波函数满足定态薛定谔方程这里
- 格式:ppt
- 大小:631.50 KB
- 文档页数:30
第一章 绪论1.1 由黑体辐射公式导出维思位移定律,能量密度极大值所对应的波长m λ与温度T成反比,即b T m =λ (常数),并近似计算b 的数值,准确到二位有效值。
[解]:由黑体辐射公式,频率在ν与ννd +之间的辐射能量密度为 ννπνρννd ec hd kTh 11833-=由此可以求出波长在λ与λλd +之间的能量密度λλρd )(由于 λν/c =, λλνd cd 2+=因而有:λλπλλρλd ehcd kT hc 118)(5-=令λkT hc x =所以有:11)(5-=xe Ax λρ (44558c h T k A π=常数)由 0)(=λλρd d 有0)1(115)(254=⎥⎦⎤⎢⎣⎡---=λλλρd dxe e x e x A d d x x x于是,得: 1)51(=-x e x该方程的根为 965.4=x因此,可以给出,k hcxk hc T m 2014.0==λ即b T m =λ (常数)其中k hcb 2014.0=2383410380546.110997925.21062559.62014.0--⨯⨯⨯⨯⨯=km⋅⨯=-310898.2[注]根据11833-=kThechνννπρ可求能量密度最大值的频率:令kThxν=113-=xeAxνρ(23338hcTkAπ=)]11[3=-=ννρνddxeAxdxdddx因而可得131=⎪⎭⎫⎝⎛-x ex此方程的解821.2=xhkThkTx821.2max==νbTTb'=⇒'=-1max maxνν其中34231062559.610380546.1821.2821.2--⨯⨯=='hkb1910878.5-⋅︒⨯=sk这里求得m axν与前面求得的m axλ换算成的mν的表示不一致。
1.2 在0k附近,钠的价电子能量约为3电子伏,求其德布罗意波长。
[解]德布罗意公式为ph =λ因为价电子能量很小,故可用非相对论公式μ22p E=代入德布罗意公式得λ==这里利用了电子能量E eV=。
•设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场V(r,t)中运动的薛定谔方程。
在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。
由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。
当势函数V不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。
定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,它是定态能量,Ψ(r)又称为属于本征值E的本征函数。
薛定谔方程是量子力学的基本方程,它揭示了微观物理世界物质运动的基本规律,如牛顿定律在经典力学中所起的作用一样,它是原子物理学中处理一切非相对论问题的有力工具,在原子、分子、固体物理、核物理、化学等领域中被广泛应用。
扩展资料
薛定谔方程(Schrodinger equation)在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。
力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。
这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当,超弦理论试图统一两种理论。
量子力学与统计物理习题解答 第一章1. 一维运动粒子处于⎩⎨⎧≤>=-)0(0)0()(x x Axe x xλψ的状态,式中λ>0,求(1)归一化因子A ; (2)粒子的几率密度;(3)粒子出现在何处的几率最大? 解:(1)⎰⎰∞-∞∞-*=0222)()(dx e x Adx x x x λψψ令 x λξ2=,则323232023202224!28)3(88λλλξξλξλA AA d e A dx ex Ax=⨯=Γ==-∞∞-⎰⎰由归一化的定义1)()(=⎰∞∞-*dx x x ψψ得 2/32λ=A(2)粒子的几率密度xe x x x x P λλψψ2234)()()(-*==(3)在极值点,由一阶导数0)(=dxx dP 可得方程0)1(2=--xe x x λλ 而方程的根0=x ;∞=x ;λ/1=x 即为极值点。
几率密度在极值点的值0)0(=P ;0)(lim =∞→x P x ;24)/1(-=e P λλ由于P(x)在区间(0,1/λ)的一阶导数大于零,是升函数;在区间(1/λ,∞)的一阶导数小于零,是减函数,故几率密度的最大值为24-e λ,出现在λ/1=x 处。
2. 一维线性谐振子处于状态t i x Aet x ωαψ212122),(--=(1)求归一化因子A ;(2)求谐振子坐标小x 的平均值;(3)求谐振子势能的平均值。
解:(1)⎰⎰∞∞--∞∞-*=dx e Adx x222αψψ⎰∞-=02222dx e A xα⎰∞-=222ξαξd e Aαπ2A =由归一化的定义1=⎰∞∞-*dx ψψ得 πα=A (2) ⎰⎰∞∞-∞∞--==dx xe A dx x xP x x222)(α因被积函数是奇函数,在对称区间上积分应为0,故 0=x (3)⎰∞∞-=dx x P x U U )()(⎰∞∞--=dx e kx x 22221απα ⎰∞-=0222dx e x k x απα⎰∞-=222ξξπαξd e k⎥⎦⎤⎢⎣⎡+-=⎰∞-∞-0022221ξξπαξξd e e k⎰∞-=02221ξπαξd e k 2212ππαk=24αk =将2μω=k 、μωα=2代入,可得02141E U ==ω 是总能量的一半,由能量守恒定律U T E +=0可知动能平均值U E U E T ==-=0021和势能平均值相等,也是总能量的一半。