不等式证明和应用
- 格式:doc
- 大小:192.50 KB
- 文档页数:7
三元均值不等式的证明与应用1.三元均值不等式的证明:设a、b、c为非负实数,且不全为0。
根据三元均值不等式的表述,我们要证明以下不等式成立:(a+b+c)/3 ≥ √(abc)证明:我们可以先将不等式两边平方得到以下等价不等式:(a+b+c)²/9 ≥ abc展开得到:(a²+b²+c²+2ab+2ac+2bc)/9 ≥ abc化简得到:a²+b²+c²+2ab+2ac+2bc ≥ 9abc将不等式两边减去2ab、2ac和2bc,得到:a²-2ab+b² +c²-2ac+a² +c²-2bc+b² ≥ 5abc化简得到:(a-b)² + (b-c)² + (c-a)² ≥ 5abc不等式左边是三个数的平方和,而右边是它们的积,由于三个非负实数的平方和≥它们的积,因此不等式成立。
2.三元均值不等式的应用:(1)证明两个数的平均值大于等于它们的几何平均值:设a和b为非负实数,且不全为0。
根据三元均值不等式,有:(a+b)/2 ≥ √(ab)化简得到:a+b ≥ 2√(ab)这就证明了两个数的平均值大于等于它们的几何平均值。
(2)证明两个数的平方和大于等于它们的两倍乘积:设a和b为非负实数,且不全为0。
根据三元均值不等式,有:(a²+b²)/2 ≥ ab化简得到:a²+b² ≥ 2ab这就证明了两个数的平方和大于等于它们的两倍乘积。
(3)求证函数的不等式:设f(x)为一个定义在[a,b]上的连续函数,并且f(x)在[a,b]上不恒为0。
那么根据三元均值不等式可得:∫[a,b]f(x)dx / (b-a) ≥ √(∫[a,b]f²(x)dx / (b-a))这个不等式可以用于证明函数的平均值大于等于它的均方根。
初等不等式证明一、基本不等式及应用基本不等式是指已被人们证明了的较为常用的不等式,它常被当作定理,用于证明其他一些不等式.基本不等式在许多不等式专著中都作过介绍.这里给出几个常用的基本不等式. 1. 平均值不等式设12,,,n a a a ⋅⋅⋅是n 个正实数,记12111n nn H a a a =++⋅⋅⋅+,n G =12n n a a a A n ++⋅⋅⋅+=,n Q =, 分别称n n n n H G A Q 、、、为这n 个正数的调和平均、几何平均、算术平均和平方平均,则有n n n n H G A Q ≤≤≤, 当且仅当12n a a a ==⋅⋅⋅=时取等号.2. 柯西(Cauchy )不等式 设,(1,2,,)i i a b R i n ∈=⋅⋅⋅,则 222111()()()nn ni i i i i i i a b a b ===≤∑∑∑,当数组12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅不全为零时,当且仅当(1,2,,,0)i i b a i n λλ==⋅⋅⋅≠时取等号.3. 排序不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤,则 有1211n n n a b a b a b -++⋅⋅⋅+ (反序和) 1212n i i n i a b a b a b ≤++⋅⋅⋅+ (乱序和) 1122n n a b a b a b ≤++⋅⋅⋅+ (同序和)当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时取等号.4. 琴生(Jensen )不等式设连续函数()f x 的定义域为(,)a b ,如果对于(,)a b 内的任意两个数12,x x ,都有1212()()()22x x f x f x f ++≤, 则称()f x 为(,)a b 上的凸函数.若上式不等式反号,则称()f x 为(,)a b 上的凹函数.若()f x 为(,)a b 上的凸函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≤++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.若为(,)a b 上的凹函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有 12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≥++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.5. 贝努利(Bernoulli )不等式 设1x >-,若0α<,或1α>-,则 (1)1x x αα+≥+. 若01α<<,则(1)1x x αα+≤+.当且仅当0x =时,以上两式均取等号. 6. 赫尔德(H ǒlder )不等式设,,,(1,2,,)i i i a b l R i n +⋅⋅⋅∈=⋅⋅⋅,又,,,R αβλ+⋅⋅⋅∈,且1αβλ++⋅⋅⋅+=,则有1111()()()nn n nii i i i i i i i i ab l a b l αβλαβλ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑,.当且仅当111(1,2,,)kkknnni i ii i i a b l k n a b l=====⋅⋅⋅==⋅⋅⋅∑∑∑时取等号.特别当1nαβλ==⋅⋅⋅==时,有 11111[()]()()()nn n nnn i iii i i i i i i a b l a b l ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑.7. 切比雪夫(Chebyshev)不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≥≥⋅⋅⋅≥,则有111111()()n n ni i i i i i i a b a b n n n ===≥∑∑∑.若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≥≥⋅⋅⋅≥,或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≤≤⋅⋅⋅≤, 则有111111()()n n ni i i i i i i a b a b n n n ===≤∑∑∑.当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时以上两式均取等号.8. 加权幂平均不等式设,(1,2,,)i i a p R i n +∈=⋅⋅⋅,,r s R ∈,且r s <,则111111nnrsrsi i i i i i nn i i i i p a p a p p ====⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪≤⎪⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑, 当且仅当12n a a a ==⋅⋅⋅=时取等号. 9. 其他(1)设,,,,,x y z R αβγ∈,且(21)k αβγπ++=+(k Z ∈),则 i ) 2221cos cos cos ()2yz zx xy x y z αβγ++≤++ 当且仅当sin sin sin yz zx xy αβγ==时取等号.ii ) 22221sin sin sin ()4yz zx xy x y z αβγ++≤++, 当且仅当sin 2sin 2sin 2yz zx xy αβγ==时取等号. (2) 设,,1,2,,,ij x R i j n ∈=⋅⋅⋅则1n i =≥,当且仅当123::::i i i ni x x x x λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(3)设,,,,i i i i x y z l R -⋅⋅⋅∈,22220i i i i x y z l ---⋅⋅⋅-≥,1,2,3,,i n =⋅⋅⋅,则1ni =≤当且仅当::::i i i i x y z l λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(4)两个有用定理定理1 设,,u v R λ+∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,x =,y =i ) 23()61(xy xy xy +---(1)(2)3283()61(x xy xy xy ≤≤+-+-ii )23()61(xy xy xy +---(3)(4)3283()61(y xy xy xy ≤≤+-+-.当且仅当,,u v λ中有两个数相等且不小于第三个数时,(1)、(4)两式取等号;当且仅当,,u v λ中有两个数相等,且不大于第三个数时,(2)、(3)两式取等号.推论1 同定理1条件,有(5)(6)324(1)4(1)164129()219595xy xy xy x xy xy xy xy ---+≤≤++---;(7)(8)324(1)4(1)164129()219595xy xy xy y xy xy xy xy ---+≤≤++---当且仅当u v λ==时,(5)、(6)、(7)、(8)四式取等号.推论2 同定理1条件,有x ≤≤3(11)(12)12728972x y x x-+++≤≤,当且仅当u v λ==时,(9)、(10)、(11)、(12)四式均取等号.定理2 设,,u v R λ∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,w =(10w s ≤≤),则32322323(13)(14)11111111332(2)()(2)()3227272727s s w w s w s w s w s w s s w w s ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于113s 时,(13)式取等号;当且仅当,,u v λ中有两个数相等,且不大于113s 时,(14)式取等号. 推论3 同定理2条件,特别当11s =时,有232223(15)(16)132(12)(1)(12)(1)132********w w w w w w w w uv λ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于13时,(15)式取等号;当且仅当,,u v λ中有两个数相等,且不大于13时,(16)式取等号. 注:在应用定理2与其推论3时,要特别注意120w -≤的情况,有时要对120w -≤和120w -≥分别加以讨论,尤其在0u λν≥时的情况.(一) 算术几何平均值不等式应用例子 例1 已知 ,1,2,i a R i +∈=…,n, 且11nii a==∑,求证()()()()3122311*********n n n n a a a a a a a a n -++⋅⋅⋅++≥+++++ (1) 当且仅当 121n a a a n==⋅⋅⋅==时,(1)式取等号.例2 (20XX 年全国十八所奥赛协作体学校试题)设 ,,,a b c R +∈且 1bc ca ab ++=,求证1abc≤ (2) 提示 由1bc =≥∑知,可证更强式(3)⇔3 (※)例3 (2005,第17届亚太地区数学奥林匹克)设 ,,,x y z R +∈且 8xyz =,则243≥(4) 当且仅当2x y z ===时,(4)式取等号.注:由本题证明中可知,若将条件改为12yz zx xy ++≥,结论也成立.例4 (自创题,2006.12.17) 设,,a b c R +∈,则> (5)例 5 (自创题,1988.10.13)设同一平面上两个凸四边形的边长分别为,,,a b c d 和,,,a b c d '''',面积分别为∆和'∆,那么aa bb cc dd ''''+++≥ (6) 当且仅当这两个凸四边形都内接于圆(不一定要同一个圆),且 ()()()s a s a s b ''--=-⋅()()()()()s b s c s c s d s d ''''''-=--=--时,(6)式取等号. 这里1()2s a b c d =+++,1()2s a b c d '''''=+++.附: 凸四边形ABCD 四边长分别为AB a =,BC b =,CD c =,DA d =,当且仅当此四边形ABCD 内接于圆时,其面积最大,最大值为max ()ABCD S =(7)例6 (自创题,2006.12.26)设,,,a b c d R -∈,则32222()4[()()()()]a a c d b d a c a b d b c ≥+++++++∑ (8)当且仅当a c =,b d =时,(8)式取等号.例7 设,,x y z R -∈,求证 25()81x xyz x ≥⋅∑∑ (9)当且仅当x y z ==时,(9)式取等号.(二) 柯西不等式应用例子 例1 设,i i x y R ∈,1,2,,i n =⋅⋅⋅,且10nii x=≥∑,10ni i y =≥∑,10i j i j nx x ≤<≤≥∑,10i j i j ny y ≤<≤≥∑,1ni i x x ==∑,则1()niii x x y=-≥∑ (1)yxdc baDCBA当且仅当1212n nx x x y y y ==⋅⋅⋅= 时,(1)式取等号. 在(1)式中,当3n =时,被人们称之为“母不等式”.即以下 命题1:设123123,,,,,x x x y y y R ∈,且10x≥∑,10y ≥∑,120x x ≥∑,120y y ≥∑,则231()xx y +≥∑ (2)当且仅当312123x x x y y y ==时,(2)式取等号. 命题1应用如下:1.(匹多不等式)ABC ∆与'''A B C ∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2222()16ab c a ''-++≥∆∆∑ (3) 当且仅当ABCA B C '''∆∆时,(3)式取等号. 提示:取222x a b c =-++,2222x a b c ''''=-++等,并应用三角形面积公式.2.(程灵提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()a b c a '-++≥∑ (4)当且仅当ABC ∆与'''A B C ∆均为正三角形时,(4)式取等号.提示:在(2)中取1x a b c '''=-++,1y a b c =-++等,并应用到22bc a-∑∑≥.3.(安振平提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2()()16a b c a b c a ''-++-≥∆∆∑ (5)当且仅当222()()()a b c a a b c b a b c c a b c '''==-++-++-时,(5)式取等号.提示:在(2)中取2221x a b c '''=-++,1()()y a b c a b c =-++-等.4.(自创题,1983.05.07)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()()()16a a b c a b c a b c '''''''-++-++-≥∆∆∑ (6)当且仅当ABCA B C '''∆∆时,(6)式取等号.提示:在(2)中取1()()x a b c a b c =-++-,1()()y a b c a b c ''''''=-++-等. 以上(3)式与(6)式有相同的取等号条件,试讨论他们左边式子的大小.5. 设ABC ∆三边长为,,BC a CA b AB c ===,面积为∆,P 为ABC ∆内部或边界上一点,从P 分别向三边BC 、CA 、AB 所在直线作垂线,垂足分别为D 、E 、F ,记1PD r =,2PE r =,3PF r =,则223242r r bc a∆≤-∑∑∑. (7) 提示:12342()()ar a b c r r ∆==-+++∑∑≥≥.我们还可以由(2)式得到或证明更多不等式.又如第六章,“三角几何不等式”中的例6、例22等.注:类似上述方法,应用赫尔德不等式,有 命题 设x ,,i i i y z R -∈,1,2,3i =,则123123123111222333()()()()x x x y y y z z z x y z x y z x y z ++++++-++≥.(8)例2 (自创题,1988,0.4.20)设,,,,x y z w R λ∈,且0,0xy zw >>,2λ≤,则≤(9)=时,(9)式取等号.注:(9)式可参阅由吴康主编的《奥赛金牌之路》(高中数学)“第一章 §6 三角不等式”(P81—P90),本节系杨学枝所写.利用同上证法可得以下命题(自创题):设,,,x y z w R +∈,(21)k αβγθπ+++=+ ()k z ∈,则sin sin sin sin x y z w αβγθ+++≤(10)当且仅当,cos cos cos cos x y z w αβγθ=== 时,(9)式取等号.(10)式为笔者首创,可参见同上吴康主编的《奥赛金牌之路》(高中数学)P82. 本命题在《中等数学》杂志社组织的数学竞赛命题评奖中,获一等奖.本命题也可参见《中等数学》,1989年第二期,杨学枝文:《对一个三角不等式的再探讨》.例3 a ,i i b R ∈,1,2,,i n =⋅⋅⋅,则1112nnni i i i i i i a b a b n ===≥∑∑∑. (11) 注:(11)式是一个值得关注的不等式,如取3n =时,可证20XX 年中国国家队培训题:,,,,,a b c x y z R ∈,满足()()3a b c x y z ++++=,222222()()4a b c x y z ++++=,求证0ax by cz ++≥.例4 设a,,b c R +∈,且3a b c ++=,则2232a ab ≥+∑. (12)例5 (20XX 年.IMO.46)已知x,y,z ∈R +,且 1xyz ≥,求证525220x x x y z-≥++∑ (13)例6 (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(14)例7 a,b,c 为正数,证明22224()a b c a b a b c b c a a b c-++≥+++++, (15) 当且仅当a c b >>,且a b c a c a b c b==---,即a c b >>且3322b c b c +=时,(15)式取等号.例8 (20XX 年国家集训队测试题)设,,,x y z R -∈且1x y z ++=,求证+≤ (16)例9 (自创题,1987.07.20) 设 ,,,x y z w R +∈,则 ()2918x x x xy xz xw yz yw zw +⋅≥+++++∑∑∑ (17)当且仅当 x y z w === 时,(17)式取等号.注:(17)式可推广为:设 ,1,2,,i x R i n +∈=⋅⋅⋅,则111n ni i i i x x ==⋅≥∑∑()()2212112n i i i ji j jn x n n x x =≤<≤⎛⎫- ⎪⎝⎭--∑∑ (18) 当且仅当12n x x x ==⋅⋅⋅=时,(18)式取等号.若记11ni i s x ==∑,21i j i j ns x x ≤<≤=∑,12n n s x x x =⋅⋅⋅,111n n s s x -=∑,则(18)式可写成如下形式:22212121(2)(1)n n n s s s n n s s n s s -+-≥-.例10 (陈计,2008.08.29提供)对正数,,,a b c d 及0k ≥,有 41a b c d b kd c ka d kb a kc k+++≥+++++. (19)例11 (自创题,2010.11,09)设,,x y z R +∈,求证322x x xy y ≥++∑ (20) 当且仅当1x y z ===时(20)式取等号.注:猜想 设,,x y z R +∈,有322x x xy y ≥++∑322x x xy y≥++∑.例12 设,,,..a b c x y z 非负,且a b c x y z ++=++,则()()()3()ax a x by b y cz c z abc xyz +++++≥+. (21)例13 (第50届IMO 金牌得主林博提出的猜想)设,,0a b c ≥,求证2a ≤∑∑. (22)例14(自创题,2001.02.02)设,,x y z R +∈,且4yz zx xy xyz +++≤,则x y z yz zx xy ++≥++. (23) 注:1.用类似方法,可证以下命题 设,,p q r R -∈,,,x y z R ∈,且14p q r pqr +++≤,则222px qy rz yz zx xy ++≥++. (24) 2. 第48届国际数学奥林匹克中国国家集训队有一道测试题(20XX 年3月)与其相似.题目 设正实数,,u v w满足4u v w ++=,求证u v w ++. (25)x =y =z =,则原命题等价于:,,x y z R +∈,且4yz zx xy xyz +++=,则x y z yz zx xy ++≥++ ① 式证明可见《数学奥林匹克不等式研究》第八章章练习题64中i ).例15(第48届IMO 中国国家集训队测试题)设正数12,,,n a a a ⋅⋅⋅,满足12a a +1n a +⋅⋅⋅+=,求证1212231222223311()()1n n a a a na a a a a a a a a a a a n ++⋅⋅⋅+++⋅⋅⋅+≥++++ (26)例16 已知221,a b kab +-= 221c d kcd +-=,,,,,a b c d k R ∈,且 2k <,求证ac bd -≤(27)当且仅当()()()()22a b c d k k a b c d ---=+++,即bc ad k ac bd +=+时,(27)式取等号.例17. (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(28)3. 其他基本不等式应用例子 例1 设,,x y z R -∈,则4+≤(1)()2x y z ≤++,例2 (自创题,2010.07.03) 若,,a b c 为满足1a b c ++=的正数,19λ≥,则 31()()()(3)3a b c b c a λλλλ+++≥+, (3)推广式,即有以下命题 若12,,,n a a a ⋅⋅⋅为满足11ni i a ==∑的正数,21n λ≥,则 122311()()()()n n a a a n a a a nλλλλ++⋅⋅⋅+≥+, (4) 当且仅当121n a a a n==⋅⋅⋅==时,(4)式取等号.例3 (自创题,2010.07.03)若,,a b c 为满足1abc ≥的正数,23λ≥,则)a b c ≤++, (5)当且仅当1a b c ===时,(5)式取等号.推广式以下命题 若12,,,n a a a ⋅⋅⋅为满足121n a a a ⋅⋅⋅≥的正数,11nλ≥-,则11nni i i a ==≤, (6)当且仅当121n a a a ==⋅⋅⋅==时,(6)式取等号.例4(《不等式研究网站》,“竞赛不等式”专栏,20XX 年1月6日,陈胜利老师提出) 设,,0a b c >,且1abc =,求证2112()3a a ≥+-∑ (7)例5 (王雍熙,2011.08.22提供)设,,a b c R -∈,且2a a ≥∑∑,则31aabc bc +≥+∑∑. (8)本题可推广,见以下例6.例6(自创题,2011.08.22)设i a R -∈,1,2,,i n =⋅⋅⋅,2n ≥,记i a (1,2,,i n =⋅⋅⋅)中每k (1,2,,k n =⋅⋅⋅),个乘积之和为k s ,m 为不大于n 的正整数,且211n ni ii i a a==≥∑∑,则11352411+s 1nn n n ii n n s n s n as s s s n sn --=-⎧⎧++≥+++⋅⋅⋅+⎨⎨⎩⎩∑(为奇数)(为奇数)(为偶数)(为偶数), (9)二、其他方法证明不等式例子例1 (自创题,2006.08.25)设,,x y z R -∈,且2222x y z xyz +++1≤,则 142xyz yz +≥∑, (1)当且仅当12x y z ===,或,,x y z中一个为零,另外二个均等于2时,(1)式取等号.例2(20XX 年全国高中数学联赛A 卷加试题3)给定整数2n >,设正实数12,,,n a a a ⋅⋅⋅满足1,1,2,,k a k n ≤=⋅⋅⋅,记12,1,2,,kk a a a A k n k++⋅⋅⋅+==⋅⋅⋅.求证: 1112nnk k k k n a A ==--<∑∑. (2)例 3 已知123123a a a b b b ++=++,122331122331a a a a a a a a a a a a ++=++,若123123min{,,}min{,,}a a a b b b ≤,求证: 123123max{,,}max{,,}a a a b b b ≤.注. 本例可推广.例4 (自创题,2007.12.28)设,,a b c R +∈,且1bc =∑,则21142a bc ≥-+∑, (3)当且仅当a b c ===时取等号.例5 (宋庆老师在《中学数学研究》(广东),20XX 年第1期,文“两个优美的无理不等式”中提出的猜想) 若,,0a b c >,满足1a b c ===,则≥(4)例6 .(20XX 年,Serbian 数学奥林匹克试题) 已知,,a b c 是正数,且1a b c ++=,证明127131bc a a≤++∑. (5)例7(陈计,2008.05.04提供)设,,a b c R ∈,n N ∈,则 2[()()]4[()][()]n n n b c b c b c bc b c +-≥--∑∑∑. (6)例8 (自创题,2008.05.07)设,,a b c R -∈,求使22222233()()()(2)()b c bc c a ca a b ab abc a b c λλλλ++++++≥+++ 成立的最大正数λ的值.例9 (自创题,2008.08.30)设1122,,,a b a b R ∈,且222221122a b a b m -=-=,则2212211122211221122()()()()()4()()a b a b m a b a b a b a b m a b a b ++-+++≥++-++, (7) 当且仅当22211a b m -=,12a a =,12b b =时,(7)式取等号.例10 (江苏高三学生顾振同学2010.08.06提供)设,,x y z R -∈,且2221x y z ++=,则411x yzx xyz≤--∑∑∑ , (8)当且仅当3x y z ===,或,,x y z中,有一个为零,其余两个都等于2时,(8)式取等号.例11 (自创题,2005.12.04)设,,a b c R +∈,且1a b c ++=,则3)5)1080abc abc bc -+≥∑ (9)当且仅当13a b c ===,或,,a b c中有一个等于33-,另外两个都等于6时,(9)式取等号.例12(自创题,2007.09.18)设,,a b c R +∈,且1a b c ++=,则271481abc a-≤∑ (10)当且仅当13a b c ===,或,,a b c 中一个等于23,其余两个都等于16时,(10)式取等号.例13 (美国,Pham Kim Hung )设,,a b c 是三角形三边长,则222a b a b a≥+∑∑∑, (11) 当且仅当ABC ∆为正三角形时,(11)式取等号.例14 “奥数之家”2010.03.31,“476934847”提出: 设,,a b c R +∈,则22222()3a b c a c b c a a b c -++≥+++. (12)例15 假设P 、Q 、R 分别是ABC 的三边BC 、CA 、AB 上三点,且满足13AQ AR BR BP CP CQ +=+=+=,则12PQ QR RP ++≥(13)注:1. 关于本题,有其深刻的背景,可参阅杨之所著《初等数学研究的问题和课题》P297~298;或参阅《数学通讯》1991年第2期“问题征解”栏目杨学枝解答及编者评语;或参阅《中学数学教学参考》(陕西),1992年第6期,杨学枝文《一个几何不等式的再加强》;或参阅《数学通讯》1996年第10期,杨学枝文《从一道命题谈起》:也可以参阅杨学枝主编《不等式研究》(西藏人民出版社,2000年6月出版)一书中杨路教授写的“序”;还可以参阅杨学枝著《数学奥林匹克不等式研究》(哈尔滨工业大学出版社,20XX 年8月出版)一书中杨路教授写的“序”;还可以参见《UNIV, BEOGRAD. PUBL. ELEKTKOTEHN.FAKser. Mat.4(1993).25~27.陈计与杨学枝文:《ON A ZIRAKZADEH INEQUALITY RELATED TO TWO TRIANGLES INSCRIBED ONE IN THE OTHER 》.2. 由以上所得重要不等式1()()(cos cos cos )3QR RP PQ a b c a b c A B C ++≥++-++++(14) 可得较(13)式更强的不等式33339()()8QR RP PQ BC CA AB ++≥++ (15)3. 《福建中学数学》,1996年第4期.杨学枝文:《对一道猜想题的证明》中,用与(13)式的类似证法,给出了2221()4RP PQ PQ QR QR RP BC CA AB ⋅+⋅+⋅≥++ (16)其中,,P Q R 分别为,,BC CA AB 边上的周界中点.。
积分不等式的证明方法及其应用一、积分不等式的证明方法:1.使用定积分定义证明:对于一个函数f(x),如果在[a,b]上f(x)≥0,那么可以使用定积分的定义进行证明。
将[a,b]分成n个小区间,每个小区间长度为Δx=(b-a)/n,那么对于每个小区间,存在一个ξi ∈ [x_{i-1}, x_i],使得f(ξi)Δx_i≤∫_{x_{i-1}}^{x_i} f(x)dx。
对于所有小区间,将不等式相加并取极限即可得到定积分不等式。
2.使用导数的性质证明:对于一个函数f(x),如果能够表示出它的导数f'(x),那么可以使用导数的性质进行证明。
首先计算f'(x),然后判断f'(x)的正负性,再根据函数在[a,b]上的取值情况,可以得到相应的不等式。
例如,如果f'(x)≥0,那么f(x)在[a,b]上是单调递增的,可以得到∫_a^bf(x)dx≥∫_a^b f(a)dx=f(a)(b-a)。
3.使用恒等式和变量替换证明:对于一个复杂的积分不等式,有时可以通过引入合适的恒等式或进行变量替换来简化证明过程。
例如,对于形如∫_a^b f(x)g(x)dx≥0的不等式,可以通过将f(x)g(x)拆分为两个函数的平方和,然后应用恒等式a^2+b^2≥0进行证明。
或者,可以通过进行变量替换将不等式转化为更简单的形式,然后再进行证明。
二、积分不等式的应用:1.极值问题:2.凸函数与切线问题:3.平均值不等式:平均值不等式是积分不等式的一种特殊情况,它可以用于证明平均值与极值之间的关系。
例如,对于一个连续函数f(x),可以通过证明(1/(b-a))∫_a^b f(x)dx≥ƒ(ξ)来得到平均值与极值之间的关系。
4.泛函分析问题:总结起来,积分不等式的证明方法包括定积分定义证明、导数性质证明、恒等式和变量替换证明等等。
而积分不等式的应用包括解决极值问题、研究凸函数的性质、平均值不等式以及泛函分析问题等。
不等式的性质和应用不等式作为数学中的一个重要概念,广泛应用于数学、物理等领域,它不仅有着严密的证明方法,而且还具有许多重要的性质和应用。
在本文中,我将就不等式的性质和应用进行一些讨论和探究。
一、不等式的性质1.传递性:不等式是具有传递性的。
也就是说,如果a<b,b<c,那么就可以得到a<c。
例如:2<3,3<4,因此2<4。
2.加减性:不等式也有加减性质。
也就是说,如果a<b,则a+c<b+c;如果a>b,则a-c>b-c。
例如:2<4,那么2+1<4+1,即3<5。
3.乘性:不等式也有乘性质。
如果a<b且c>0,则ac<bc;如果a<b且c<0,则ac>bc。
例如:2<4,2×3<4×3,即6<12。
二、不等式的应用1.解不等式:在数学中,我们常常需要解决不等式问题,例如x+5>3。
这时我们可以先把等式左右移位,得到x>-2。
也就是说,x的取值范围是大于-2的所有实数。
2.证明不等式:在数学证明中,我们也经常需要利用不等式的性质证明某些结论。
例如,在证明柯西不等式时,我们可以利用平方和的不等式,证明其正确性。
3.优化问题:不等式还可以用于解决一些优化问题。
例如,在求一个函数的最大值或最小值时,我们可以从不等式的角度出发,利用其性质进行推导和求解。
总之,不等式在数学中起着非常重要的作用,不仅有着严密的证明方法,而且还具有许多重要的性质和应用。
因此,我们在学习数学的过程中,一定要加强对不等式的学习和理解,掌握其性质和应用。
不等式的证明与应用不等式是数学中常见且重要的概念,用于描述数值之间的大小关系。
不等式的证明和应用在数学问题的解决中起到重要的作用。
本文将介绍不等式的基本概念、证明方法和实际应用,以帮助读者更好地理解和运用不等式。
一、不等式的基本概念不等式是数学中用于描述数值之间的大小关系的工具。
形式上,不等式可以写作a<b、a≤b、a>b或a≥b,其中a和b是实数。
不等式中的“<”表示严格小于,即a小于b;“≤”表示小于等于,即a小于或等于b;“>”表示严格大于,即a大于b;“≥”表示大于等于,即a大于或等于b。
根据不等式的性质和形式,可以进行各种运算和推导。
常见的不等式类型包括线性不等式、二次不等式和绝对值不等式等。
对于不等式的解集,可以用数轴或集合的形式表示。
二、不等式的证明方法1. 代入法对于一些简单的不等式,可以通过代入具体数值来验证不等式的成立。
例如,对于不等式x+2>5,当代入x=3时,得到3+2=5,满足不等式。
2. 数学归纳法数学归纳法常用于证明一般性不等式。
首先验证当n=1时不等式成立,然后假设当n=k时不等式成立,接着通过这个假设证明当n=k+1时不等式也成立。
通过归纳证明可以得到不等式在所有自然数范围内成立的结论。
3. 矛盾法矛盾法常用于证明不等式的否命题。
首先假设不等式不成立,然后推导出矛盾的结论,从而得出原始不等式成立的结论。
4. 数学推导根据不等式的性质和运算规则,可以通过多种数学推导方法证明不等式的成立。
例如,可以利用平方差公式、Cauchy-Schwarz不等式等来推导不等式的结果。
三、不等式的应用不等式广泛应用于数学和实际问题中。
以下是不等式在一些典型应用中的例子:1. 几何问题不等式可以应用于几何问题中,例如证明三角形的边长关系、证明凸多边形的面积性质等。
通过不等式分析,可以得出几何结论。
2. 经济学问题在经济学中,不等式可用于描述资源分配、供求关系等问题。
不等式的几种证明方法及其应用不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用.1 利用构造法证明不等式“所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”)52](1[P 在证明不等式的问题中,构造思想方法常有以下几种形式:1.1 构造函数证明不等式构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式.1.1.1 利用判别式在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法.例1 设R z y x ∈,,,证明0)(322≥+++++z y x z y xy x 成立. 解 令22233)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2222)(3)33(4)3(z y z yz y z y +-=++-+=∆知0≤∆,所以0)(≥x f . 故0)(322≥+++++z y x z y xy x 恒成立.对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2)(n n b x a -,由0)(≥x f 得出0≤∆,从而即可得出所需证的不等式.例2 设+∈R d c b a ,,,,且1=+++d c b a ,求证614141414<+++++++d c b a )18](2[P .证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2=4)14141414(282++++++++-x d c b a x (因为1=+++d c b a ).由0)(≥x f 得0≤∆ 即0128)14141414(42≤-+++++++d c b a .所以62414141414<≤+++++++d c b a .1.1.2 利用函数有界性若题设中给出了所证不等式中各个变量的变化范围,可考虑利用函数的有界性来证明,具体做法是将所证不等式视为某个变量的函数.例3 设,1,1,1<<<c b a 求证1->++ca bc ab )18](2[P . 证明 令1)()(+++=ac x c a x f 为x 的一次函数. 因为,1,1<<c a 所以0)1)(1(1)1(>++=+++=c a ac c a f ,0)1)(1(1)()1(>--=+++-=-c a ac c a f .即∀)1,1(-∈x ,恒有0)(>x f .又因为)1,1(-∈b ,所以0)(>b f , 即01>+++ca bc ab . 1.1.3 利用函数单调性在某些问题中,若各种式子出现统一的结构,这时可根据这种结构构造函数,把各种式子看作同一函数在不同点的函数值,再由函数的单调性使问题得到解决.例4 求证121212121111n n n na a a a aa a a a a a a +++≤++++++++++)53](1[P .分析 通过观察可发现式中各项的结构均相似于式子M M +1,于是构造函数xxx f +=1)()0(≥x .证明 构造函数xxx f +=1)( )0(≥x . 因为0)1(1)(2'>+=x x f , 所以)(x f 在),0[+∞上严格递增.令n a a a x +++= 211,n a a a x +++= 212. 因为21x x ≤,所以)()(21x f x f ≤. 所以≤+++++++nn a a a a a a 21211nn a a a a a a +++++++ 21211=+++++na a a a 2111++++++ n a a a a 2121nna a a a ++++ 211nna a a a a a ++++++≤1112211 .1.1.4 利用函数奇偶性 例5 求证221xx x <-)0(≠x .证明 设)(x f 221x x x --=,对)(x f 进行整理得)(x f )21(2)21(xx x -+=, )(x f -=)21(2)21(xx x ---+-=)12(2)12(-+-x x x =)21(2)21(x x x -+=)(x f , 所以)(x f 是偶函数.当0>x 时,12>x ,所以021<-x,所以0)(<x f . 由偶函数的图象关于y 轴对称知,当0<x 时,0)(<x f . 即 当0≠x 时,恒有0)(<x f ,即221xx x <- )0(≠x . 注意 由以上几种情况可以看出,如何构造适当的函数并利用函数的性质来证明不等式是解题的关键.1.2 构造几何图形证明不等式构造几何图形,就是把题中的元素用一些点或线来取代,使题中的各种数量关系得以在图中表现出来,然后借助几何图形的直观性或几何知识来寻求问题的解答.一般是在问题的条件中数量关系有明显的几何意义,或可以通过某种方式与几何形(体)建立联系时宜采用此方法.)52](1[P 这种方法十分巧妙且有效,它体现了数形结合的优越性.下面将具体介绍用几何法证明不等式的几种途径:1.2.1 构造三角形)1](3[P例6 已知z y x ,,为正数,求证22y xy x +++22z xz x ++>22z yz y ++.分析 注意到︒-+=++120cos 22222xy y x y xy x ,于是22y xy x ++可看作是以y x ,为两边,夹角为︒120的三角形的第三边,由此,易得出下面的证明:证 如图1 ,在BC A ∆内取一点O ,分别连接OC OB OA ,,,使图1B︒=∠=∠=∠120COA BOC AOB ,z OC y OB x OA ===,,则22y xy x AB ++=,22z xz x AC ++=,22z yz y BC ++=.由BC AC AB >+, 即得所要证明的不等式.注 该题可做如下推广:已知z y x ,,为正数,πα<<0,πβ<<0,πγ<<0,且πγβα2=++,求证++-22cos 2y xy x α>+-22cos 2z xz x β22cos 2z yz y +-γ,令γβα,,为满足条件的特殊角可设计出一系列的不等式.例7 已知正数k n m c b a ,,,,,满足p k c n b m a =+=+=+,求证2p cm bk an <++. 证明 如图2,构造边长为p 的正三角形ABC ,在边BC AB ,,上依次截取 n FA b CF k EC c BE m DB a AD ======,,,,,.因为ABC FEC DBE ADF S S S S ∆∆∆∆<++所以243434343p bk cm an <++, 即2p cm bk an <++. 1.2.2 构造正方形)1](3[P例8 已知+∈R x ,d c b a ,,,均是小于x 的正数,求证+-+22)(b x a +-+22)(c x b +-+22)(d x c x a x d 4)(22<-+.分析 观察不等式的左边各式,易联想到用勾股定理,每个式子代表一直角三角形的一斜边,且)()()()(d x d c x c b x b a x a -+=-+=-+=-+,所以可构造边长为x 的正方形.证明 如图3,构造边长为x 的正方形ABCD ,在边DA CD BC AB ,,,上 依次截取,a AE =,a x EB -=,d BF =c CG d x FC =-=,,b DHc x GD =-=,,b x HA -=.则四边形EFGH 的周长为+-+22)(b x a +-+22)(c x b +-+22)(d x c 22)(a x d -+.由三角形两边之和大于第三边知,四边形EFGH 的周长小于正方形ABCD 的周长, 从而命题得证.1.2.3 构造矩形图2x-c 图3例9 已知z y x ,,为正数,证明))((z y y x yz xy ++≤+.分析 两个数的乘积,可看作以这两个数为边长的矩形的面积,也可以看成以这两个数为直角边长的三角形面积的两倍.证明 如图4 ,造矩形ABCD ,使,y CD AB ==,x BE =,z EC =设α=∠AED .由AED ECD ABE ABCD S S S S ∆∆∆++=矩形知 =+)(z x y ++yz xy 2121αsin ))((21z y y x ++. 化简得αsin ))((z y y x yz xy ++=+.因为1sin 0≤<α,所以))((z y y x yz xy ++≤+(当且仅当︒=90α时,等号成立).1.2.4 构造三棱锥例10 设,0,0,0>>>z y x 求证22y xy x +->+-+22z yz y 22x zx z +-)129](4[P .分析 注意到22y xy x +-︒-+=60cos 222xy y x ,可以表示以y x ,为边, 夹角为︒60的三角形的第三边,同理22z yz y +-,22x zx z +-也有类似意义.证明 如图5,构造顶点为O 的四面体ABC O -,使︒=∠=∠=∠60AOC BOC AOB ,z OC y OB x OA ===,,,则有22y xy x AB +-=,22z yz y BC +-=,22x xz z AC +-=.在ABC ∆中AC BC AB >+,即得原不等式成立.注 该题还可做如下推广:已知z y x ,,为正数,,0πα<<,0πβ<<πγ<<0时πγβα20<++<且,βαγβα+<<-求证22cos 2y xy x +-α+22cos 2z xz x +-β>22cos 2z yz y +-γ.例10便是当︒===60γβα时的特殊情况.1.3 构造对偶式证明不等式对偶思想是根据矛盾双方既对立又统一的二重性,巧妙地构造对偶数列,从而将问题解决的一种思想.⌒ADCBE y x +图4图5OAC例11 求证1212124321+<-⨯⨯⨯n nn .分析 令=P nn 2124321-⨯⨯⨯ ,由于P 中分子为奇数、分母为偶数,则由奇数的对偶数为偶数可构造出关于P 的一个对偶式Q ,1225432+⨯⨯⨯=n nQ .证明 设=P n n 2124321-⨯⨯⨯ ,构造P 的对偶式Q ,1225432+⨯⨯⨯=n nQ .因为Q P <<0,所以=<PQ P 2)2124321(n n -⨯⨯⨯ 121)1225432(+=+⨯⨯⨯n n n .所以121+<n P ,即原不等式成立.注 构造对偶式的途径很多,本题是利用奇偶性来构造对偶式,此外,还可利用倒数关系、相反关系、对称性关系等来构造对偶式.1.4 构造数列证明不等式这种方法一般用于与自然数有关的不等式证明,当问题无法从正面入手时,可考虑将它转化为数列,然后利用数列的单调性来证明.例12 求证:不等式!21n n ≤-,对任何正整数n 都成立)55](1[P .分析 不等式可变形为,1!21≤-n n n 是正整数,所以可构造数列{},n a 其中1,!211==-a n a n n ,则只需证1a a n ≤即可.对于任意正整数n ,=-+=--+!2)!1(211n n a a n n n n 0)!1(2)1()!1()1(2211≤+-=++---n n n n n n n , 所以{}n a 是递减数列.所以1a a n ≤,即原命题成立.1.5 构造向量证明不等式向量由于其自身的形与数兼备的特性,使得它成了数形结合的桥梁,也是解决一些问题的有利工具.对于某些不等式的证明,若能借助向量模的意义、数量积的性质等,可使不等式得到较易的证明.1.5.1 利用向量模的性质 例13 已知,,,,R d c b a ∈求证++++2222c b b a 2222a d d c +++)(2d c b a +++≥.证明 在原点为O 的直角坐标系内取四个点:()(),,,,c b b a B b a A ++(),,d c b c b a C ++++(),,a d c b d c b a D ++++++则原问题可转化为+,该不等式显然成立.1.5.2 利用向量的几何特征例14 设{}n a 是由正数组成的等比数列,n S 是前n 项和,求证)31](5[12.022.02.0log 2log log P n n n S S S ++>+. 分析 可将上述不等式转化为,212++<⋅n n n S S S 构造向量,用平行四边形的几何特征来证明.证明 设该等比数列的公比为q ,如图6,构造向量(),,11a a OA =(),,1n n qS qS OB +=()()12111,,+++=++=n n n n S S qS a qS a OC ,则OB OA OC +=,故B C A O ,,,构成平行四边形.由于OB OA ,在对角线OC 的两侧,所以斜率OB OA k k ,中必有一个大于OC k ,另一个小于OC k .因为{}n a 是由正数组成的等比数列,所以OA n n OC k S S k =<=++121, 所以OC OB k k <, 即<+1n n S S 21++n n S S . 所以212++<⋅n n n S S S . 此外,还可以利用向量的数量积证明不等式,一般是根据向量的数量积公式θb a =⋅找出不等关系,如b a ≤⋅≤等,然后利用不等关系证明不等式,在此对这种方法不再举例说明.综上所述,利用构造思想证明不等式时,需对题目进行全面分析,抓住可构造的因素,并借助于与之相关的知识,构造出所求问题的具体形式或是与之等价的新问题,通过解决所构造的问题使原问题获得解决.就构造的对象来说它的表现形式是多样的,这就需要我们牢固的掌握基础知识和解题技巧,综合运用所学知识将问题解决.2 利用换元法证明不等式换元法是数学解题中的一种重要方法,换元的目的是通过换元达到减元,或通过换元得到熟悉的问题形式.换元法主要有以下几种形式:图6O xyABC2.1 三角换元法例15 已知,122≤+y x 求证2222≤-+y xy x .证明 设θθsin ,cos r y r x ==()10≤≤r ,则=-+222y xy x θθθθ22222sin sin cos 2cos r r r -+θθθ222sin 2sin cos -+=r224sin 22sin 2cos 222≤≤⎪⎭⎫ ⎝⎛+=+=r r r πθθθ.注 这种方法一般是已知条件在结构上与三角公式相似时宜采用.若题设为,12=+y x 可设;sin 2,cos θθ==y x 题设为,122=-y x 可设θθtan ,sec ==y x 等.2.2 均值换元法例16 设,1,,,=++∈z y x R z y x 求证31222≥++z y x )12](2[P .证明 设,31α+=x ,31β+=y ,31γ+=z 其中0=++γβα 则 =++222z y x ++2)31(α++2)31(β=+2)31(γ31)(231222≥++++++γβαγβα(当且仅当γβα==时取等号).2.3 增量换元法这种方法一般用于对称式(任意互换两个字母顺序,代数式不变)和给定字母顺序的不等式的证明.例17 已知,0>>y x 求证 yx y x -<-)55](6[P .证明 由,0>>y x 可令t y x += )0(>t . 因为2)(2t y yt t y t y +=++<+, 所以t y t y +<+, 即y x y x -<-.总之,证明不等式时适当的引进换元,可以比较容易的找到解题思路,但具体使用何种代换,则因题而异,总的目的是化繁为简.3 利用概率方法证明不等式)51](7[P利用概率方法证明不等式,主要是根据实际问题,构造适当的概率模型,然后利用有关结论解决实际问题.3.1利用概率的性质:对任意事件A ,1)(0≤≤A P ,证明不等式例18 证明若,10,10≤≤≤≤b a 则1+≤+≤ab b a ab .分析 由,10,10≤≤≤≤b a 可把a 看做事件A 发生的概率,b 看做事件B 发生的概率. 证明 设事件A 与B 相互独立,且,)(,)(b B P a A P ==则ab b a B A P B P A P B A P -+=-+=)()()()( .因为,1)(0≤≤B A P 所以10≤-+≤ab b a ,所以1+≤+≤ab b a ab .3.2 利用Cauchy-Schwarz 不等式:2))((ξηE ≤22ηξE E 例19 设0>i a ,0>i b ,,2,1=i …n ,, 则 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .证明 设随机变量ξηηξ,,满足下列要求ξ概率分布:P (ξ=i a )=n 1(n i ,,2,1 =),η概率分布:P (η=i b )=n1(n i ,,2,1 =),ξη概率分布:⎪⎩⎪⎨⎧≠=== )(0)(1)(j i j i nb a P j i ξη, 则 2ξE =∑=n i i a n 121,2ηE =∑=n i i b n 121,)(ξηE =∑=n i i i b a n 11.由2))((ξηE ≤22ηξE E 得 212)(1∑=n i i i b a n ≤)1)(1(1212∑∑==n i i n i i b n a n .即 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .用概率证明不等式比较新颖,开辟了证明不等式的又一途径.但该法用起来不太容易,因为读者必须对概率这部分知识熟悉掌握,才能选择适当的结论加以利用,因此对这种方法只做简单了解即可.4 用微分方法证明不等式在高等数学中我们接触了微分, 用微分方法讨论不等式,为不等式证明方法开辟了新的视野. 4.1利用微分中值定理微分中值定理包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,下面仅给出拉格朗日中值定理、泰勒定理的应用:拉格朗日中值定理)120](8[P 若函数)(x f 在[]b a ,上连续,()b a ,内可导,则在()b a ,内至少存在一点ξ,使得)('ξf =ab a f b f --)()(.例20 已知0>b ,求证b b bb<<+arctan 12. 证明 函数x arctan 在[]b ,0上满足拉格朗日中值定理的条件,所以有b arctan -0arctan =)0()(arctan '-=b x x ξ=21ξ+b,),0(b ∈ξ. 而b bx b <+<+2211ξ, 故原不等式成立.泰勒定理)138](8[P 若函数)(x f 在[]b a , 上有直至n 阶的连续导数,在()b a ,内存在()1+n 阶导函数,则对任意给定的0,x x ()b a ,∈,使得10)1(00)(200''00'0)()!1()()(!)()(!2)())(()()(++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ 该式又称为带有拉格朗日余项的泰勒公式.例21 设函数)(x f 在[]b a ,上二阶可导,且M x f ≤)('',,1,0)2(=-=+a b ba f 试证 4)()(M b f a f ≤+)69](9[P .证明 将函数)(x f 在点20ba x +=展成二阶泰勒公式 ++-+++=)2)(2()2()('b a x b a f b a f x f 2'')2)((21b a x f +-ξ=)2)(2('ba xb a f +-++2'')2)((21b a x f +-ξ. 将b a x ,=代入上式得)21)(2()('b a f a f +-=+)(811''ξf ,)(81)21)(2(')(2''ξf b a f b f ++=. 相加得))()((81)()(2''1''ξξf f b f a f +=+. 取绝对值得))()((81)()(2''1''ξξf f b f a f +≤+≤4M .4.2 利用极值例22 设12ln ->a 为任一常数,求证xeax x <+-122()0>x )188](10[P .证明 原问题可转化为求证012)(2>-+-=ax x e x f x)0(>x .因为0)0(=f ,所以只需证022)('>+-=a x e x f x.由02)(''=-=xe xf 得)('x f 的稳定点2ln =x .当2ln <x 时,0)(''<x f . 当2ln >x 时,0)(''>x f . 所以 02)2ln 1(222ln 22)2(ln )(min ''>+-=+-==>a a f x f x .所以原不等式成立.4.3 利用函数的凹凸性定义)193](10[P )(x f 在区间I 上有定义,)(x f 称为I 上的凸(凹)函数,当且仅当:21,x x ∀∈I ,有)2(21x x f +≤2)()(21x f x f + ()2(21x x f +≥2)()(21x f x f +). 推论)201](10[P 若)(x f 在区间I 上有二阶导数,则)(x f 在I 上为凸(凹)函数的充要条件是:0)(''≥x f (0)(''≤x f ).例23 证明na a a n +++ 21≥n n a a a 21 ),,2,1,0(n i a i =>)125](11[P .证明 令,ln )(x x f =则01)(,1)(2'''<-==xx f x x f ,所以 x x f ln )(=在()+∞,0上是凹函数,对),0(,,,21+∞∈n a a a 有)ln ln (ln 1ln 2121n n a a a nn a a a +++≥⎪⎭⎫ ⎝⎛+++ ,所以na a a n +++ 21≥nn a a a 21.例24 对任意实数,,b a 有)(212b ab a e e e+≤+)80](12[P .证明 设xe xf =)(,则),(,0)(''+∞-∞∈>=x e x f x,所以)(x f 为),(+∞-∞上凸函数.从而对b x a x ==21,有2)()()2(b f a f b a f +≤+. 即)(212b ab a e e e+≤+. 5 利用几个著名的不等式来证明不等式5.1 均值不等式)133](4[P定理 1 设n a a a ,,,21 是n 个正数,则)()()()(n Q n A n G n H ≤≤≤称为均值不等式,其中,111)(21na a a nn H +++=,)(21n n a a a n G =,)(21na a a n A n+++=na a a n Q n22221)(+++=分别称为n a a a ,,,21 的调和平均值,几何平均值,算术平均值,均方根平均值.例25 已知,10<<a ,02=+y x 求证812log )(log +≤+a yx a a a . 证明 由,10<<a ,0,0>>yxa a 有y x y x y x a a a a a +=⋅≥+22,从而得22log )2(log )(log yx a a a a y x a y x a ++=≤++, 故现在只需证812≤+y x 或 41≤+y x 即可. 而4141)21(22≤+--=-=+x x x y x (当21=x 时取等号),所以812log )(log +≤+a yx a a a .5.2 Cauchy 不等式 定理2)135](4[P 设),,2,1(,n i R b a i i =∈,则∑∑∑===≥⋅n i ni i i ni ii b a ba 121122,)(当且仅当nn a b a b a b === 2211时等号成立. 例26 证明三角不等式 2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ≤2112⎪⎭⎫ ⎝⎛∑=ni i a +2112⎪⎭⎫ ⎝⎛∑=ni i b )33](12[P .证明 因为∑=+ni i ib a12)(=∑=+ni i i i a b a 1)(+∑=+ni i i i b b a 1)(根据Cauchy 不等式,可得∑=+ni i i ia b a1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i n i i i a b a . (1)∑=+ni i i i b b a 1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i ni i ib b a . (2) 把(1)(2)两个式子相加,再除以2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ,即得原式成立.5.3 Schwarz 不等式Cauchy 不等式的积分形式称为Schwarz 不等式. 定理3)271](10[P )(),(x g x f 在[]b a ,上可积,则⎰⎰⎰≤b ababadx x g dx x f dx x g x f .)()())()((222若)(),(x g x f 在[]b a ,上连续,其中等号当且仅当存在常数βα,,使得)()(x g x f βα≡时成立(βα,不同时为零).例27 已知)(x f 在[]b a ,上连续,,1)(=⎰badx x f k 为任意实数,求证2)cos )((⎰bakxdx x f 1)sin )((2≤+⎰b akxdx x f )272](10[P .证明 上式左端应用Schwarz 不等式得2)cos )((⎰bakxdx x f 2)cos )(()(⎥⎦⎤⎢⎣⎡=⎰badx kx x f x f⎰⎰⋅≤babakxdx x f dx x f 2cos )()(⎰=bakxdx x f 2cos )(. (1)同理2)sin )((⎰bakxdx x f ⎰≤bakxdx x f 2sin )(. (2)由(1)+(2)即得原不等式成立. 5.4 利用W.H.Young 不等式 定理4)288](10[P 设)(x f 单调递增,在),0[+∞上连续,,0)0(=f )(,0,1x fb a ->表示)(x f 的反函数,则⎰⎰-+≤bady y f dx x f ab 010,)()(其中等号当且仅当b a f =)(时成立.例28 设,0,>b a ,1>p ,111=+qp 试证q b p a ab q p +≤)290](10[P .证明 因为,1>p 所以1)(-=p xx f 单调递增且连续 (当0≥x 时),1111)(---==q p y yy f )111(-=-q p . 应用W.H.Young 不等式有 qb p a dy y f dx x f ab qp ba+=+≤⎰⎰-01)()(.。
不等式的证明与应用不等式是数学中一个重要的概念,广泛应用于各个领域,包括代数、几何、不等式方法、不等式证明等。
本文将讨论不等式的证明方法以及其在实际问题中的应用。
一、不等式的基本性质在证明不等式前,我们首先需要了解一些不等式的基本性质。
不等式在数学中是一种大小关系的描述,可分为等号不等式和不等号不等式。
等号不等式即不等式中包含等号,例如a ≤ b,a = b。
不等号不等式指的是不等式中不包含等号,例如 a < b。
不等式具有一些基本的运算性质,与等式运算性质相似,包括加减乘除运算性质和不等号运算性质。
根据不等式运算性质,我们可以对不等式进行加减乘除等运算,得到与原不等式等价的不等式。
二、不等式的证明方法1. 代数证明法代数证明法是一种通过代数运算来证明不等式的方法。
我们可以通过代数方程的变形、公式的运用和基本的代数运算来推导出所需证明的不等式。
例如,要证明a² + b² ≥ 2ab,我们可以通过将等式变形为(a - b)² ≥ 0,再运用平方性质和不等式性质来证明。
2. 几何证明法几何证明法通过几何图形的性质来证明不等式。
我们可以利用几何形状和图像来构造不等式,并通过几何推理来证明。
例如,证明直角三角形斜边的长度大于直角边的和。
我们可以通过构造一个直角三角形图形,然后应用三角不等式和勾股定理来证明不等式成立。
3. 数学归纳法数学归纳法是一种通过递归推理来证明不等式的方法。
我们可以通过证明初始条件成立,然后通过递推关系来证明不等式在所有情况下都成立。
例如,要证明n² ≥ n,我们首先证明当 n = 1 时,不等式成立;然后假设对于任意的k ≥ 1,n = k 时不等式成立,即k² ≥ k;最后通过证明n = k + 1 时不等式成立来完成归纳证明。
三、不等式在实际问题中的应用不等式在实际问题中有广泛的应用,包括优化问题、约束条件问题、最大最小值问题等。
cauchy-schwarz不等式的四种形式的证明及应用Cauchy-Schwarz不等式是一个重要的数学定理,它可以用来证明向量空间中的向量之间的关系。
它有四种形式,分别是:1. 平方和不等式:如果u和v是两个向量,那么(u+v)^2≤u^2+v^2。
2. 内积不等式:如果u和v是两个向量,那么u·v≤||u||·||v||。
3. 平方和等式:如果u和v是两个向量,那么(u+v)^2=u^2+v^2,当且仅当u和v是正交的。
4. 内积等式:如果u和v是两个向量,那么u·v=||u||·||v||,当且仅当u和v是正交的。
Cauchy-Schwarz不等式的证明可以用几何的方法来证明,即将u和v看作是两个向量,用它们的夹角θ来表示,那么u·v=||u||·||v||·cosθ,而(u+v)^2=u^2+v^2+2u·v,因此(u+v)^2-u^2-v^2=2u·v,由此可以得出(u+v)^2≤u^2+v^2,即平方和不等式。
同样,可以得出u·v≤||u||·||v||,即内积不等式。
Cauchy-Schwarz不等式的应用非常广泛,它可以用来证明向量空间中的向量之间的关系,也可以用来证明函数的最大值和最小值。
此外,它还可以用来证明几何图形的性质,如三角形的面积,圆的面积等。
它还可以用来证明概率论中的一些定理,如中心极限定理,卡方分布等。
总之,Cauchy-Schwarz不等式是一个重要的数学定理,它有四种形式,可以用来证明向量空间中的向量之间的关系,也可以用来证明函数的最大值和最小值,以及概率论中的一些定理。
不等式的证明和运用在数学的学习中,不等式是一项极其重要的内容,不仅涉及到数值大小之间的比较,更在实际问题中有着广泛的应用。
本文将探讨不等式的证明方法和其在实际问题中的运用。
一、不等式的基本性质首先我们需要了解不等式的基本性质。
不等式有以下重要性质:1. 加法性质:如果 a > b, 那么 a + c > b + c 。
2. 减法性质:如果 a > b, 那么 a - c > b - c 。
3. 乘法性质:如果 a > b 且 c > 0,那么 ac > bc ;如果 a > b 且 c < 0,那么 ac < bc 。
4. 除法性质:如果 a > b 且 c > 0,那么 a/c > b/c ;如果 a > b 且 c < 0,那么 a/c < b/c 。
这些基本性质为我们后续证明不等式和解决实际问题提供了方便。
二、不等式的证明方法1. 直接证明法:直接证明法是最常见也是最直接的证明方法。
我们可以利用已知的条件和基本性质,逐步推导出需要证明的不等式。
例如,对于不等式(a + b)^2 ≥ 4ab ,我们可以先展开左侧,得到 a^2 + 2ab + b^2 ≥ 4ab ,然后再化简得到 a^2 - 2ab + b^2 ≥ 0 ,进一步变形得到 (a - b)^2 ≥ 0 。
根据平方数的非负性,我们可以得出以上不等式成立。
2. 反证法:反证法是一种常用的证明方法,适用于某些复杂的不等式证明。
我们假设不等式不成立,然后利用已知条件推导出矛盾,证明假设是错误的,从而得出原不等式成立。
例如,对于不等式a^2 + b^2 ≥ 2ab ,我们可以假设不等式不成立,即 a^2 + b^2 < 2ab 。
然后我们可以通过平方差公式将 a^2 + b^2 - 2ab 分解为 (a - b)^2 < 0 ,进而得出矛盾,因为平方数不可能小于零。
初等不等式证明一、基本不等式及应用基本不等式是指已被人们证明了的较为常用的不等式,它常被当作定理,用于证明其他一些不等式.基本不等式在许多不等式专著中都作过介绍.这里给出几个常用的基本不等式. 1. 平均值不等式设12,,,n a a a ⋅⋅⋅是n 个正实数,记12111n nn H a a a =++⋅⋅⋅+,n G =12n n a a a A n ++⋅⋅⋅+=,n Q =, 分别称n n n n H G A Q 、、、为这n 个正数的调和平均、几何平均、算术平均和平方平均,则有n n n n H G A Q ≤≤≤, 当且仅当12n a a a ==⋅⋅⋅=时取等号.2. 柯西(Cauchy )不等式 设,(1,2,,)i i a b R i n ∈=⋅⋅⋅,则 222111()()()nn ni i i i i i i a b a b ===≤∑∑∑,当数组12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅不全为零时,当且仅当(1,2,,,0)i i b a i n λλ==⋅⋅⋅≠时取等号.3. 排序不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤,则 有1211n n n a b a b a b -++⋅⋅⋅+ (反序和) 1212n i i n i a b a b a b ≤++⋅⋅⋅+ (乱序和) 1122n n a b a b a b ≤++⋅⋅⋅+ (同序和)当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时取等号.4. 琴生(Jensen )不等式设连续函数()f x 的定义域为(,)a b ,如果对于(,)a b 内的任意两个数12,x x ,都有1212()()()22x x f x f x f ++≤, 则称()f x 为(,)a b 上的凸函数.若上式不等式反号,则称()f x 为(,)a b 上的凹函数.若()f x 为(,)a b 上的凸函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≤++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.若为(,)a b 上的凹函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有 12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≥++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.5. 贝努利(Bernoulli )不等式 设1x >-,若0α<,或1α>-,则 (1)1x x αα+≥+. 若01α<<,则(1)1x x αα+≤+.当且仅当0x =时,以上两式均取等号. 6. 赫尔德(H ǒlder )不等式设,,,(1,2,,)i i i a b l R i n +⋅⋅⋅∈=⋅⋅⋅,又,,,R αβλ+⋅⋅⋅∈,且1αβλ++⋅⋅⋅+=,则有1111()()()nn n nii i i i i i i i i ab l a b l αβλαβλ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑,.当且仅当111(1,2,,)kkknnni i ii i i a b l k n a b l=====⋅⋅⋅==⋅⋅⋅∑∑∑时取等号.特别当1nαβλ==⋅⋅⋅==时,有 11111[()]()()()nn n nnn i iii i i i i i i a b l a b l ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑.7. 切比雪夫(Chebyshev)不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≥≥⋅⋅⋅≥,则有111111()()n n ni i i i i i i a b a b n n n ===≥∑∑∑.若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≥≥⋅⋅⋅≥,或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≤≤⋅⋅⋅≤, 则有111111()()n n ni i i i i i i a b a b n n n ===≤∑∑∑.当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时以上两式均取等号.8. 加权幂平均不等式设,(1,2,,)i i a p R i n +∈=⋅⋅⋅,,r s R ∈,且r s <,则111111nnrsrsi i i i i i nn i i i i p a p a p p ====⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪≤⎪⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑, 当且仅当12n a a a ==⋅⋅⋅=时取等号. 9. 其他(1)设,,,,,x y z R αβγ∈,且(21)k αβγπ++=+(k Z ∈),则 i ) 2221cos cos cos ()2yz zx xy x y z αβγ++≤++ 当且仅当sin sin sin yz zx xy αβγ==时取等号.ii ) 22221sin sin sin ()4yz zx xy x y z αβγ++≤++, 当且仅当sin 2sin 2sin 2yz zx xy αβγ==时取等号. (2) 设,,1,2,,,ij x R i j n ∈=⋅⋅⋅则1n i =≥,当且仅当123::::i i i ni x x x x λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(3)设,,,,i i i i x y z l R -⋅⋅⋅∈,22220i i i i x y z l ---⋅⋅⋅-≥,1,2,3,,i n =⋅⋅⋅,则1ni =≤当且仅当::::i i i i x y z l λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(4)两个有用定理定理1 设,,u v R λ+∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,x =,y =i ) 23()61(xy xy xy +---(1)(2)3283()61(x xy xy xy ≤≤+-+-ii )23()61(xy xy xy +---(3)(4)3283()61(y xy xy xy ≤≤+-+-.当且仅当,,u v λ中有两个数相等且不小于第三个数时,(1)、(4)两式取等号;当且仅当,,u v λ中有两个数相等,且不大于第三个数时,(2)、(3)两式取等号.推论1 同定理1条件,有(5)(6)324(1)4(1)164129()219595xy xy xy x xy xy xy xy ---+≤≤++---;(7)(8)324(1)4(1)164129()219595xy xy xy y xy xy xy xy ---+≤≤++---当且仅当u v λ==时,(5)、(6)、(7)、(8)四式取等号.推论2 同定理1条件,有x ≤≤3(11)(12)12728972x y x x-+++≤≤,当且仅当u v λ==时,(9)、(10)、(11)、(12)四式均取等号.定理2 设,,u v R λ∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,w =(10w s ≤≤),则32322323(13)(14)11111111332(2)()(2)()3227272727s s w w s w s w s w s w s s w w s ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于113s 时,(13)式取等号;当且仅当,,u v λ中有两个数相等,且不大于113s 时,(14)式取等号. 推论3 同定理2条件,特别当11s =时,有232223(15)(16)132(12)(1)(12)(1)132********w w w w w w w w uv λ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于13时,(15)式取等号;当且仅当,,u v λ中有两个数相等,且不大于13时,(16)式取等号. 注:在应用定理2与其推论3时,要特别注意120w -≤的情况,有时要对120w -≤和120w -≥分别加以讨论,尤其在0u λν≥时的情况.(一) 算术几何平均值不等式应用例子 例1 已知 ,1,2,i a R i +∈=…,n, 且11nii a==∑,求证()()()()3122311*********n n n n a a a a a a a a n -++⋅⋅⋅++≥+++++ (1) 当且仅当 121n a a a n==⋅⋅⋅==时,(1)式取等号.例2 (20XX 年全国十八所奥赛协作体学校试题)设 ,,,a b c R +∈且 1bc ca ab ++=,求证1abc≤ (2) 提示 由1bc =≥∑知,可证更强式(3)⇔3 (※)例3 (2005,第17届亚太地区数学奥林匹克)设 ,,,x y z R +∈且 8xyz =,则243≥(4) 当且仅当2x y z ===时,(4)式取等号.注:由本题证明中可知,若将条件改为12yz zx xy ++≥,结论也成立.例4 (自创题,2006.12.17) 设,,a b c R +∈,则> (5)例 5 (自创题,1988.10.13)设同一平面上两个凸四边形的边长分别为,,,a b c d 和,,,a b c d '''',面积分别为∆和'∆,那么aa bb cc dd ''''+++≥ (6) 当且仅当这两个凸四边形都内接于圆(不一定要同一个圆),且 ()()()s a s a s b ''--=-⋅()()()()()s b s c s c s d s d ''''''-=--=--时,(6)式取等号. 这里1()2s a b c d =+++,1()2s a b c d '''''=+++.附: 凸四边形ABCD 四边长分别为AB a =,BC b =,CD c =,DA d =,当且仅当此四边形ABCD 内接于圆时,其面积最大,最大值为max ()ABCD S =(7)例6 (自创题,2006.12.26)设,,,a b c d R -∈,则32222()4[()()()()]a a c d b d a c a b d b c ≥+++++++∑ (8)当且仅当a c =,b d =时,(8)式取等号.例7 设,,x y z R -∈,求证 25()81x xyz x ≥⋅∑∑ (9)当且仅当x y z ==时,(9)式取等号.(二) 柯西不等式应用例子 例1 设,i i x y R ∈,1,2,,i n =⋅⋅⋅,且10nii x=≥∑,10ni i y =≥∑,10i j i j nx x ≤<≤≥∑,10i j i j ny y ≤<≤≥∑,1ni i x x ==∑,则1()niii x x y=-≥∑ (1)yxdc baDCBA当且仅当1212n nx x x y y y ==⋅⋅⋅= 时,(1)式取等号. 在(1)式中,当3n =时,被人们称之为“母不等式”.即以下 命题1:设123123,,,,,x x x y y y R ∈,且10x≥∑,10y ≥∑,120x x ≥∑,120y y ≥∑,则231()xx y +≥∑ (2)当且仅当312123x x x y y y ==时,(2)式取等号. 命题1应用如下:1.(匹多不等式)ABC ∆与'''A B C ∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2222()16ab c a ''-++≥∆∆∑ (3) 当且仅当ABCA B C '''∆∆时,(3)式取等号. 提示:取222x a b c =-++,2222x a b c ''''=-++等,并应用三角形面积公式.2.(程灵提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()a b c a '-++≥∑ (4)当且仅当ABC ∆与'''A B C ∆均为正三角形时,(4)式取等号.提示:在(2)中取1x a b c '''=-++,1y a b c =-++等,并应用到22bc a-∑∑≥.3.(安振平提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2()()16a b c a b c a ''-++-≥∆∆∑ (5)当且仅当222()()()a b c a a b c b a b c c a b c '''==-++-++-时,(5)式取等号.提示:在(2)中取2221x a b c '''=-++,1()()y a b c a b c =-++-等.4.(自创题,1983.05.07)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()()()16a a b c a b c a b c '''''''-++-++-≥∆∆∑ (6)当且仅当ABCA B C '''∆∆时,(6)式取等号.提示:在(2)中取1()()x a b c a b c =-++-,1()()y a b c a b c ''''''=-++-等. 以上(3)式与(6)式有相同的取等号条件,试讨论他们左边式子的大小.5. 设ABC ∆三边长为,,BC a CA b AB c ===,面积为∆,P 为ABC ∆内部或边界上一点,从P 分别向三边BC 、CA 、AB 所在直线作垂线,垂足分别为D 、E 、F ,记1PD r =,2PE r =,3PF r =,则223242r r bc a∆≤-∑∑∑. (7) 提示:12342()()ar a b c r r ∆==-+++∑∑≥≥.我们还可以由(2)式得到或证明更多不等式.又如第六章,“三角几何不等式”中的例6、例22等.注:类似上述方法,应用赫尔德不等式,有 命题 设x ,,i i i y z R -∈,1,2,3i =,则123123123111222333()()()()x x x y y y z z z x y z x y z x y z ++++++-++≥.(8)例2 (自创题,1988,0.4.20)设,,,,x y z w R λ∈,且0,0xy zw >>,2λ≤,则≤(9)=时,(9)式取等号.注:(9)式可参阅由吴康主编的《奥赛金牌之路》(高中数学)“第一章 §6 三角不等式”(P81—P90),本节系杨学枝所写.利用同上证法可得以下命题(自创题):设,,,x y z w R +∈,(21)k αβγθπ+++=+ ()k z ∈,则sin sin sin sin x y z w αβγθ+++≤(10)当且仅当,cos cos cos cos x y z w αβγθ=== 时,(9)式取等号.(10)式为笔者首创,可参见同上吴康主编的《奥赛金牌之路》(高中数学)P82. 本命题在《中等数学》杂志社组织的数学竞赛命题评奖中,获一等奖.本命题也可参见《中等数学》,1989年第二期,杨学枝文:《对一个三角不等式的再探讨》.例3 a ,i i b R ∈,1,2,,i n =⋅⋅⋅,则1112nnni i i i i i i a b a b n ===≥∑∑∑. (11) 注:(11)式是一个值得关注的不等式,如取3n =时,可证20XX 年中国国家队培训题:,,,,,a b c x y z R ∈,满足()()3a b c x y z ++++=,222222()()4a b c x y z ++++=,求证0ax by cz ++≥.例4 设a,,b c R +∈,且3a b c ++=,则2232a ab ≥+∑. (12)例5 (20XX 年.IMO.46)已知x,y,z ∈R +,且 1xyz ≥,求证525220x x x y z-≥++∑ (13)例6 (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(14)例7 a,b,c 为正数,证明22224()a b c a b a b c b c a a b c-++≥+++++, (15) 当且仅当a c b >>,且a b c a c a b c b==---,即a c b >>且3322b c b c +=时,(15)式取等号.例8 (20XX 年国家集训队测试题)设,,,x y z R -∈且1x y z ++=,求证+≤ (16)例9 (自创题,1987.07.20) 设 ,,,x y z w R +∈,则 ()2918x x x xy xz xw yz yw zw +⋅≥+++++∑∑∑ (17)当且仅当 x y z w === 时,(17)式取等号.注:(17)式可推广为:设 ,1,2,,i x R i n +∈=⋅⋅⋅,则111n ni i i i x x ==⋅≥∑∑()()2212112n i i i ji j jn x n n x x =≤<≤⎛⎫- ⎪⎝⎭--∑∑ (18) 当且仅当12n x x x ==⋅⋅⋅=时,(18)式取等号.若记11ni i s x ==∑,21i j i j ns x x ≤<≤=∑,12n n s x x x =⋅⋅⋅,111n n s s x -=∑,则(18)式可写成如下形式:22212121(2)(1)n n n s s s n n s s n s s -+-≥-.例10 (陈计,2008.08.29提供)对正数,,,a b c d 及0k ≥,有 41a b c d b kd c ka d kb a kc k+++≥+++++. (19)例11 (自创题,2010.11,09)设,,x y z R +∈,求证322x x xy y ≥++∑ (20) 当且仅当1x y z ===时(20)式取等号.注:猜想 设,,x y z R +∈,有322x x xy y ≥++∑322x x xy y≥++∑.例12 设,,,..a b c x y z 非负,且a b c x y z ++=++,则()()()3()ax a x by b y cz c z abc xyz +++++≥+. (21)例13 (第50届IMO 金牌得主林博提出的猜想)设,,0a b c ≥,求证2a ≤∑∑. (22)例14(自创题,2001.02.02)设,,x y z R +∈,且4yz zx xy xyz +++≤,则x y z yz zx xy ++≥++. (23) 注:1.用类似方法,可证以下命题 设,,p q r R -∈,,,x y z R ∈,且14p q r pqr +++≤,则222px qy rz yz zx xy ++≥++. (24) 2. 第48届国际数学奥林匹克中国国家集训队有一道测试题(20XX 年3月)与其相似.题目 设正实数,,u v w满足4u v w ++=,求证u v w ++. (25)x =y =z =,则原命题等价于:,,x y z R +∈,且4yz zx xy xyz +++=,则x y z yz zx xy ++≥++ ① 式证明可见《数学奥林匹克不等式研究》第八章章练习题64中i ).例15(第48届IMO 中国国家集训队测试题)设正数12,,,n a a a ⋅⋅⋅,满足12a a +1n a +⋅⋅⋅+=,求证1212231222223311()()1n n a a a na a a a a a a a a a a a n ++⋅⋅⋅+++⋅⋅⋅+≥++++ (26)例16 已知221,a b kab +-= 221c d kcd +-=,,,,,a b c d k R ∈,且 2k <,求证ac bd -≤(27)当且仅当()()()()22a b c d k k a b c d ---=+++,即bc ad k ac bd +=+时,(27)式取等号.例17. (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(28)3. 其他基本不等式应用例子 例1 设,,x y z R -∈,则4+≤(1)()2x y z ≤++,例2 (自创题,2010.07.03) 若,,a b c 为满足1a b c ++=的正数,19λ≥,则 31()()()(3)3a b c b c a λλλλ+++≥+, (3)推广式,即有以下命题 若12,,,n a a a ⋅⋅⋅为满足11ni i a ==∑的正数,21n λ≥,则 122311()()()()n n a a a n a a a nλλλλ++⋅⋅⋅+≥+, (4) 当且仅当121n a a a n==⋅⋅⋅==时,(4)式取等号.例3 (自创题,2010.07.03)若,,a b c 为满足1abc ≥的正数,23λ≥,则)a b c ≤++, (5)当且仅当1a b c ===时,(5)式取等号.推广式以下命题 若12,,,n a a a ⋅⋅⋅为满足121n a a a ⋅⋅⋅≥的正数,11nλ≥-,则11nni i i a ==≤, (6)当且仅当121n a a a ==⋅⋅⋅==时,(6)式取等号.例4(《不等式研究网站》,“竞赛不等式”专栏,20XX 年1月6日,陈胜利老师提出) 设,,0a b c >,且1abc =,求证2112()3a a ≥+-∑ (7)例5 (王雍熙,2011.08.22提供)设,,a b c R -∈,且2a a ≥∑∑,则31aabc bc +≥+∑∑. (8)本题可推广,见以下例6.例6(自创题,2011.08.22)设i a R -∈,1,2,,i n =⋅⋅⋅,2n ≥,记i a (1,2,,i n =⋅⋅⋅)中每k (1,2,,k n =⋅⋅⋅),个乘积之和为k s ,m 为不大于n 的正整数,且211n ni ii i a a==≥∑∑,则11352411+s 1nn n n ii n n s n s n as s s s n sn --=-⎧⎧++≥+++⋅⋅⋅+⎨⎨⎩⎩∑(为奇数)(为奇数)(为偶数)(为偶数), (9)二、其他方法证明不等式例子例1 (自创题,2006.08.25)设,,x y z R -∈,且2222x y z xyz +++1≤,则 142xyz yz +≥∑, (1)当且仅当12x y z ===,或,,x y z中一个为零,另外二个均等于2时,(1)式取等号.例2(20XX 年全国高中数学联赛A 卷加试题3)给定整数2n >,设正实数12,,,n a a a ⋅⋅⋅满足1,1,2,,k a k n ≤=⋅⋅⋅,记12,1,2,,kk a a a A k n k++⋅⋅⋅+==⋅⋅⋅.求证: 1112nnk k k k n a A ==--<∑∑. (2)例 3 已知123123a a a b b b ++=++,122331122331a a a a a a a a a a a a ++=++,若123123min{,,}min{,,}a a a b b b ≤,求证: 123123max{,,}max{,,}a a a b b b ≤.注. 本例可推广.例4 (自创题,2007.12.28)设,,a b c R +∈,且1bc =∑,则21142a bc ≥-+∑, (3)当且仅当a b c ===时取等号.例5 (宋庆老师在《中学数学研究》(广东),20XX 年第1期,文“两个优美的无理不等式”中提出的猜想) 若,,0a b c >,满足1a b c ===,则≥(4)例6 .(20XX 年,Serbian 数学奥林匹克试题) 已知,,a b c 是正数,且1a b c ++=,证明127131bc a a≤++∑. (5)例7(陈计,2008.05.04提供)设,,a b c R ∈,n N ∈,则 2[()()]4[()][()]n n n b c b c b c bc b c +-≥--∑∑∑. (6)例8 (自创题,2008.05.07)设,,a b c R -∈,求使22222233()()()(2)()b c bc c a ca a b ab abc a b c λλλλ++++++≥+++ 成立的最大正数λ的值.例9 (自创题,2008.08.30)设1122,,,a b a b R ∈,且222221122a b a b m -=-=,则2212211122211221122()()()()()4()()a b a b m a b a b a b a b m a b a b ++-+++≥++-++, (7) 当且仅当22211a b m -=,12a a =,12b b =时,(7)式取等号.例10 (江苏高三学生顾振同学2010.08.06提供)设,,x y z R -∈,且2221x y z ++=,则411x yzx xyz≤--∑∑∑ , (8)当且仅当3x y z ===,或,,x y z中,有一个为零,其余两个都等于2时,(8)式取等号.例11 (自创题,2005.12.04)设,,a b c R +∈,且1a b c ++=,则3)5)1080abc abc bc -+≥∑ (9)当且仅当13a b c ===,或,,a b c中有一个等于33-,另外两个都等于6时,(9)式取等号.例12(自创题,2007.09.18)设,,a b c R +∈,且1a b c ++=,则271481abc a-≤∑ (10)当且仅当13a b c ===,或,,a b c 中一个等于23,其余两个都等于16时,(10)式取等号.例13 (美国,Pham Kim Hung )设,,a b c 是三角形三边长,则222a b a b a≥+∑∑∑, (11) 当且仅当ABC ∆为正三角形时,(11)式取等号.例14 “奥数之家”2010.03.31,“476934847”提出: 设,,a b c R +∈,则22222()3a b c a c b c a a b c -++≥+++. (12)例15 假设P 、Q 、R 分别是ABC 的三边BC 、CA 、AB 上三点,且满足13AQ AR BR BP CP CQ +=+=+=,则12PQ QR RP ++≥(13)注:1. 关于本题,有其深刻的背景,可参阅杨之所著《初等数学研究的问题和课题》P297~298;或参阅《数学通讯》1991年第2期“问题征解”栏目杨学枝解答及编者评语;或参阅《中学数学教学参考》(陕西),1992年第6期,杨学枝文《一个几何不等式的再加强》;或参阅《数学通讯》1996年第10期,杨学枝文《从一道命题谈起》:也可以参阅杨学枝主编《不等式研究》(西藏人民出版社,2000年6月出版)一书中杨路教授写的“序”;还可以参阅杨学枝著《数学奥林匹克不等式研究》(哈尔滨工业大学出版社,20XX 年8月出版)一书中杨路教授写的“序”;还可以参见《UNIV, BEOGRAD. PUBL. ELEKTKOTEHN.FAKser. Mat.4(1993).25~27.陈计与杨学枝文:《ON A ZIRAKZADEH INEQUALITY RELATED TO TWO TRIANGLES INSCRIBED ONE IN THE OTHER 》.2. 由以上所得重要不等式1()()(cos cos cos )3QR RP PQ a b c a b c A B C ++≥++-++++(14) 可得较(13)式更强的不等式33339()()8QR RP PQ BC CA AB ++≥++ (15)3. 《福建中学数学》,1996年第4期.杨学枝文:《对一道猜想题的证明》中,用与(13)式的类似证法,给出了2221()4RP PQ PQ QR QR RP BC CA AB ⋅+⋅+⋅≥++ (16)其中,,P Q R 分别为,,BC CA AB 边上的周界中点.。
不等式的证明一、选择题:1.若0n >,则232n n +的最小值为 ( ) A . 2B .4C .6D .8 2.下列命题中正确的是 ( )A .1y xx =+的最小值是2 B .2y =的最小值是2C .()4230y x x x =-->的最大值是2-D .()4230y x x x=-->的最小值是2- 3.若实数y x n m ,,,满足,3,12222=+=+y x n m 则ny mx +的最大值是 ( )A .2B .5C .3D .434.设x >0,y >0,M=y x y x +++2,N=y y x x +++22,则M 、N 的大小关系是 ( ) A .M >NB .M <NC .M≥ND .M≤N5.若,,x y a R +∈,且y x a y x +≤+恒成立,则a 的最小值是 ( )A .2BC .1D .126.设,a b c n N >>∈,且ca n cb b a -≥-+-11恒成立,则n 的最大值是 ( ) A .2 B .3 C .4 D .6二、填空题:7.(2013·江苏卷改编)已知a ≥b >0,M =2a 3-b 3,N =2ab 2-a 2b ,则M ,N 的大小关系为________. 解析 2a 3-b 3-(2ab 2-a 2b )=2a (a 2-b 2)+b (a 2-b 2)=(a 2-b 2)(2a +b )=(a -b )(a +b )(2a +b ).因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0,从而(a -b )(a +b )(2a +b )≥0,故2a 3-b 3≥2ab 2-a 2b . 答案 M ≥N8.已知x +y =1,那么2x 2+3y 2的最小值是________.解析 由柯西不等式(2x 2+3y 2)·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫ 122+⎝⎛⎭⎫ 132≥⎝⎛⎭⎫2x ·12+3y ·132=(x +y )2=1, ∴2x 2+3y 2≥65,当且仅当2x =3y ,即x =35,y =25时,等号成立. 答案 659.(2014·湖北荆州质检二)设a ,b ,c 为正数,a +b +4c 2=1,则a +b +2c 的最大值是________,此时a+b +c =________.解析:由柯西不等式得(a +b +4c 2)⎝⎛⎭⎫1+1+12=[(a )2+(b )2+(2c )2]·⎣⎡⎦⎤12+12+⎝⎛⎭⎫222≥(a +b +2c )2, 因此a +b +2c ≤(a +b +4c 2)⎝⎛⎭⎫1+1+12=102a +b +4c 2=102, 当且仅当a 1=b 1=2c 22=22c ,即a =b =22c , 此时a =b =8c 2,因此a +b +4c 2=8c 2+8c 2+4c 2=20c 2=1,解得c =510,a =b =25, 因此a +b +c =25+25+510=8+510. 答案:102 8+51010.若3x +4y =2,则x 2+y 2的最小值为________,最小值点为________.解析 由柯西不等式(x 2+y 2)(32+42)≥(3x +4y )2,得25(x 2+y 2)≥4,所以x 2+y 2≥425. 当且仅当x 3=y 4时等号成立,为求最小值点, 需解方程组⎩⎪⎨⎪⎧3x +4y =2,x 3=y 4.∴⎩⎨⎧x =625,y =825.因此,当x =625,y =825时,x 2+y 2取得最小值,最小值为425,最小值点为⎝⎛⎭⎫625,825. 答案 425 ⎝⎛⎭⎫625,825 11.若a ,b 均为正实数,且a ≠b ,M =a b +b a ,N =a +b ,则M ,N 的大小关系为________. 解析 ∵a ≠b ,∴a b +b >2a ,b a +a >2b ,∴a b +b +b a +a >2a +2b , ∴a b +b a>a +b .即M >N . 答案 M >N 12.设a ,b ,c 是正实数,且a +b +c =9,则2a +2b +2c 的最小值为________. 解析 ∵(a +b +c )⎝⎛⎭⎫2a +2b +2c =[(a )2+(b )2+(c )2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫2a 2+⎝⎛⎭⎫2b 2+⎝⎛⎭⎫2c 2 ≥⎝⎛⎭⎫a ·2a +b ·2b +c ·2c 2=18. ∴2a +2b +2c ≥2.∴2a +2b +2c的最小值为2. 答案 2 13.已知a ,b ,c 为正实数,且a +2b +3c =9,则3a +2b +c 的最大值为________.解析 3a +2b +c = 3 a +2b +133c ≤⎝⎛⎭⎫3+1+13(a +2b +3c )=39,故最大值为39.答案 3914.(2013·陕西卷)已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn )(bm +an )的最小值为________. 解析 由柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时“=”成立,得(am +bn )(bm +an )≥(am ·an +bm bn )2=mn (a +b )2=2. 答案 215.已知x 2+2y 2+3z 2=1817,则3x +2y +z 的最小值为________. 解析 ∵(x 2+2y 2+3z 2)⎣⎢⎡⎦⎥⎤32+(2)2+⎝⎛⎭⎫ 132≥(3x +2y ·2+3z ·13)2=(3x +2y +z )2, 当且仅当x =3y =9z 时,等号成立.∴(3x +2y +z )2≤12,即-23≤3x +2y +z ≤2 3.当x =-9317,y =-3317,z =-317时,3x +2y +z =-23,∴最小值为-2 3. 答案 -2 316.函数y =的最大值为 .17.已知210,0,1x y x y>>+=,若222x y m m +>+恒成立,则实数m 的取值范围是_____. 18.已知a ,b ,c 均为正数,且a +b +c =1,则3a +1+3b +1+3c +1的最大值为________.解析 法一 利用基本不等式 (3a +1+3b +1+3c +1)2=(3a +1)+(3b +1)+(3c +1)+23a +1·3b +1+23b +1·3c +1+23a +1·3c +1≤(3a +1)+(3b +1)+(3c +1)+[(3a +1)+(3b +1)]+[(3b +1)+(3c +1)]+[(3a +1)+(3c +1)]=3[(3a +1)+(3b +1)+(3c +1)]=18, ∴3a +1+3b +1+3c +1≤32, ∴(3a +1+3b +1+3c +1)max =3 2. 法二 利用柯西不等式∵(12+12+12)[(3a +1)2+(3b +1)2+(3c +1)2]≥(1·3a +1+1·3b +1+1·3c +1)2 ∴(3a +1+3b +1+3c +1)2≤3[3(a +b +c )+3].又∵a +b +c =1,∴(3a +1+3b +1+3c +1)2≤18, ∴3a +1+3b +1+3c +1≤3 2. 当且仅当3a +1=3b +1=3c +1时,等号成立.∴(3a +1+3b +1+3c +1)max =3 2. 答案 3 2三、解答题:19.设a ,b ,c 为正数,且a +b +c =1,求证:1a +1b +1c≥9. 证明 法一 ∵a ,b ,c 均为正数,∴1=a +b +c ≥ 33abc .又1a +1b +1c ≥331abc =33abc , ∴⎝⎛⎭⎫1a +1b +1c ·1≥313abc·33abc =9.即1a +1b +1c ≥9. 法二 构造两组数:a ,b ,c ;1a ,1b ,1c . 因此根据柯西不等式有 [(a )2+(b )2+(c )2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫ 1a 2+⎝⎛⎭⎫ 1b 2+⎝⎛⎭⎫ 1c 2≥⎝⎛⎭⎫a ×1a +b ×1b +c ×1c 2. 即(a +b +c )⎝⎛⎭⎫1a +1b +1c ≥32=9. (当且仅当a 1a =b 1b =c 1c,即a =b =c 时取等号) 又a +b +c =1,所以1a +1b +1c≥9. 20.设不等式|2x -1|<1的解集为M .(1)求集合M ;(2)若a ,b ∈M ,试比较ab +1与a +b 的大小.解 (1)由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.(2)由(1)和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .21.已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1].(1)求m 的值;(2)若a ,b ,c 大于0,且1a +12b +13c=m ,求证:a +2b +3c ≥9. (1)解 ∵f (x +2)=m -|x |,∴f (x +2)≥0等价于|x |≤m .由|x |≤m 有解,得m ≥0且其解集为{x |-m ≤x ≤m }.又f (x +2)≥0的解集为[-1,1],故m =1.(2)证明 由(1)知1a +12b +13c=1,且a ,b ,c 大于0,a +2b +3c =(a +2b +3c )⎝⎛⎭⎫1a +12b +13c =3+⎝⎛⎭⎫2b a +a 2b +⎝⎛⎭⎫3c a +a 3c +⎝⎛⎭⎫3c 2b +2b 3c ≥3+22ab 2ab +23c a ·a 3c +23c 2b ·2b 3c=9. 当且仅当a =2b =3c =13时,等号成立.因此a +2b +3c ≥9. 22.(2011·新课标全国)设函数f (x )=|x -a |+3x ,其中a >0.(1)当a =1时,求不等式f (x )≥3x +2的解集;(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.第(2)问解不等式|x -a |+3x ≤0的解集,结果用a 表示,再由{x |x ≤-1}求a .[解答示范] (1)当a =1时,f (x )≥3x +2可化为|x -1|≥2.由此可得x ≥3或x ≤-1. (3分)故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}.(5分)(2)由f (x )≤0得,|x -a |+3x ≤0.此不等式化为不等式组⎩⎪⎨⎪⎧ x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x ≤a ,a -x +3x ≤0, 即⎩⎪⎨⎪⎧ x ≥a ,x ≤a 4或⎩⎪⎨⎪⎧ x ≤a ,x ≤-a 2.(8分) 因为a >0,所以不等式组的解集为}2|{a x x -≤.由题设可得-a 2=-1,故a =2.(10分) 23.(2011·辽宁)已知函数f (x )=|x -2|-|x -5|.(1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.[尝试解答] (1)f (x )=|x -2|-|x -5|=⎩⎪⎨⎪⎧ -3,x ≤2,2x -7,2<x <5,3,x ≥5.当2<x <5时,-3<2x -7<3.所以-3≤f (x )≤3.(2)由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,f (x )≥x 2-8x +15的解集为{x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}.24.(2014·新课标全国卷Ⅰ)若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解析:(1)由ab =1a +1b ≥2ab,得ab ≥2,且当a =b =2时等号成立. 故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.25.(2014·福建质量检查)若a ,b ,c ∈R +,且满足a +b +c =2.(1)求abc 的最大值;(2)证明:1a +1b +1c ≥92. 解析:(1)因为a ,b ,c ∈R +,所以2=a +b +c ≥33abc ,故abc ≤827. 当且仅当a =b =c =23时等号成立,所以abc 的最大值为827. (2)证明:因为a ,b ,c ∈R +,且a +b +c =2,所以根据柯西不等式,可得1a +1b +1c =12(a +b +c )⎝⎛⎭⎫1a +1b +1c =12[(a )2+(b )2+(c )2]×⎣⎡⎦⎤⎝⎛⎭⎫1a 2+⎝⎛⎭⎫1b 2+⎝⎛⎭⎫1c 2 ≥12⎝⎛⎭⎫a ×1a +b ×1b +c ×1c 2=92. 所以1a +1b +1c ≥92. 26.(2014·河北唐山三模)设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小,并说明理由.证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧ 3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0,解得-12<x <12, 则M =⎝⎛⎭⎫-12,12. 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)解:由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=(4a 2-1)(4b 2-1)>0, 所以|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.27.(2016·全国Ⅰ)已知函数|32||1|)(--+=x x x f . (I )画出)(x f y =的图像;(II )求不等式1|)(|>x f 的解集.28.(2016·II)已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+.。