因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2. 从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去).因此k =6.7.D3、B11 有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则lim n →∞(V 1+V 2+…+V n )=________.7.87 考查等比数列和无穷递缩等比数列的极限,此题只要掌握极限公式即可解决,是简单题型.由已知可知V 1,V 2,V 3,…构成新的等比数列,首项V 1=1,公比q =18,由极限公式得lim n →∞ (V 1+V 2+…+V n )=V 11-q=11-18=87. 17.C8、D3 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tan A +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .17.解:(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C , 所以sin B ⎝⎛⎭⎪⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C,因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C , 又A +B +C =π, 所以sin(A +C )=sin B , 因此sin 2B =sin A sinC ,由正弦定理得b 2=ac ,即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.20.D2、D3、D5 已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.20.解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8,解得⎩⎪⎨⎪⎧a 1=2d =-3,或⎩⎨⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7,故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3,记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -+n -2=32n 2-112n +10. 当n =2时,满足此式. 综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.5.D3 公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 B .2 C .4 D .85.A 设等比数列的公比为q ,则由等比中项的性质,得a 3 · a 11 = a 27 = 16,又因为数列{}a n 各项为正数,所以a 7=4.所以a 5q 2=4,即4a 5=4,解得a 5=1.13.D3 等比数列{a n }的前n 项和为S n ,公比不为1,若a 1=1,且对任意的n ∈N ,都有a n +2+a n +1-2a n =0,则S 5=________.13.11 设等比数列的公比为q ,则a 1qn +1+a 1q n -2a 1qn -1=0,∵a 1=1,q ≠0,∴q 2+q -2=0,解得q =-2或q =1(舍去),因此S 5=1--51--=11.6.D3、E1 已知{a n }为等比数列,下面结论中正确的是( )A .a 1+a 3≥2a 2B .a 21+a 23≥2a 22 C .若a 1=a 3,则a 1=a 2 D .若a 3>a 1,则a 4>a 26.B 本题考查等比数列通项、简单不等式性质与均值不等式.对于A 选项,当数列{a n }首项为负值,公比为负值时明显不成立,比如a n =(-1)n,a 1+a 3=-2<2a 2=2,故A 错误;对于B 选项,a 21 + a 23 ≥2|a 1 a 3 | = 2a 22 ,明显成立,故B 正确;对于C 选项,由a 1=a 3=a 1q 2只能得出等比数列公比q 2=1,q =±1,当q =-1时,a 1≠a 2,故C 错误;对于选项D ,由a 3>a 1可得a 1(q 2-1)>0,而a 4-a 2=a 2(q 2-1)=a 1q (q 2-1)的符号还受到q 符号的影响,不一定为正,也就得不出a 4>a 2,故D 错误.17.D2、D3、K2 在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.17.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8, 解得d =1,q =2, 所以a n =n ,b n =2n -1.(2)分别从{a n },{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2). 故所求的概率P =29.20.D3、D5 某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d 的值(用m 表示).20.解:(1)由题意得a 1=2000(1+50%)-d =3000-d ,a 2=a 1(1+50%)-d =32a 1-d =4500-52d . a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d=32⎝ ⎛⎭⎪⎫32a n -2-d -d =⎝ ⎛⎭⎪⎫322a n -2-32d -d=…=⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -2.整理得a n =⎝ ⎛⎭⎪⎫32n -1(3000-d )-2d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1-1=⎝ ⎛⎭⎪⎫32n -1(3000-3d )+2d . 由题意,a m =4000,即⎝ ⎛⎭⎪⎫32m -1(3000-3d )+2d =4000.解得d =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1000⎝ ⎛⎭⎪⎫32m -1=m-2m +13m -2m .故该企业每年上缴资金d 的值为m -2m +13m -2m 时,经过m (m ≥3)年企业的剩余资金为4000万元.D4 数列求和18.D4 若S n =sin π7+sin 2π7+…+sin n π7(n ∈N *),则在S 1,S 2,…,S 100中,正数的个数是( )A .16B .72C .86D .10018.C 考查三角函数的周期和数列求和,以及转化和整体思想,此题的关键是把一个周期看成一个整体来求和.函数f (n )=sinn π7的周期为14,所以S 14=S 28=…=S 98=0,又S 14=S 13,…,S 98=S 97,所以前100项求和中,为正数的有100-14=86个. 11.D4 数列{a n }的通项公式a n =n cosn π2,其前n 项和为S n ,则S 2 012等于( )A .1 006B .2 012C .503D .011.A 本题考查数列求和以及三角函数求值、数列的周期性等,突破点是找到该数列的周期性的规律,再求和.a 1=1cos π2=0, a 2=2cos π=-2, a 3=3cos3π2=0, a 4=4cos2π=4; a 5=5cos5π2=0, a 6=6cos3π=-6, a 7=7cos 7π2=0, a 8=8cos8π2=8. 该数列每四项的和为2,2 012 ÷4=503,所以S 2 012=2×503=1 006.6.D4 已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B.⎝ ⎛⎭⎪⎫32n -1C.⎝ ⎛⎭⎪⎫23n -1D.12n -16.B 本小题主要考查数列前n 项和S n 与通项a n 的关系,解题的突破口是用a n 表示S n .由S n =2a n +1=2(S n +1-S n )得S n +1=32S n ,所以{S n }是以S 1=a 1=1为首项,32为公比的等比数列,所以S n =⎝ ⎛⎭⎪⎫32n -1,故选B.12.D4、D5 数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845 D .1 83012.D 令b n =a 4n -3+a 4n -2+a 4n -1+a 4n , 则b n +1=a 4n +1+a 4n +2+a 4n +3+a 4n +4. 因为a n +1+(-1)na n =2n -1, 所以a n +1=-(-1)n a n +2n -1. 所以a 4n -3=-a 4n -4+2(4n -4)-1,a 4n -2=a 4n -3+2(4n -3)-1, a 4n -1=-a 4n -2+2(4n -2)-1, a 4n =a 4n -1+2(4n -1)-1, a 4n +1=-a 4n +2×4n -1, a 4n +2=a 4n +1+2(4n +1)-1, a 4n +3=-a 4n +2+2(4n +2)-1, a 4n +4=a 4n +3+2(4n +3)-1,所以a 4n +4=a 4n +3+2(4n +3)-1=-a 4n +2+2(4n +2)-1+2(4n +3)-1 =-a 4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1 =a 4n -2×4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1 =a 4n +8, 即a 4n +4=a 4n +8.同理,a 4n +3=a 4n -1,a 4n +2=a 4n -2+8,a 4n +1=a 4n -3.所以a 4n +1+a 4n +2+a 4n +3+a 4n +4=a 4n +a 4n -1+a 4n -2+a 4n -3+16. 即b n +1=b n +16.故数列{b n }是等差数列. 又a 2-a 1=2×1-1,①a 3+a 2=2×2-1,② a 4-a 3=2×3-1,③②-①得a 3+a 1=2;②+③得a 2+a 4=8, 所以a 1+a 2+a 3+a 4=10,即b 1=10.所以数列{a n }的前60项和即为数列{b n }的前15项和,即S 15=10×15+15×142×16=1830.故选D.20.B3、D4、M4 设A 是如下形式的2行3列的数表,满足性质P:a,b,c,d,e,f∈,且a+b+c+d+e+f=0.记r i(A)为A的第i行各数之和(i=1,2),c j(A)为A的第j列各数之和(j=1,2,3);记k(A)为|r1(A)|,|r2(A)|,|c1(A)|,|c2(A)|,|c3(A)|中的最小值.(1)对如下数表A,求k(A)的值;(2)设数表A形如其中-1≤d≤0,求k(A)(3)对所有满足性质P的2行3列的数表A,求k(A)的最大值.20.解:(1)因为r1(A)=1.2,r2(A)=-1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=-1.8,所以k(A)=0.7.(2)r1(A)=1-2d,r2(A)=-1+2d,c1(A)=c2(A)=1+d,c3(A)=-2-2d.因为-1≤d≤0,所以|r1(A)|=|r2(A)|≥1+d≥0,|c3(A)|≥1+d≥0.所以k(A)=1+d≤1.当d=0时,k(A)取得最大值1.(3)任给满足性质P的数表A(如下所示).任意改变A所得数表A*仍满足性质P,并且k(A)=k(A*).因此,不妨设r1(A)≥0,c1(A)≥0,c2(A)≥0.由k(A)的定义知,k(A)≤r1(A),k(A)≤c1(A),k(A)≤c2(A).从而3k(A)≤r1(A)+c1(A)+c2(A)=(a+b+c)+(a+d)+(b+e)=(a+b+c+d+e+f)+(a+b-f)=a +b -f ≤3. 所以k (A )≤1.由(2)知,存在满足性质P 的数表A 使k (A )=1. 故k (A )的最大值为1.19.D2、D4 已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n . 19.解:(1)由S n =2n 2+n 得 当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1, 当n =1时,也符合 所以a n =4n -1,n ∈N *, 由4n -1=a n =4log 2b n +3得b n =2n -1,n ∈N *.(2)由(1)知a nb n =(4n -1)·2n -1,n ∈N *,所以T n =3+7×2+11×22+…+(4n -1)·2n -1,2T n =3×2+7×22+…+(4n -5)·2n -1+(4n -1)·2n,所以2T n -T n =(4n -1)2n- =(4n -5)2n+5,故T n =(4n -5)2n+5,n ∈N *.D5 单元综合20.D5 已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大?20.解:(1)取n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0. 若a 1=0,则S n =0.当n ≥2时,a n =S n -S n -1=0-0=0,所以a n =0(n ≥1). 若a 1≠0,则a 1=2λ.当n ≥2时,2a n =2λ+S n,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=2nλ. 综上,当a 1=0时,a n =0;当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n ,由(1)有,b n =lg 1002n =2-n lg2.所以数列{b n }是单调递减的等差数列(公差为-lg2).b 1>b 2>…>b 6=lg10026=lg10064>lg1=0, 当n ≥7时,b n ≤b 7=lg 10027=lg 100128<lg1=0,故数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项的和最大.20.D5 已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b n a 2n +b 2n,n ∈N *. (1)设b n +1=1+b n a n,n ∈N *,求证:数列⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫b n a n 2是等差数列;(2)设b n +1=2·b n a n,n ∈N *,且{a n }是等比数列,求a 1和b 1的值.20.解:(1)由题设知a n +1=a n +b na 2n +b 2n=1+b na n1+⎝ ⎛⎭⎪⎫b n a n 2=b n +11+⎝ ⎛⎭⎪⎫b n a n 2,所以b n +1a n +1=1+⎝ ⎛⎭⎪⎫b n a n 2,从而⎝⎛⎭⎪⎫b n +1a n +12-⎝ ⎛⎭⎪⎫b n a n 2=1(n ∈N *),所以数列⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫b n a n 2是以1为公差的等差数列.(2)因为a n >0,b n >0,所以a n +b n22≤a 2n +b 2n <(a n +b n )2,从而1<a n +1=a n +b na 2n +b 2n≤ 2. (*) 设等比数列{a n }的公比为q ,由a n >0知q >0.下证q =1. 若q >1,则a 1=a 2q<a 2≤2,故当n >log q2a 1时,a n +1=a 1q n>2,与(*)矛盾;若0<q <1,则a 1=a 2q>a 2>1,故当n >log q 1a 1时,a n +1=a 1q n<1,与(*)矛盾.综上,q =1,故a n =a 1(n ∈N *),所以1<a 1≤ 2.又b n +1=2·b n a n=2a 1·b n (n ∈N *),所以{b n }是公比为2a 1的等比数列.若a 1≠2,则2a 1>1,于是b 1<b 2<b 3.又由a 1=a 1+b n a 21+b 2n得b n =a 1±a 212-a 21a 21-1,所以b 1,b 2,b 3中至少有两项相同,矛盾.所以a 1=2,从而b n =a 1±a 212-a 21a 21-1= 2.所以a 1=b 1= 2.17.D5 已知数列{a n }的前n 项和S n =kc n-k (其中c ,k 为常数),且a 2=4,a 6=8a 3. (1)求a n ;(2)求数列{na n }的前n 项和T n .17.解:(1)由S n =kc n -k ,得a n =S n -S n -1=kc n -kcn -1(n ≥2),由a 2=4,a 6=8a 3,得kc (c -1)=4,kc 5(c -1)=8kc 2(c -1),解得⎩⎪⎨⎪⎧c =2,k =2,所以a 1=S 1=2,a n =kc n -kcn -1=2n (n ≥2),于是a n =2n.(2)T n =∑ni =1ia i =∑ni =1i ·2i,即 T n =2+2·22+3·23+4·24+…+n ·2nT n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1=-2n +1+2+n ·2n +1=(n -1)2n +1+2.19.D5 设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.19.解:(1)由题意有S 1=T 1=2S 1-1.故a 1=2a 1-1. 于是a 1=1. (2)由T n =2S n -n 2得T n -1=2S n -1-(n -1)2,n ≥2.从而S n =T n -T n -1=2a n -(2n -1),n ≥2.由于a 1=S 1=1,故对一切正整数n 都有S n =2a n -(2n -1),① 因此S n -1=2a n -1-(2n -3),n ≥2.② ①-②得a n =2(a n -a n -1)-2,n ≥2. 于是a n =2a n -1+2, 故a n +2=2(a n -1+2),n ≥2. ∵a 1+2=3,∴{a n +2}是以3为首项,2为公比的等比数列. ∴a n =3·2n -1-2.18.D5 已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.18.解:(1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3;由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1. 当n >1时有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1. 于是a 1=1,a 2=31a 1, a 3=42a 2,……a n -1=nn -2a n -2,a n =n +1n -1a n -1.将以上n 个等式两端分别相乘,整理得a n =n n +2.综上,{a n }的通项公式a n =n n +2.22.B14、E9、J3、D5 已知a 为正实数,n 为自然数,抛物线y =-x 2+a n2与x 轴正半轴相交于点A .设f (n )为该抛物线在点A 处的切线在y 轴上的截距.(1)用a 和n 表示f (n ); (2)求对所有n 都有f n -1f n +1≥nn +1成立的a 的最小值;(3)当0<a <1时,比较1f-f+1f-f+…+1f n -fn与6·f -f n +f-f的大小,并说明理由.22.解:(1)由已知得,交点A 的坐标为⎝⎛⎭⎪⎫a n2,0,对y =-x 2+12a n 求导得y ′=-2x ,则拋物线在点A 处的切线方程为y =-2a n⎝⎛⎭⎪⎫x -a n 2,即y =-2a n x +a n .则f (n )=a n. (2)由(1)知f (n )=a n,则f n -1f n +1≥n n +1成立的充要条件是a n≥2n +1.即知,a n≥2n +1对所有n 成立.特别地,取n =1得到a ≥3. 当a =3,n ≥1时,a n=3n=(1+2)n=1+C 1n ·2+…≥2n +1. 当n =0时,a n=2n +1.故a =3时,f n -1f n +1≥nn +1对所有自然数n 均成立.所以满足条件的a 的最小值为3. (3)由(1)知f (k )=a k. 下面证明:1f-f +1f-f+…+1f n -fn>6·f -f n +f -f .首先证明:当0<x <1时,1x -x 2>6x . 设函数g (x )=6x (x 2-x )+1,0<x <1.则g ′(x )=18x ⎝ ⎛⎭⎪⎫x -23.当0<x <23时,g ′(x )<0;当23<x <1时,g ′(x )>0.故g (x )在区间(0,1)上的最小值g (x )min =g ⎝ ⎛⎭⎪⎫23=19>0.所以,当0<x <1时,g (x )>0,即得1x -x 2>6x . 由0<a <1知0<a k<1(k ∈N *),因此1a k-a2k >6a k,从而 1f-f+1f-f+…+1fn -fn=1a -a 2+1a 2-a 4+…+1a n -a2n >6(a +a 2+…+a n) =6·a -a n +11-a=6·f -f n +f -f.23.D5、M2 对于项数为m 的有穷数列{a n },记b k =max{a 1,a 2,…,a k }(k =1,2,…,m ),即b k 为a 1,a 2,…,a k 中的最大值,并称数列{b n }是{a n }的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{a n }的控制数列为2,3,4,5,5,写出所有的{a n }; (2)设{b n }是{a n }的控制数列,满足a k +b m -k +1=C (C 为常数,k =1,2,…,m ),求证:b k =a k (k =1,2,…,m );(3)设m =100,常数a ∈⎝ ⎛⎭⎪⎫12,1.若a n =an 2-(-1)n n +2n ,{b n }是{a n }的控制数列,求(b 1-a 1)+(b 2-a 2)+…+(b 100-a 100).23.解:(1)数列{a n }为:2,3,4,5,1或2,3,4,5,2或2,3,4,5,3或2,3,4,5,4或2,3,4,5,5.(2)因为b k =max{a 1,a 2,…,a k },b k +1=max{a 1,a 2,…,a k ,a k +1}, 所以b k +1≥b k .因为a k +b m -k +1=C ,a k +1+b m -k =C , 所以a k +1-a k =b m -k +1-b m -k ≥0,即a k +1≥a k . 因此,b k =a k .(3)对k =1,2, (25)a 4k -3=a (4k -3)2+(4k -3); a 4k -2=a (4k -2)2+(4k -2);a 4k -1=a (4k -1)2-(4k -1);a 4k =a (4k )2-(4k ).比较大小,可得a 4k -2>a 4k -3.因为12<a <1,所以a 4k -1-a 4k -2=(a -1)(8k -3)<0,即a 4k -2>a 4k -1. a 4k -a 4k -2=2(2a -1)(4k -1)>0,即a 4k >a 4k -2.又a 4k >a 4k -1.从而b 4k -3=a 4k -3,b 4k -2=a 4k -2,b 4k -1=a 4k -2,b 4k =a 4k .因此(b 1-a 1)+(b 2-a 2)+…+(b 100-a 100)=(a 2-a 3)+(a 6-a 7)+…+(a 98-a 99)=∑k =125(a 4k -2-a 4k -1)=(1-a )∑k =125(8k -3)=2525(1-a ).18.D5 已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a 1b 1+a 2b 2+…+a n b n ,n ∈N *,证明T n -8=a n -1b n +1(n ∈N *,n >2).18.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d ,由条件,得方程组⎩⎪⎨⎪⎧ 2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧ d =3,q =2,所以a n =3n -1,b n =2n ,n ∈N *.(2)证明:由(1)得 T n =2×2+5×22+8×23+…+(3n -1)×2n ,①2T n =2×22+5×23+…+(3n -4)×2n +(3n -1)×2n +1.② 由①-②,得-T n =2×2+3×22+3×23+…+3×2n -(3n -1)×2n +1 =-2n 1-2-(3n -1)×2n +1-2 =-(3n -4)×2n +1-8,即T n -8=(3n -4)×2n +1,而当n >2时,a n -1b n +1=(3n -4)×2n +1, 所以,T n -8=a n -1b n +1,n ∈N *,n >2.16.D2、D5 已知等比数列{a n }的公比q =-12.(1)若a 3=14,求数列{a n }的前n 项和;(2)证明:对任意k ∈N +,a k ,a k +2,a k +1成等差数列.16.解:(1)由a 3=a 1q 2=14及q =-12,得a 1=1,所以数列{a n }的前n 项和S n =1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=2+⎝ ⎛⎭⎪⎫-12n -13.(2)证明:对任意k ∈N +,2a k +2-(a k +a k +1)=2a 1q k +1-(a 1q k -1+a 1q k )=a 1q k -1(2q 2-q -1),由q =-12得2q 2-q -1=0,故2a k +2-(a k +a k +1)=0.所以,对任意k ∈N +,a k ,a k +2,a k +1成等差数列.12.D4、D5 数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为() A .3 690 B .3 660C .1 845D .1 83012.D 令b n =a 4n -3+a 4n -2+a 4n -1+a 4n ,则b n +1=a 4n +1+a 4n +2+a 4n +3+a 4n +4.因为a n +1+(-1)na n =2n -1,所以a n +1=-(-1)na n +2n -1.所以a 4n -3=-a 4n -4+2(4n -4)-1,a 4n -2=a 4n -3+2(4n -3)-1,a 4n -1=-a 4n -2+2(4n -2)-1,a 4n =a 4n -1+2(4n -1)-1,a 4n +1=-a 4n +2×4n -1,a 4n +2=a 4n +1+2(4n +1)-1,a 4n +3=-a 4n +2+2(4n +2)-1,a 4n +4=a 4n +3+2(4n +3)-1,所以a 4n +4=a 4n +3+2(4n +3)-1=-a 4n +2+2(4n +2)-1+2(4n +3)-1=-a 4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1=a 4n -2×4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1=a 4n +8,即a 4n +4=a 4n +8.同理,a 4n +3=a 4n -1,a 4n +2=a 4n -2+8,a 4n +1=a 4n -3.所以a 4n +1+a 4n +2+a 4n +3+a 4n +4=a 4n +a 4n -1+a 4n -2+a 4n -3+16.即b n +1=b n +16.故数列{b n }是等差数列.又a 2-a 1=2×1-1,①a 3+a 2=2×2-1,②a 4-a 3=2×3-1,③②-①得a 3+a 1=2;②+③得a 2+a 4=8,所以a 1+a 2+a 3+a 4=10,即b 1=10.所以数列{a n }的前60项和即为数列{b n }的前15项和,即S 15=10×15+15×142×16=1830.故选D.20.D2、D3、D5 已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.20.解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧ 3a 1+3d =-3,a 1a 1+d a 1+2d =8, 解得⎩⎪⎨⎪⎧ a 1=2d =-3,或⎩⎨⎧ a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7,故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列;当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧ -3n +7,n =1,2,3n -7,n ≥3,记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -+n -2=32n 2-112n +10.当n =2时,满足此式.综上,S n =⎩⎪⎨⎪⎧ 4,n =1,32n 2-112n +10,n >1.20.D3、D5 某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d 的值(用m 表示).20.解:(1)由题意得a 1=2000(1+50%)-d =3000-d ,a 2=a 1(1+50%)-d =32a 1-d =4500-52d .a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d =32⎝ ⎛⎭⎪⎫32a n -2-d -d =⎝ ⎛⎭⎪⎫322a n -2-32d -d =… =⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -2. 整理得a n =⎝ ⎛⎭⎪⎫32n -1(3000-d )-2d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1-1 =⎝ ⎛⎭⎪⎫32n -1(3000-3d )+2d . 由题意,a m =4000,即⎝ ⎛⎭⎪⎫32m -1(3000-3d )+2d =4000. 解得d =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1000⎝ ⎛⎭⎪⎫32m -1=m -2m +13m -2m .故该企业每年上缴资金d 的值为m -2m +13m -2m 时,经过m (m ≥3)年企业的剩余资金为4000万元.。
1.(2010·某某)在△ABC 中,角A,B,C 所对的边长分别为a,b,c ,若∠C=120°,2c a = ,则 ( )A.a >bB.a <bC.a=bD.a 与b 的大小关系不能确定解析:因为∠C=120°,2c a =, 所以c 2=a 2+b 2-2abcos C,2a 2=a 2+b 2-2ab (12-),所以a 2-b 2=ab. 因为a >0,b >0,所以0ab a b a b-=>+,所以a >b. 答案:A 2.(2010·某某)在△ABC 中,角A,B,C 所对的边分别为a,b,c ,若2,b=2,sin B+ 2,则角A 的大小为.解析:因为2)24B π+=所以sin()14B π+=,解得.4B π= 由正弦定理sin sin a b A B =得1sin ,2A =即.6A π= 答案:6π 3.(2010·某某)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知1cos 24C =-. (1)求sin C 的值;(2)当a=2,2sin A=sin C 时,求b 及c 的长.解:(1)因为21cos 212sin ,4C C =-=-及0<C <π, 所以10sin C = (2)当a=2,2sin A=sin C 时,由正弦定理,sin sin a c A C =得c=4. 由21cos 22cos 1,4C C =-=-及0<C <π得6cos C =由余弦定理2222cos ,c a b ab C =+-得6b =或26.所以6,4b c ⎧=⎪⎨=⎪⎩或26,4.b c ⎧=⎪⎨=⎪⎩ 4.(2010·某某)△ABC 的面积是30,内角A,B,C 所对边长分别为a,b,c ,12cos 13A =. (1)求AB ·AC;(2)若c-b=1,求a 的值.分析:(1)根据同角三角函数关系,由12cos 13A =得sin A 的值,再根据△ABC 面积公式得bc=156;直接求数量积AB AC •.由余弦定理2222cos ,a b c bc A =+-代入已知条件c-b=1,及bc=156求a 的值.。
专题四 直线与圆锥曲线
一、选择题(每小题7分,共35分)
1.AB 为过椭圆x 2a 2+y 2
b 2=1中心的弦,F (c,0)为它的焦点,则△FAB 的最大面积为( )
A .b 2
B .ab
C .ac
D .bc
2.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( )
A .1条
B .2条
C .3条
D .4条
3.过抛物线y 2=2px (p >0)的焦点F 且倾斜角为60°的直线l 与抛物线在第一、四象限分别
交于A 、B 两点,则|AF ||BF |的值等于( )
A .5
B .4
C .3
D .2
4.已知椭圆C 的方程为x 216+y 2m 2=1 (m >0),如果直线y =22x 与椭圆的一个交点M 在x 轴
上的射影恰好是椭圆的右焦点F ,则m 的值为( )
A .2
B .2 2
C .8
D .2 3
5.已知双曲线x 2a 2-y 2
b
2=1(a >0,b >0)的左焦点为F 1,左、右顶点为A 1、A 2,P 为双曲线上任意一点,则分别以线段PF 1,A 1A 2为直径的两个圆的位置关系为( )
A .相交
B .相切
C .相离
D .以上情况都有可能
二、填空题(每小题6分,共24分)
6.直线y =kx +1与椭圆x 25+y 2
m
=1恒有公共点,则m 的取值范围是__________. 7.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点
A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为____________.
8.(2010·湖北重点中学联考)]如图所示,过抛物线y 2=2px (p >0)的焦点F
的直线l 依次交抛物线及其准线于A ,B ,C 三点,若|BC |=2|BF |,且|AF |
=3,则抛物线的方程是__________.
9.如图,在平面直角坐标系xOy 中,A 1、A 2、B 1、B 2为椭圆x 2a 2+y 2
b 2=
1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于
点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的
离心率为__________.
三、解答题(共41分)
10.(13分)设AB 是过椭圆x 25+y 24
=1的一个焦点的弦,若AB 的倾斜角为60°,求弦AB 的长.
11.(14分)已知直线y =kx -1与双曲线x 2-y 2=1的左支交于A 、B 两点,若另有一条直
线l 经过P (-2,0)及线段AB 的中点Q .
(1)求k 的取值范围;
(2)求直线l 在y 轴上的截距b 的取值范围.
12.(14分)(2010·温州十校模拟)已知椭圆P 的中心O 在坐标原点,焦点在x 轴上,且经
过点A (0,23),离心率为12.
(1)求椭圆P 的方程;
(2)是否存在过点E (0,-4)的直线l 交椭圆P 于点R ,T ,且满足OT OR ∙=167.
若存在,求直线l 的方程;若不存在,请说明理由.
答案
1. D
2. C
3. C
4. B
5. B
6. m ≥1且m ≠5
7. y 2=±8x
8. y 2=3x
9.27-5
10解 依题意,椭圆的一个焦点F 为(1,0),则直线AB 的方程为y =3(x -1), 代入4x 2+5y 2=20,得19x 2-30x -5=0.
设A (x 1,y 1),B (x 2,y 2),
则x 1+x 2=3019,x 1x 2=-519
. ∴|AB |=
(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+3)⎣⎡⎦
⎤⎝⎛⎭⎫30192-4×⎝⎛⎭⎫-519=32519. ∴弦AB 的长为32519
. 11. 解 (1)将y =kx -1代入双曲线方程x 2-y 2=1,
化简,整理,得(1-k 2)x 2+2kx -2=0.
由题设条件⎩⎪⎨⎪⎧ 4k 2+8(1-k 2)>0,-2k 1-k
2<0,-21-k 2>0⇒-2<k <-1.
(2)设A (x 1,y 1)、B (x 2,y 2)、Q (x ,y ),
则x =x 1+x 22=k k 2-1,y =1k 2-1
, ∴直线l 的方程为y =1
2k 2+k -2
(x +2). 令x =0,得b =22k 2+k -2=22⎝⎛⎭⎫k +142-178
. ∵-2<k <-1,u =2k 2+k -2在(-2,-1)上为减函数,∴-1<u <2- 2. 又u ≠0,∴b <-2或b >2+ 2.
12. 解 (1)设椭圆P 的方程为x 2a 2+y 2
b 2=1 (a >b >0),
由题意得b =23,e =c a =12,
∴a =2c ,b 2=a 2-c 2=3c 2,c 2=4,c =2,a =4,
∴椭圆P 的方程为x 216+y 212=1.
(2)假设存在满足题意的直线l .
易知当直线l 的斜率不存在时,OR OT <0不满足题意.
故可设直线l 的方程为y =kx -4,
R (x 1,y 1),T (x 2,y 2).
OR OT =167,∴x 1x 2+y 1y 2=167. 由⎩⎪⎨⎪⎧ y =kx -4x 216+y 212=1,得(3+4k 2)x 2-32kx +16=0,
由Δ>0得,(-32k )2-4(3+4k 2)×16>0,
解得k 2>14.①
∴x 1+x 2=32k 3+4k 2,x 1x 2=163+4k 2
, ∴y 1y 2=(kx 1-4)(kx 2-4)=k 2x 1x 2-4k (x 1+x 2)+16,
故x 1x 2+y 1y 2=163+4k 2+16k 23+4k 2-128k 23+4k 2
+16=167, 解得k 2=1,②
由①②解得k =±1,∴直线l 的方程为y =±x -4.
故存在直线l :x +y +4=0或x -y -4=0满足题意.。