量子力学-第二章-定态薛定谔方程汇总.
- 格式:ppt
- 大小:4.68 MB
- 文档页数:20
第二章1.波函数/平面波:(1)频率和波长都不随时间变化的波叫平面波。
(2)如果,粒子受到随时间或位置变化的力场作用,他的动量和能量不再是常量,这时的粒子就不能用平面波来描写。
在一般情况下,我们用一个复函数表示描写粒子的波,并称这个函数为波函数2.自由粒子/粒子的状态:不被位势束缚的粒子叫做自由粒子.3.波函数的几率解释/波恩解释: (1)粒子衍射试验中,如果入射电子流的强度很大,则照片上很快就会出现衍射图样;如果入射电子流强度很小,电子一个一个的从晶体表面上反射,开始它们看起来是毫无规则的散布着,随时间变化在照片上同样出现了衍射图样。
由此可见,实验所显示的电子的波动性是许多电子在同一实验的统计结果,或者是一个电子在许多次相同试验中的统计结果。
(2)波恩提出了统计解释,即:波函数在空间中某一点的强度(振幅绝对值的平方)和该点找到粒子的概率成比例,按照这种解释,描写粒子的波乃是概率波。
4.几率密度: 在t 时刻r 点,单位体积内找到粒子的几率是: ω(r,t) ={dW(r,t)/d τ}= C|Ψ(r,t)|25.平方可积: 由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即: C ∫∞|Ψ(r,t)|2d τ= 1 而得常数C 之值为: C = 1/∫∞|Ψ(r,t)|2d τ 若 ∫∞|Ψ(r , t)|2d τ→∞,则 C → 0, 这是没有意义的。
故要求描写粒子量子状态的波函数Ψ必须是绝对值平方可积的函数。
7.归一化: C ∫∞|Φ(x,y,z,t)|2d τ= 1 (波函数乘以一个常数以后,并不改变空间各点找到粒子的概率,不改变波函数的状态) C = 1/∫∞|Φ(x,y,z,t)|2d τ 现把上式所确定的C 开平方后乘以Φ,并以Ψ表示所得函数: Ψ(x,y,z,t)=C ½Φ(x,y,z,t) 在t 时刻 在(x,y,z )点附近单位体积内找到粒子的概率密度是: ω( x,y,z,t) = C|Φ(x,y,z,t)|2故把(1)式改写成 ∫∞|Ψ(r , t)|2d τ=1 把Φ换成Ψ的步骤称为归一化。
第二章薛定谔方程(4学时)§2.1 薛定谔得出的波动方程§2.2 无限深方势阱中的粒子§2.3 势垒穿透§2.4 谐振子§2.1 薛定谔得出的波动方程在§1.5中我们已说明,微观粒子的状态用波函数ψ描述,波动性和粒子性的关系为:波的强度正比于粒子到达的概率.具体来说,若ψ(r,t)为波函数,d V为空间r点附近的体积元,则t时刻在此体积元内发现粒子的概率正比于|ψ(r,t)|2d V.|ψ(r,t)|2叫做相对概率密度.波函数一般是空间坐标和时间的复函数由于波函数ψ的概率解释,ψ可以相差一个任意常数因子,即ψ和Aψ代表相同的状态.其中A为任意复常数.这是因为将ψ换为Aψ,空间各点的相对概率没有变化.这一点与经典力学有本质区别,在经典力学中,代表波动的函数如果增大A倍,表示振幅增大了A倍,它代表的是另一个振动状态.正因为波函数可以相差一个任意常数,使ψ满足以下归一化条件:1ψd2=⎰V例如,如果ϕ是一个未归一化的波函数,则可令ψ=Aϕ,由归一化条件12222=ϕ=ϕ=ψ⎰⎰⎰dV A dV A dV得到:⎰ϕ=dVA 21, ψ=ϕϕ⎰dV21这样得到的波函数ψ已经满足归一化条件,我们就说ψ已归一,并用它代替ϕ来描述状态.设ψ(r,t )是归一化波函数,则|ψ(r,t )|2d V 的物理意义为t 时刻在r 点附近d V 体积元内发现粒子的概率.|ψ(r,t )|2称为概率密度.由于概率必须单值,有界,连续,所以要求ψ单值,有界,连续.这称为波函数的标准条件,它在决定波函数时起着重要作用. 在经典力学中,粒子的运动满足牛顿定律,它给出了粒子的运动状态随时间的变化规律.上节我们已说明,微观粒子的运动状态用波函数描述.波函数ψ是时间和空间的函数:ψ=ψ(x,y,z,t ).所谓微观粒子的运动规律,也就是描述状态的波函数ψ随时间的变化规律,即ψ所满足的方程,它在量子力学中的地位就相当于经典力学中牛顿方程的地位.这样的方程肯定不能从经典物理学导出,因为经典物理学根本没有涉及微观粒子的波粒二象性.波函数满足的方程由薛定谔首先找到,它的一般形式是包含时间和空间变量的微分方程.叫做薛定谔方程,在一维情形下,其一般形式为:),()],(2[),(222t x t x U xm t x t i ψ+∂∂-=ψ∂∂ 式中U (x ,t )为粒子的势函数。
七个薛定谔方程薛定谔方程是量子力学中描述粒子行为的基本方程。
一般情况下,薛定谔方程可以写成如下的形式:1. 定态薛定谔方程(Stationary Schrödinger Equation):iħ∂Ψ/∂t = HΨ其中,ħ是约化普朗克常数,Ψ是波函数,t是时间,H是哈密顿算符。
2. 非定态薛定谔方程(Time-dependent Schrödinger Equation):iħ∂Ψ/∂t = HΨ其中,Ψ是波函数,t是时间,H是哈密顿算符。
3. 薛定谔方程的波函数形式(Schrödinger Equation in Wave Function Form):iħ∂Ψ/∂t = -ħ²/2m ∇²Ψ + VΨ其中,ħ是约化普朗克常数,m是粒子质量,Ψ是波函数,t是时间,∇²是拉普拉斯算符,V是势能函数。
4. 薛定谔方程的路径积分形式(Path Integral Form of Schrödinger Equation):Ψ(x,t) = ∫ Dx exp(iS[x]/ħ)Ψ(x₀,0)其中,Ψ(x,t)是波函数,S[x]是作用量,x₀是初始位置,Dx是路径积分测度。
5. 一维薛定谔方程(One-Dimensional Schrödinger Equation):iħ∂Ψ/∂t = -ħ²/2m ∂²Ψ/∂x² + V(x)Ψ其中,ħ是约化普朗克常数,m是粒子质量,Ψ是波函数,t是时间,x是位置,V(x)是势能函数。
6. 三维薛定谔方程(Three-Dimensional Schrödinger Equation):iħ∂Ψ/∂t = -ħ²/2m ∇²Ψ + V(r)Ψ其中,ħ是约化普朗克常数,m是粒子质量,Ψ是波函数,t是时间,r是位置矢量,∇²是拉普拉斯算符,V(r)是势能函数。
第27章薛定谔方程·德布洛意关于物质波的概念传到苏黎世后,薛定谔作了一个关于物质波的报告,报告后,德拜(P.Debye)评论说:有了波,就应有一个波动方程。
几个月后,薛定谔果然提出了一个波方程,这就是后来在量子力学中著名的薛定谔方程。
·薛定谔方程是量子力学的动力学方程,象牛顿方程一样,不能从更基本的方程推导出来;它是否正确,只能由实验检验。
§1 薛定谔方程的建立(一种方法)一.薛定谔方程1.一维薛定谔方程·一维自由运动粒子无势场,不受力,动量不变。
· 一维自由运动粒子的波函数(前已讲)由此有· 再利用 可得此即 一维自由运动粒子(无势场)的薛定谔方程·推广到若粒子在势场U (x , t ) 中运动由 有 ∂ψ∂ x = ( )P ψi h∂2ψ ∂ x 2 P 2h 2= -( ) ψ P 22m E = P 22m E = +U (x , t )∂ t= i h ( ) ψ (x , t )h 22m - ( ) ψ (x , t ) ∂x 2∂ ∂2一维薛定谔方程 式中 ψ =ψ (x , t )是粒子在势场U = U (x , t ) 中运动的波函数·和经典关系相比较,只要把再作用到波函数 ψ (x , t ) 上,即可得到 上述方程。
P 22m E = +U (x , t )2.三维薛定谔方程式由一维方程推广可得三维薛定谔方程式· 拉普拉斯算符(三维薛定谔方程式在球坐标下的形式请见 教材B 版p332)·当 U (r , t) = 0时,方程的解, 即三维自由运动粒子的波函数∂2 ∂x 2 ∂2 ∂y 2 ∇2≡ + + ∂2 ∂z 2·波函数的叠加原理薛定谔方程是ψ的线性微分方程;若ψ1、ψ2是方程的解,则c1ψ1 + c2ψ2也是方程的解。
(c1、c2是常数)★E.Schrodinger & P.A.M.Dirac 荣获1933年Nobel Prize (for the discovery of new productive forms of atomic theory)薛定谔(1887-1961)奥地利人创立量子力学二.定态薛定谔方程 1.一维定态薛定谔方程 若粒子在恒定势场U = U (x ) 中运动(含常数势场U = U 0 )薛定谔方程式可用分离变量法求解。