3.5 定态薛定谔方程
- 格式:pdf
- 大小:202.81 KB
- 文档页数:6
§12-6 薛定谔方程德布洛意关于物质波的概念传到苏黎世后,薛定谔作了一个关于物质波的报告。
报告后, 德拜(P.Debye)评论说:有了波,就应有一个波动方程。
几个月后,薛定谔果然提出了一个波方程,这就是后来在量子力学中著名的薛定谔方程。
薛定谔方程是量子力学的动力学方程,象牛顿方程一样,不能从更基本的方程推导出来,它是否正确,只能由实验检验。
一、薛定谔方程 1 一维薛定谔方程1)一维自由运动粒子(无势场)设:一维自由运动粒子,无势场,不受力,动量不变。
一维自由运动粒子的波函数(前已讲)ψ(x , t ) = ψ0 e -i(2π/h ) (Et - px )由此有再利用 可得此即一维自由运动粒子(无势场)的含时薛定谔方程。
2)若粒子在势场U (x , t ) 中运动由 有此即一维自由运动粒子在势场中的含时薛定谔方程。
3)定态薛定谔方程若粒子在恒定势场U = U (x )中运动,微观粒子的势能仅是坐标的函数,与时间无关,可把上式中的波函数分成坐标函数与时间函数的乘积,即2222ip x hp x hψψψψ∂=∂∂=-∂22p E m=222282h h i m x tψψππ∂∂-=∂∂22p p E E m =+222282p h h E i m x tψψψππ∂∂-+=∂∂2(,)()()()iEt hx t x f t x eπψϕϕ-==式中 ψ =ψ (x , t )是粒子在势场U = U (x , t )中运动的波函数。
将ψ =ψ (x , t ) = ψ(x )T (t )代入得一维定态薛定谔方程式中ψ =ψ (x )是定态波函数,它所描写的粒子的状态称作定态,是能量取确值的状态。
定态的概率密度ψ(x ,t ) ψ*(x ,t ) = ψ (x ) ψ *(x ) 定态下的概率密度和时间无关。
在量子力学中用薛定谔方程式加上波函数的物理条件,求解微观粒子在一定的势场中的运动问题(求波函数,状态能量,概率密度等)。
薛定谔方程(英语:Schrodinger equation)是由奥地利物理学家薛定谔在1926年提出的一个用于描述量子力学中波函数的运动方程[1],被认为是量子力学的奠基理论之一。
薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。
含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。
不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。
波函数又可以用来计算,在量子系统里,某个事件发生的概率幅。
而概率幅的绝对值的平方,就是事件发生的概率密度。
薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。
量子尺寸的粒子包括基本粒子,像电子、质子、正电子、等等,与一组相同或不相同的粒子,像原子核。
薛定谔方程可以转换为海森堡的矩阵力学,或费曼的路径积分表述 (path integral formulation) 。
薛定谔方程是个非相对论性的方程,不能够用于相对论性理论。
海森堡表述比较没有这么严重的问题;而费曼的路径积分表述则完全没有这方面的问题。
[编辑]含时薛定谔方程虽然,含时薛定谔方程能够启发式地从几个假设导引出来。
理论上,我们可以直接地将这方程当作一个基本假定。
在一维空间里,一个单独粒子运动于位势中的含时薛定谔方程为(1)其中,是质量,是位置,是相依于时间的波函数,是约化普朗克常数,是位势。
类似地,在三维空间里,一个单独粒子运动于位势中的含时薛定谔方程为(2)假若,系统内有个粒子,则波函数是定义于-位形空间,所有可能的粒子位置空间。
用方程表达,。
其中,波函数的第个参数是第个粒子的位置。
所以,第个粒子的位置是。
[编辑]不含时薛定谔方程不含时薛定谔方程不相依于时间,又称为本征能量薛定谔方程,或定态薛定谔方程。
顾名思义,本征能量薛定谔方程,可以用来计算粒子的本征能量与其它相关的量子性质。
应用分离变量法,猜想的函数形式为;其中,是分离常数,是对应于的函数.稍回儿,我们会察觉就是能量.代入这猜想解,经过一番运算,含时薛定谔方程 (1) 会变为不含时薛定谔方程:。
七个薛定谔方程薛定谔方程是量子力学中描述粒子行为的基本方程。
一般情况下,薛定谔方程可以写成如下的形式:1. 定态薛定谔方程(Stationary Schrödinger Equation):iħ∂Ψ/∂t = HΨ其中,ħ是约化普朗克常数,Ψ是波函数,t是时间,H是哈密顿算符。
2. 非定态薛定谔方程(Time-dependent Schrödinger Equation):iħ∂Ψ/∂t = HΨ其中,Ψ是波函数,t是时间,H是哈密顿算符。
3. 薛定谔方程的波函数形式(Schrödinger Equation in Wave Function Form):iħ∂Ψ/∂t = -ħ²/2m ∇²Ψ + VΨ其中,ħ是约化普朗克常数,m是粒子质量,Ψ是波函数,t是时间,∇²是拉普拉斯算符,V是势能函数。
4. 薛定谔方程的路径积分形式(Path Integral Form of Schrödinger Equation):Ψ(x,t) = ∫ Dx exp(iS[x]/ħ)Ψ(x₀,0)其中,Ψ(x,t)是波函数,S[x]是作用量,x₀是初始位置,Dx是路径积分测度。
5. 一维薛定谔方程(One-Dimensional Schrödinger Equation):iħ∂Ψ/∂t = -ħ²/2m ∂²Ψ/∂x² + V(x)Ψ其中,ħ是约化普朗克常数,m是粒子质量,Ψ是波函数,t是时间,x是位置,V(x)是势能函数。
6. 三维薛定谔方程(Three-Dimensional Schrödinger Equation):iħ∂Ψ/∂t = -ħ²/2m ∇²Ψ + V(r)Ψ其中,ħ是约化普朗克常数,m是粒子质量,Ψ是波函数,t是时间,r是位置矢量,∇²是拉普拉斯算符,V(r)是势能函数。