定态薛定谔方程的数值求解
- 格式:pdf
- 大小:1.43 MB
- 文档页数:12
量子力学中的薛定谔方程及其求解量子力学是研究微观粒子行为的重要理论,其核心是薛定谔方程。
薛定谔方程描述了量子体系中粒子的波函数以及随时间演化的规律。
本文将介绍薛定谔方程的基本原理,并讨论一些常见的求解方法。
一、薛定谔方程的基本原理薛定谔方程是波动方程,描述了量子体系中粒子的行为。
它的一般形式为:iħ∂ψ/∂t = Hψ其中,i是虚数单位,ħ是约化普朗克常数,ψ是粒子的波函数,t 是时间,H是哈密顿算符。
薛定谔方程的左边代表了波函数随时间变化的导数,右边代表了粒子在量子力学描述下的总能量。
通过求解这个方程,我们可以得到波函数的时间演化规律,从而揭示粒子的行为。
二、薛定谔方程的求解方法求解薛定谔方程是量子力学中的关键问题,涉及到很多数学方法和物理概念。
下面介绍几种常见的求解方法。
1. 一维自由粒子的求解方法对于一维自由粒子,其哈密顿算符可以简化为动能算符,即H = -ħ^2/2m * ∂^2/∂x^2。
将这个算符代入薛定谔方程,可以得到一维自由粒子的薛定谔方程为:iħ∂ψ/∂t = -ħ^2/2m * ∂^2ψ/∂x^2这是一个简单的偏微分方程,可以通过分离变量法求解。
假设波函数可以分解为时间部分和空间部分的乘积,即ψ(x, t) = φ(x) * χ(t),代入薛定谔方程后可以分离变量,得到两个独立的常微分方程。
分别求解这两个方程,再将它们的解合并,即可得到一维自由粒子的波函数。
2. 一维势阱的求解方法一维势阱是限制粒子运动在有限空间内的一种势场。
在势阱中,波函数的形式将受到势场的影响。
求解一维势阱的薛定谔方程需要考虑势场对波函数的贡献。
对于势阱中的波函数,只有在势阱内部才能存在。
在势阱内部,薛定谔方程的形式与自由粒子类似,但是边界条件会影响波函数的形式。
边界条件一般为波函数在势阱边界处连续且导数连续。
通过求解这个边界问题,可以得到一维势阱中的波函数。
3. 二维和三维量子体系的求解方法对于二维和三维的量子体系,薛定谔方程将变为偏微分方程。
§16.3 一维定态薛定谔方程的建立和求解举例(一)一维运动自由粒子的薛定谔方程波函数随时间和空间而变化的基本方程,是薛定谔于1926年提出的,称为薛定谔波动方程,简称波动方程或薛定谔方程,它成为量子力学的基本方程.将(16.2.14)式分别对t 和x 求导,然后从这两式消去E 、p 、和ψ,便可得到一维运动自由粒子的薛定谔方程:ψ-=∂ψ∂)/iE (t 即ψ=∂ψ∂E t i (16.3.1)ψ=∂ψ∂22)/ip (x 2ψ=ψ∂-2222p⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡<<的薛定谔方程自由粒子轴运动的沿)c x (v方程(16.3.3)中不含有能量E 和动量p ,表明此方程是不受E 和p 的数值限制的普遍方程.请同学们自己试一试,如果上述波函数不用复数表式(16.2.14),改用类似于(16.2.1)式的余弦函数或正弦函数表式,就不会得到合乎要求的薛定谔方程(16.3.3)式❶.这薛定谔方程不是根据直接实验结果归纳而得,也不是由经典波动理论或其他理论推导出来的,它是在物质波假设的基础上,参照经典波动方程而建立起来的.薛定谔方程在微观领域中得到广泛的应用,它推导出来的结果,都与相关实验结果符合得很好,这才是薛定谔方程正确反映微观领域客观规律的最有力的证明.(二)一维运动自由粒子的定态薛定谔方程❶❷❷❷上述薛定谔方程(16.3.3)是偏微分方程,从此方程可解出波函数ψ(x ,t ).在量子力学中最重要的解,是可把波函数ψ(x,t )分离成空间部分u (x )和时间部分f (t )两函数的乘积的特解,即〔一维运动自由粒子的定态波函数〕 ψ(x,t )=u (x )f (t )(16.3.4)将此式代入(16.3.3)式得:222dx u d )t (f )m 2/(dt df )x (u i -=两边除以ψ=uf 得:222dx u d u 1)m 2/(dt df f 1i -=此式左边是时间t 的函数,右边是坐标x 的函数.已知t 与x 是互相独立的自变量,左右两边相等,必须是两边都等于同一常量E ,即❶ 郭敦仁《量子力学初步》16—17页,人民教育出版社1978年版.❶ 郭敦仁《量子力学初步》21—22页,人民教育出版社1978年版.❷ 周世勋编《量子力学》32—33页,上海科学技术出版社1961年版.(16.3.8) (16.3.9) E dt df f 1i = E dx u d u 1)m 2/(222=- (16.3.5)因此,一个偏微分方程(16.3.3)可分解成两个常微分方程(16.3.5)以求解.如〔附录16C 〕所示,(16.3.5)式的E 就是粒子的能量E .上述两个常微分方程的解分别为:〔时间波函数f (t )〕 /iEt Ce )t (f -= (16.3.6)〔空间波函数u (x )〕 (16.3.7)将上式的待定常量C 合并到A 和B 中,便可得到下式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡<<函数和几率密度的定态波子一维运动自由粒)c (v从此式可知,特解ψ=uf 使得几率密度|ψ|2与时间t 无关,这是粒子的几率分布与时间无关的恒定状态,因此称为定态.ψ=uf 称为定态波函数,其中空间部分u (x )可称空间波函数,时间部分f (t )可称时间波函数.如(16.3.9)式所示,定态的几率密度|ψ|2决定于空间波函数u ,与时间波函数f 无关.(16.3.5)式中空间波函数u 满足的方程,称为定态薛定谔方程,此方程重写如下: ⎥⎦⎤⎢⎣⎡<<的定态薛定谔方程一维运动自由粒子)c (v (16.3.10) (16.3.7)式表明,空间波函数u (x )的表式中有三个待定常量A 、B 、α,它们要由实际例子中的边界条件和归一化条件来确定.下面就要介绍确定常量A 、B 、α的一个实际例子.(三)一维矩形深势阱中,自由粒子的薛定谔方程定态解(1)金属中自由电子的运动金属中自由电子的运动,假设可简化为自由粒子的一维运动.在外界条件不变的情况下,可设想自由电子的几率分布是恒定的,不随时间而变.这就是上述定态的一维运动自由粒子的一个例子.上述(16.3.3)至(16.3.10)诸式均可应用于此例子.上述待定常量A 、B 、α,可按此例的边界条件和归一化条件确定之.(2)边界条件确定常量B 与α上述自由电子只能在金属中运动,可设定它的运动范围为0<x <b .在此范围内,设它的势能为零,即E p =0,E=E k .在此范围外,它的势能必须达到无限大,即E p →∞,E →∞.所谓E p →∞,就是用势能条件表示自由电子不能越出金属之外,也就是说,这些自由电子被限制在矩形无限深势阱中运动,如(图16.3a )所示.按几率来说,在金属表面以外没有自由电子,就是说,在x≤0和x ≥b 的范围中,这些电子的几率密度|ψ|2=0.因此,在此范围中,波函数ψ=0,u=0.这就是边界条件,或称边值条件./mE 2x cos B x sin A )x (u =+=ααα222/iEt |u |x cos B x sin A e )x cos B x sin A ()t (f )x (u )t ,x (=+=ψ+===ψ-αααα ()0Eu /m 2dx u d 222=+(16.3.16) (16.3.17) 将此边值条件代入(16.3.7)式便可确定B 与α的数值,计算如下:在x=0处:u (0)=Asin0°+Bcos0°=B=0 (16.3.11)∴u (x )=Asin αx (16.3.12)在x=b 处:u (b )=Asin αb=0,αb=n π即α=n π/b , n=1,2,3,…… (16.3.13)∴ψ(x,t )=Asin (n πx/b ) /iEt e - (16.3.14)在(16.3.13)式中,u (b )=0不选用A=0的答案.这因为A=0,则u (x )=0,|ψ|2=0.这是x 等于任何数值,都使|ψ|2=0的不合理答案.在(16.3.13)式,不选用n=0的答案.因为n=0则α=0、u (x )=0、|ψ|2=0,这也是处处都没有电子的不合理答案.在(16.3.13)式,如果选用n=-1,-2,-3,……所得ψ值,与选用n=1,2,3,……求得的ψ值,绝对值相等、正负号相反.因此,在计算|ψ|2时,不必要保留n 的负值.(3)归一化条件确定常量A将波函数表式(16.3.14)代入归一化条件式(16.2.11),按上述一维情况进行积分,并考虑到自由电子只在0<x <b 范围内运动,可得结论如下:1dx x sin A dx dx 2b 0 2b 0 2 ==ψ=ψ⎰⎰⎰∞∞-α即()()[]=-=-=⎰b 022b0 2x 2sin )4A (2b A dx x 2cos 12A 1ααα()[]2b A )b x n 2sin(n 4b A 2b A 2b 0 22=ππ-=. b /2A 2=∴, b /2A = (16.3.15)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡<<ψ的定态波函数自由粒子中一维无限深矩形势阱)c (v ,(四)一维矩形无限深势阱中、自由粒子的几率分布从(16.3.17)式可得上述自由粒子的几率密度|ψ|2的表式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡<<的几率密度自由粒子中一维矩形深势阱)c (v , (16.3.18)上述空间波函数u 和几率密度|ψ|2的图线,如(图16.3b )所示.自由粒子的运动范围限制在0<x <b ,因此(16.3.18)式的角度αx=n πx/b 的变化范围为0<αx <n π.当量子数n=1时,u 1(x )=)b /x sin(b /2π;,3,2,1n ,b x 0),b /x n sin(b /2)x (u ,e )b /x n sin(b /2)t ,x (/iEt =<<π=π=ψ- b x 0 ,,3,2,1n )b /x n sin()b /2(u 222<<=π==ψ21ψ=(2/b)sin 2(πx/b).如(图16.3b )所示,曲线u 1和21ψ的最高点都在πx/b=π/2,即x=b/2处.这就是说,当n=1时,在势阱中x=b/2处,粒子的几率密度最大.这与经典理论所说自由粒子应是均匀分布的结论不同.经典理论不能说明微观粒子的情况.当n=2时, )b /x 2(sin )b /2(),b /x 2sin(b /2)x (u 2222π=ψπ=.角度的变化范围是0<αx <2π.曲线u 2的最高点在2πx/b=π/2,即x=b/4处.曲线u 2的最低点在2πx/b=3π/2,即x=3b/4处.曲线u 2还有一个零点在2πx/b=π,即x=b/2处,如图所示.当n=2时,几率密度22ψ的曲线应有两个最高点,在x=b/4和x=3b/4处,有一个零点在x=b/2处.当n=3和n=4时的曲线图,由同学们在习题中计算分析.(图16.3b )所示曲线形状,与两端固定的弦线中,形成驻波的形状相似.虽然粒子的物质波与弦线中机械波的驻波,在本质上是不同的现象.但是人们仍然喜欢引用驻波中的熟悉名词描写微观粒子的几率分布,把2ψ=0的位置叫做波节或节点,把|ψ|2的最大位置叫做波腹或腹点.(五)一维矩形无限深势阱中、自由粒子的能级从(16.3.7)与(16.3.13)式可得到能量E 的表式: ⎢⎢⎢⎣⎡<<n E )c (的能级自由粒子中一维矩形深势阱v ,E n 是能量E 的本征值.粒子的能量E 只能具有这一系列分立的数值E n ,也就是说,能量E 是量子化的.上述的n 值相当于玻尔理论中的量子数.虽然能级E n 和量子数n 都是玻尔先提出的,但他只作为一种假设提出.而在量子力学中,从薛定谔方程解出波函数ψ的过程,很自然地得出E n 和n ,不必求助于人为的假设.最低的能级E 1是为基态能级,相当于n=1的E 1值.其他各级能量E n =n 2E 1,如(图16.3b )所示.粒子的能量不能小于E 1.但经典理论原以为,粒子的最小能量为零,所以最小能量E 1也被称为零点能.〔例题16.3A 〕已知原子核的线度为b=10-14米的数量级,质子的静质量为m=1.67×10-27千克.假设质子在原子核内作线性自由运动.求:(1)此质子的能量E 和速率v .(2)它的动量p 和物质波波长λ.(3)它的总能ε和频率ν.(4)它的空间波函数u(x)和几率密度|ψ|2.〔解〕(1)把此质子看做是在线度为b 的无限深矩形势阱中,作线性自由运动.应用(16.3.20)式可求得它的能量E (即动能E k ):E=n 2(h 2/8mb 2)=n 2×6.632×10-68/8×1.67×10-27×10-28= =n 2×3.29×10-13焦. E=E k =m v 2/2, v 2=2E/m=2n 2×3.29×10-13/1.67×10-27=n 2×3.94×1014,v =n ×1.98×107米/秒.当v <<c 时,可应用上述计算和下面的计算.(2)p=m v =1.67×10-27×n ×1.98×107=n ×3.31×10-20千克·米/秒.λ=h/p=6.63×10-34/n ×3.31×10-20=(1/n)×2.00×10-14米.(3)ε=E k +mc 2=n 2×3.29×10-13+1.67×10-27×9×1016= =n 2×3.29×10-13+1.50×10-10=1.50×10-10焦.ν=ε/h=1.50×10-10/6.63×10-34=2.26×1023赫,或ν=c 2/v λ=9×1016/n ×1.98×107×(1/n)×2×10-14=2.27×1023赫. (4)按(16.3.17)式可求得此质子的空间波函数u(x)和几率密度|ψ|2的表式,其图解如(图16.3b )所示. u(x)=)b /x n sin(b /2π=1.41×107sin (n πx ×1014)米-1/2.|ψ|2=|u|2=2×1014sin 2(n πx ×1014)米-1.〔说明〕请注意德布罗意波长λ=(1/n)×2b ,即势阱宽度b=n (λ/2).还请注意,本题讨论自由粒子的一维运动,它的|ψ|2与|u|2的单位决定于b 的单位.。
∇2ψ+2m ℏ2(E +e 24πε01r)ψ=0 嗯,这个方程普普通通,在数学家眼中也就是一个二阶三元变系数偏微分方程,也就是说求解比较麻烦(事实上是相当麻烦!),仅此而已。
但是,若说这个方程是整个量子力学的核心,恐怕没有人会对之产生景仰之情。
原因是非常简单的——方程的形式,至少和矩阵力学相比,非常简洁。
海森堡矩阵的成功让我们相信,量子力学的核心应当是需要通过彻底改变描述原子体系所用的数学工具并展开极为复杂的数学运算最终形成的;这个不起眼的、原始形式非常简洁的、没有任何数学创新的方程——尽管是很难解的方程——看来不像是具有为神秘的量子力学所专美的气质。
尽管如此,处于对薛定谔焦头烂额三个星期的工作的尊重,我们还是不胜其烦地先把这个方程解出来再说,看看方程里头到底有什么东西值得我们汲取。
不过,动手之前先要做好两个准备工作,首先就是,∇2是什么?自然,它的名字我们很熟悉——这玩意儿叫做拉普拉斯算符。
但关键的问题是,拉普拉斯算符长什么样子?按照数学分析的场论部分,拉普拉斯算符的空间直角坐标系下的形式为:∇2=ð2ðx 2+ð2ðy 2+ð2ðz 2 但是,由于氢原子大约是一个类似于球状的客观存在的物体(事实上一谈到“原子”,我们的头脑中就浮现出一个匀质的球体,这是很自然的假设,也将被初步证明是正确的),因此,最好把算符取为极坐标的形式:∇2=1r 2ððr (r 2ððr )+1r 2sinθððθ(sinθððθ)+1r 2sin 2θð2ðφ2我已经可以想象,特别热衷于数学的读者们一定会问,这两者是如何互推的?可是,由于推导实在太烦琐,我不准备在正文里描述,而把它挪到文后的附注里去;另外由于推导三元的形式实在太繁琐了,我只以二元的为例进行推导,三元和它是完全类似的。
定态薛定谔方程与不含时薛定谔方程标题:定态薛定谔方程与不含时薛定谔方程引言概述:薛定谔方程是量子力学中的基本方程之一,用于描述微观粒子的行为。
其中,定态薛定谔方程和不含时薛定谔方程是两种常见的形式。
本文将从五个大点出发,详细阐述这两种方程的特点和应用。
正文内容:1. 定态薛定谔方程1.1 波函数和能量本征值- 定态薛定谔方程描述了粒子在特定状态下的行为,其解为波函数。
- 波函数是描述粒子在不同位置和时间的概率幅的函数。
- 定态薛定谔方程的解决方法是求解能量本征值和相应的波函数。
1.2 简谐振子模型- 定态薛定谔方程在简谐振子模型中得到了广泛应用。
- 简谐振子模型是一种理想化的模型,用于描述具有恢复力的系统。
- 定态薛定谔方程可以求解简谐振子的能级和波函数。
1.3 观测量的期望值- 定态薛定谔方程可以通过求解观测量的期望值来描述粒子的性质。
- 期望值是对大量相同实验的平均结果,用于描述粒子在特定状态下的平均行为。
- 定态薛定谔方程可以计算出各种物理量的期望值,如位置、动量和能量等。
2. 不含时薛定谔方程2.1 时间演化和波包- 不含时薛定谔方程用于描述粒子在时间演化过程中的行为。
- 时间演化是指粒子在不同时间点的状态变化。
- 不含时薛定谔方程的解决方法是求解波包的时间演化。
2.2 散射问题- 不含时薛定谔方程在散射问题中得到了广泛应用。
- 散射问题是研究粒子在势场中的反射和透射行为。
- 不含时薛定谔方程可以求解散射过程中的波函数和反射系数等。
2.3 动量空间和能量空间- 不含时薛定谔方程可以通过傅里叶变换在动量空间和能量空间中进行描述。
- 动量空间描述了粒子的动量分布情况。
- 能量空间描述了粒子在不同能级上的分布情况。
总结:综上所述,定态薛定谔方程和不含时薛定谔方程是量子力学中用于描述微观粒子行为的两种常见方程。
定态薛定谔方程主要用于描述粒子在特定状态下的行为,求解波函数和能量本征值,以及计算观测量的期望值。
薛定谔方程能量估计引言量子力学是描述微观世界行为的理论,薛定谔方程是其核心方程之一。
薛定谔方程描述了量子体系的波函数随着时间的演化规律,是研究量子力学问题的重要工具。
在量子力学中,能量是体系的一个重要物理量,而薛定谔方程能量估计即指通过求解薛定谔方程,估计量子体系的能量值。
本文将深入探讨薛定谔方程能量估计方法的原理、应用和局限性。
薛定谔方程的基本形式薛定谔方程是由奥地利物理学家埃尔温·薛定谔于1925年提出的,用于描述微观粒子的波动性。
它的基本形式为:ĤΨ=EΨ其中,Ĥ是哈密顿算符,描述了体系的总能量;Ψ是波函数,描述了体系的状态;E是体系的能量。
薛定谔方程是一个线性的偏微分方程,通过求解这个方程,我们可以得到体系的波函数和能量信息。
薛定谔方程能量估计方法为了估计量子体系的能量,我们通常采用以下两种方法:定态薛定谔方程和时间非定态薛定谔方程。
定态薛定谔方程定态薛定谔方程适用于描述稳定的量子体系,其基本形式为:ĤΨn=E nΨn其中,n表示体系的量子态的编号,E n表示体系的能量。
通过求解定态薛定谔方程,我们可以获得体系的量子态波函数和能量的离散值。
定态薛定谔方程的解通常采用数值方法求解,如有限差分法、变分法等。
通过离散化空间和时间,并结合适当的数值计算方法,我们可以得到体系的能量估计值。
时间非定态薛定谔方程时间非定态薛定谔方程适用于描述量子体系的时间演化规律,其基本形式为:ĤΨ(t)=iℏ∂Ψ(t)∂t通过求解时间非定态薛定谔方程,我们可以获得体系在不同时间点上的波函数,从而了解体系的时间演化过程。
基于时间非定态薛定谔方程,我们也可以估计体系的能量。
时间非定态薛定谔方程的解同样可以通过数值方法求解,如薛定谔方程的数值积分方法。
通过将时间离散化,并采用适当的数值计算方法,我们可以得到体系在不同时间点上的波函数和能量估计值。
薛定谔方程能量估计的应用薛定谔方程能量估计在量子力学研究和应用中有广泛的应用,例如:1.原子物理学:通过求解薛定谔方程,我们可以估计原子的能级和能量谱。
定态薛定谔方程的MATLAB求解(一)利用矩阵法对定态薛定谔方程的MATLAB求解摘要:本文首先对薛定谔方程的提出及发展做了一个简单介绍。
然后,以在一维空间运动的粒子构成的谐振子的体系为例,详细介绍了矩阵法求解薛定谔方程的过程及公式推导。
最后,通过MATLAB编程仿真实现了求解结果。
关键词:定态薛定谔方程求解矩阵法MATLAB仿真薛定谔方程简介1.1背景资料薛定谔方程是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。
其仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。
当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。
薛定谔方程建立于1926年。
它是一个非相对论的波动方程。
它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。
设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场V (r,t)中运动的薛定谔方程为在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。
由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。
当势函数V不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。
定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,是定态能量,Ψ(r)又称为属于本征值E的本征函数。
量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。
薛定谔方程揭示了微观物理世界物质运动的基本规律,被广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。