初中八年级数学教案-《轴对称--等腰三角形》-优质课比赛一等奖
- 格式:docx
- 大小:59.21 KB
- 文档页数:4
数学教案-等腰三角形的性质(最新4篇)《等腰三角形》教学反思篇一今天在县教育局的组织下,在李菊芳科长的领导下,我在永流中学顺利上完示范课《等腰三角形的性质》,并和领导,同仁们进行了评课。
在大家的指导下,结合这节课的设计意图,以及学生的学习效果,我个人认为值得以后借鉴的地方有:(一)突出重点,实现教学目标《等腰三角形的性质》这节课重点是让学生通过动手翻折等腰三角形纸片得出“等腰三角形的两底角相等”及“三线合一”的性质。
设计理念是让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证。
使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目标。
(二)导课自然,成功引入新课首先用生活中的图片引入等腰三角形的基本图形,联系生活,创设问〈WWW.〉题情境,把问题作为教学的出发点,激发学生的学习兴趣。
引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。
从而使学生的原认知结构对新知的学习具有某种“召唤力”,既明确了本节课的主要内容,激发了学生的学习兴趣,又使学生了解到数学来源于生活又适用于生活。
(三)设置有梯度,学生易于接受在本节课的问题设置中,特别是巩固练习题的设置,由易到难,由一般到规律先一般顶角70度,到一个角是70度,再到一个角是110度,再总结出顶角的范围,底角的范围,给据学生的认知特点,易于接受。
有着良好的效果这节课,也有不足的地方:(一)在证明性质时由命题转化几何求证时应多加强已知,求证的书写过程。
(二)上课的节奏有点快。
在以后的教学中能多加以改正。
美中不足的是性质二的应用本节课安排的例题,习题有点少,在以后的教学中应多补充些例题及习题。
《等腰三角形》教学反思篇二在本节课中,首先,从学生熟悉的亲身经历的现实生活入手,符合学生原有认知结构,营造使学生亲自体验新知识的氛围,创设有利于引向数学问题本质的真实情境,引导学生发现问题、提出问题,激发学生学习兴趣及探究的欲望,显示实际生活中等腰三角形的广泛应用,引出研究等腰三角形的重要性。
《等腰三角形“瘦身”复习课》
2.如图,在△ABC中,AB=AC
教师以合作者的身份,深入
在等腰三角形中,作"三线"
中的"一线",推出另外"两线",利用"三线合一"证明
要善于构造"三线合一"的基本图形解决相关问题,对
综合考查等腰三角形性质和
判定的运用,灵活构造“等
设计说明:本节课立足于引导探究式、自主探究式和最优化教学模式,以下是我的几点说明.“引导”是教师根据课程标准和班级的学情,有意设计了利用等腰三角形性质和判定简化解题过程的习题,由浅入深、循序渐进的组织、深化学生的思维,向预定的目标探索前行. “自主探究”是学生在教师的引导下,通过独立思考,对比发现解题方法的多样性,逐步接受优化策略,感受优化思想,通过与同学的有效交流讨论,凸显解题优化的重要性.数学教学是一个再发现、再创
造的教学,本节课紧紧围绕等腰三角形性质和判定的灵活使用,优化解题的主线,激发学生不断求知的欲望,通过变式训练、合作探究让学生得到思维的深入培养,使分类讨论、转化、优化思想的渗透过程更连贯,最大限度地发挥学生的潜能,活跃思维,让学生更深刻领悟到数学方法对解题的重要性,充分体现学生在教学中的主体地位,同时培养学生合作意识和探索学习的能力.反思小结,让学生共享知识系统建立的成功喜悦,既是对知识的小结,又是对思想的提炼,是师生之间、生生之间一次知识与情感的交流,希望在精心教学设计的基础上,加上教师有效的课堂调控,学生的主动参与,我们能够较好的完成本节课的教学任务,让所有学生在知识上有所收获,能力上有所提高.。
要点全析:等腰三角形1.等腰三角形(isosceles triangle)有两条边相等的三角形叫做等腰三角形.如图14-3-1,△ABC中,AB=AC,则△ABC是等腰三角形.相等的两条边叫腰,另一条边BC叫底边,两腰所夹的角叫顶角,如∠BAC,底边和腰的夹角∠ABC和∠ACB叫底角.如图14-3-2中,∠C=90°,AC=BC,那么,AC、BC为腰,AB边为底,∠A、∠B为底角,∠C为顶角.【说明】要理解等腰三角形的定义,需注意以下几点:(1)等腰三角形的底不一定在下方,而顶角不一定在上方,如图14-3-2中,AB为底,∠C为顶角.它是根据两腰的位置来确定的.(2)等腰三角形的三边仍要满足条件:任意两边之和大于第三边(或任意两边之差小于第三边).若图14-3-1中,AB=AC=m,BC=a,则2m>a,即m>a/2时,才能构成三角形,否则不成立.如边长分别为2,2.5的三条线段不能构成三角形,因为2+2<5.例如:(1)下列各组数据为边长时,能否组成三角形?①a=2,b=3,c=5;②a=4,b=3,c=2;③a=1,b=2,c=2;④a=2 005,b=2 004,c=2 008.(2)已知等腰三角形的两边为6 cm,7 cm,求其周长.(3)已知等腰三角形的两边长为2 cm,7 cm,求其周长.解:(1)①由于2+3=5,即a+b=c,而不满足a+b>c,∴不能组成三角形.②由于2+3=5>4,即b+c>a,所以a、b、c可以组成三角形.③由于1+2>2,即a+b>c,所以a、b、c可以组成三角形.④由于a+b>c,因此a、b、c可以组成三角形.(2)因等腰三角形的两边长分别为6 cm、7 cm当腰长为6 cm时,周长为6+6+7=19(cm)当腰长为7 cm时,周长为6+7+7=20(cm).∴等腰三角形的周长为19 cm或20 cm.(3)因等腰三角形的两边长分别为2 cm,7 cm,所以腰长为7 cm,而不能是2 cm.若为2 cm,则2+2=4<7,不能组成三角形.因此周长为7+7+2=16(cm),∴等腰三角形的周长为16 cm.2.等腰三角形的性质1等腰三角形的两个底角相等(简写成“等边对等角”)如图14-3-3,△ABC中,AB=AC,则∠B=∠C证法一:(利用轴对称)过点A作△ABC的对称轴AD.∵AB=AC,∴点A在BC的垂直平分线上.又∵AD为△ABC的对称轴,∴△ABD≌△ACD(轴对称性质).∴∠B=∠C证法二:(作顶角平分线)过点A作AD平分∠BAC交BC于D,如图14-3-3,在△ABD和△ACD中⎪⎩⎪⎨⎧∠∠ADADCADBADACAB===∴△ABD≌△ACD(SAS).∴∠B=∠C【说明】还可以作底边BC的中线和高来证明.3.等腰三角形的性质2(简称“三线合一”)等腰三角形的顶角平分线、底边上的中线、底边上的高线相互重合.如图14-3-6,在△ABC中,AB=AC,AD为顶角的平分线,那么AD既是中线,又是高线,这三条线重合.在使用时,在这三条线段中,只要作出其中一条,另外两条也就可以认为作出来了.即△ABC中,AB=AC,若AD平分∠BAC,则AD⊥BC,BD=CD;若BD=CD,则AD⊥BC,∠BAD=∠CAD;若AD⊥BC,则BD=DC,∠BAD=∠CAD.因此,等腰三角形中的这条线非常重要,一旦作出,边、角的等量关系就都有了.【说明】(1)“三线合一”仅限于等腰三角形中才有,其他三角形中没有.(2)在一般三角形中,这三条线是不会重合的.如图14-3-7,在△ABC中,AD为高,AE为中线,AF平分∠BAC,因此,这三条线不重合.只有等腰时,三条线才会重合;反过来,若某一三角形中三线重合,则该三角形为等腰三角形.(3)在今后的证明题中,经常会使用“三线合一”进行证明.例如:△ABC中,AB=AC,BD⊥AC交AC于D,如图14-3-8.求证:∠BAC=2∠DBC证法一:在△BCD中,∵BD⊥AC,∴∠BDC=90°.∴∠DBC=90°-∠C.在△ABC中,∵AB=AC,∴∠ABC=∠ACB.∴∠BAC=180°-(∠ABC+∠ACB)=180°-2∠ACB=2(90°-∠C).∴∠BAC=2∠DBC证法二:借助于三线合一的性质,过A作AM⊥BC于M,则AM平分∠BAC,∴∠BAC=2∠BAM=2∠CAM.又∵BD⊥AC交AC于D,AM⊥BC交BC于M,∴∠DBC=90°-∠C又∵AM⊥BC,∴∠CAM=90°-∠C,∴∠DBC=∠CAM4.等腰三角形的性质3(轴对称性)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在的直线就是它的对称轴.如图14-3-9,△ABC中,AB=AC,AD平分∠BAC,则△ABC的对称轴为AD所在的直线,△ABD≌△ACD.过D作DE⊥AB,交AB于E,作DF⊥AC,交AC于F.由△ABD≌△ACD可知DE=DF.同理,过D分别作AB、AC边上的中线和角平分线,它们都相等.因此,得到等腰三角形的一个重要结论.重要结论:过等腰三角形底边的中点向两腰所作的高线、中线以及角平分线,其与两腰所截得的线段都分别对应相等.5.等腰三角形的性质4(两腰上的对应线段相等)等腰三角形两腰上的中线、高线和两底角平分线对应相等.例如:如图14-3-10,△ABC中,AB=AC,若BD、CE分别为AC、AB边上的高线,则BD =CE.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).又∵BD⊥AC,CE⊥AB,∴∠BDC=∠CEB=90°.在△BCD和△CBE中,⎪⎩⎪⎨⎧∠∠∠∠,=,=,=CBBCCEBBDCCBEBCD∴△BCD≌△CBE(AAS).∴BD=CE.或S△ABC=0.5×AB·CE=0.5×AC·BD.∵ AB=AC,∴BD=CE.此法较为简便.同样道理,可分别作出两腰上的中线,两底角的平分线,也分别对应相等.6.等腰三角形的判定定理(等角对等边)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).例如:如图14-3-11,△ABC中,若∠B=∠C,则AB=AC证明:过点A作AD平分∠BAC,交BC于点D,则∠BAD=∠CAD.在△ABD和△ACD中,∴△ABD≌△ACD(AAS).∴AB=AC因此,这一结论可直接利用.【说明】(1)在使用“等边对等角”或“等角对等边”时,一定要注意是在同一个三角形中才有这一对应关系,不在同一三角形中的边、角没有这一对应关系.(2)有了这一结论,为今后证明线段相等又添了一种重要的解题途径.例如:如图14-3-12,△ABC中,AB=AC,BD、CE相交于O点.且BE=CD求证:OB=OC.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).在△BCE和△CBD中⎪⎩⎪⎨⎧∠∠,=,=,=CBBCDCBEBCCDBE∴△BCE≌△CBD(SAS).∴∠BCE=∠CBD,即∠OBC=∠BCO∴OB=OC(等角对等边).【说明】证两条线段相等,若这两条线段在同一个三角形中,可利用等腰三角形的判定定理来证明.7.已知底边和底边上的高,求作等腰三角形已知线段a、b,求作等腰三角形ABC,使底边BC=a,高为b.作法:(1)作线段BC=a;(2)作线段BC的垂直平分线MN与BC交于点D;(3)在MN上截取AD=b;(4)连接AB、AC,△ABC就是所求的等腰三角形.【说明】(1)由作法知MN为BC的垂直平分线,∴AB=AC∴△ABC为等腰三角形,如图14-3-13.(2)以前所作的三角形分别为:已知三边,两边夹角,两角夹边和已知斜边、直角边求作三角形,今天又学习了已知底边和底边上的高求作等腰三角形,共有五种情况,今后还将学习一些更为复杂的作法,都是以这五种为基础进行作图的.8.等边三角形(equilateral triangle)(1)定义:三条边都相等的三角形,叫等边三角形.如图14-3-14,△ABC中,AB=BC =CA,则△ABC为等边三角形.(2)性质:①等边三角形的三个内角都相等,并且每一个角都等于60°.如图14-3-14中,若△ABC 为等边三角形,则∠A=∠B=∠C=60°.②除此之外,还具有等腰三角形的一切性质,如三线合一,轴对称等.(3)判定:①三个角都相等的三角形是等边三角形.②有一个角是60°的等腰三角形是等边三角形.下面证明以上两条判定.判定①:如图14-3-15,已知△ABC中,∠A=∠B=∠C求证:△ABC是等边三角形.证明:∵∠B=∠C,∴AB=AC又∵∠A=∠B∴AC=BC∴AB=AC=BC,∴△ABC是等边三角形.判定②:如图14-3-15,已知△ABC中,AB=AC,∠B=60°.求证:△ABC是等边三角形.证明:∵AB=AC,∴∠B=∠C.又∵∠B=60°,∴∠B=∠C=60°.又∵∠A+∠B+∠C=180°,∴∠A=180°-(∠B+∠C)=60°.∴∠A=∠B=∠C,∴AB=BC=AC.∴△ABC为等边三角形.(4)应用:例如:如图14-3-16,△ABC为等边三角形,D、E为直线BC上的两点,且BD=BC=CE,求∠DAE的度数.分析:要求∠DAE的度数,需分开求,先求∠BAC,再求∠DAB和∠CAE,由△ABC为等边三角形知∠BAC=60°,又∵BD=BC,而BC=BA,则BD=BA,∴△ABD为等腰三角形,∴∠D=∠DAB=0.5×∠ABC=30°.同理可知,∠CAE=30°.解:∵△ABC为等边三角形,∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60°.又∵BD=BC,∴BD=BC=AB.∴∠DAB=∠D,又∵∠ABC=∠D+∠DAB,∴∠ABC=2∠DAB=60°,∴∠DAB=30°.同理,∠CAE=30°.∴∠DAE=∠DAB+∠BAC+∠CAE=30°+60°+30°=120°.【说明】本题中用到了等边三角形的性质.再如:如图14-3-17,已知△ABC为等边三角形,D、E、F分别为△ABC三边上的点,且BD=CE=AF,直线AD、BE、CF两两相交于点R、Q、P.求证:△PQR是等边三角形.分析:本题既用到了等边三角形的性质,又用到了其判定.要证△PQR为等边三角形,证三边相等难度较大,可考虑证其三角相等.也可先证∠PQR=60°,而∠PQR=∠ACQ+∠QAC,又因为∠ACQ+∠BCF =60°,只需证∠BCF=∠DAC,由此可联想证△BCF与△CAD全等.证明:∵△ABC为等边三角形,∴∠BAC=∠ABC=∠BCA=60°,AB=BC=CA.又∵BD=CE=AF,∴BF=DC=AE在△ABE和△BCF和△CAD中,⎪⎩⎪⎨⎧∠∠∠,==,==,==CDBFAEDCAFBCBAECABCAB∴△ABE≌△BCF≌△CAD(SAS).∴∠ABE=∠BCF=∠CAD.∵∠ACQ+∠BCF=60°,∴∠ACQ+∠CAQ=60°.∴∠AQF=∠ACQ+∠CAQ=60°,即∠PQR=60°.同理,∠RPQ=∠PRQ=60°.∴△PQR为等边三角形.【说明】(1)此题证明思路比较清晰,只是步骤书写较繁,书写应认真;(2)在证明过程中用到了三个三角形全等的连等形式,可仿照两个三角形全等的方式使用.9.含30°角的直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.如图14-3-18,在Rt△ABC中,∠C=90°,∠A=30°,则BC=0.5×AB,这一性质反过来也成立.即在Rt△ABC中,∠C=90°,若BC=0.5×AB,则∠A=30°.因此Rt△ABC 中,∠C=90°,∠A=30° BC=AB/2这一性质在解题中经常用到.例如:如图14-3-19,在Rt△ABC中,∠BAC为直角,高AD交BC于D,∠B=30°,BC =12米,求CD,BD的长.解:∵在Rt△ABC中,∠BAC=90°,∠B=30°,∴∠C=60°,BC=2AC∴AC=BC/2=6(米).在Rt△ACD中,∵AD⊥BC,∠C=60°,∴∠CAD=30°.∴DC=AC/2=0.5××6=3(米).∴BD=BC-DC=9-6=12-3=9(米).【说明】在本题中两次用到直角三角形的这一性质,并且用的方式都一样.。
学案1.5 等腰三角形的轴对称性班级姓名学号教学目标:1、知道等腰梯形的概念,等腰梯形的轴对称性极其相关性质能够画出简单的轴对称图形.2、等边三角形性质的运用教学重点:等腰梯形的轴对称性极其相关性质;教学难点:能利用等腰梯形的性质进行有条理的说理;教学过程:一、复习提问:1.等边三角形是轴对称图形,它有______条对称轴,它们分别是_______.2.等边三角形ABC中,AD是BC•边上的中线,•那么∠ADB=•_____•°,•∠BAD=_____°.3.在Rt△ABC中,∠C=90°,∠A=30°,CD是AB边上的中线,△BCD•是等边三角形吗?为什么?二、探索新知:1、等边三角形的概念三边相等的三角形叫做等边三角形或正三角形.2、那么等边三角形具有什么性质?等边三角形是轴对称图形,并且有3条对称轴.等边三角形都等于0603、探索活动思考:(1)3个角相等的三角形是等边三角形吗?为什么?(2)有两个角等于060的三角形是等边三角形吗?为什么?(3)有一个角等于060的等腰三角形是等边三角形吗?为什么?(对于问题2要引导学生借助于两块相同的含060直角三角板进行拼图实验;对于问题3要引导分类思考.)CDEBA三、例题示范:例1. 有一个角等于60°的等腰三角形是等边三角形吗?为什么? 分析:应分两情况讨论,一是当这个角是底角时;二是当这个角是顶角时.例2如图,在△ABC 中,AB=AC ,∠BAC=120°, AD ⊥AB,AE ⊥AC. ⑴图中,等于30°的角有__ _,等于60°的角有 ; ⑵△ADE 是等边三角形吗?为什么?⑶在Rt △ABD 中, ∠B=_____,AD=_____BD;在Rt △ACE 中,有类似结论吗?五、课堂小结:等边三角形是底和腰相等的等腰三角形,有3条对称轴,每个角都是600. 六、课后作业: 七、教学后记:【课后作业】1、底角等于顶角一半的等腰三角形是____________三角形.2、剪四个同样大小的等边三角形,你能将这四个三角形拼成一个三角形吗?是一个什么三角形?3、在等边三角形、角、线段这三个图形中,对称轴最多的是 ,它共有 条对称轴,最少的是 ,有 条对称轴.4、等腰三角形一腰上的高与另一腰的夹角是45°,这个等腰三角形的顶角是________°.ABCMNP Q5、下列说法:(1)等腰三角形的高、中线、角平分线互相重合;(2)等腰三角形的两腰上的中线长相等;(3)等腰三角形的腰一定大于其腰上的高;(4)等腰三角形的一边长为8,一边长为16,那么它的周长是32或40.其中不正确...的个数是 ( )A .1B .2C .3D .46、如图,在△ABC 中,AB=AC , B F 与CF 是角平分线且交于点F ,DE ∥BC ,若B D+CE=9,则线段DE 的长为( )A .6B .7C .8D .97、如图,在△ABC 中,PM 、QN 分别是AB 、AC 的垂直平分线, ∠BAC=110°,那么∠PA Q 等于 °.8、如图,在等边三角形ABC 的边BC 、AC 上分别取点D 、E ,使BD=CE ,AD 与BE 相交于点F .求∠AFE 的度数.(第7题)ABCD E FEF DC BAABCP ′P9.如图,△ABC 是等边三角形,点D 、E 、F 分别在AB 、BC 、CA 的延长线上,•且BD=CE=AF .△DEF 也是等边三角形吗?为什么?F CB A10、如图,△ABC 是等边三角形,P 为△ABC 内部一点,将△ABP 绕点A 逆时针旋转后,能与△ACP ˊ重合,如果A P=3,求PP ˊ的长.11、在两个三角形中,它们的内角分别为:(1)20°,40°,120°;(2) 20°,60°,100°,怎样把每个三角形分成两个等腰三角形?试画出图形.。
八年级上册数学教案(实用8篇)八年级上册数学教案第1篇教学目标1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.教学重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.教学难点:等腰三角形三线合一的性质的理解及其应用.教学过程Ⅰ.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是.问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L 的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的`两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为所以△BAD≌△CAD(SSS).所以∠B=∠C.]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以△BAD≌△CAD.所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.分析:根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出△ABC的三个内角.把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.解:因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=73°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.作业:课本P56习题12.3第1、2、3、4题.板书设计12.3.1.1等腰三角形一、设计方案作出一个等腰三角形二、等腰三角形性质:1.等边对等角2.三线合一八年级上册数学教案第2篇一、教学目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量2、会求一组数据的极差二、重点、难点和难点的突破方法1、重点:会求一组数据的极差2、难点:本节课内容较容易接受,不存在难点。
《等腰三角形》教学设计
一、基本信息
课名 等腰三角形 教师姓名
学科(版本) 人教版 章节 第十三章
学时 第三学时 年级 八年级
教材分析
1本节内容是八年级下第十三章《轴对称》中的重点部分,是等腰
三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此
节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础
上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理
解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认
识,把好入门的第一课。等腰三角形是基本的几何图形之一,在今
后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等
腰三角形的定理为今后有关几何问题的解决提供了有力的工具。
2等腰三角形是在第十一章《三角形》中的三角形知识基础上的继
续深入,如何利用学习三角形的过程中已经形成的思路和观点,也
是对理解“等腰”这个条件造成的特殊结果的重要之处。对称是几
何图形观察和思维的重要思想,也是解决生活中实际问题的常用出
发点之一,学好本节知识对加深对称思想的理解有重要意义。
学习目标
1知识与技能目标:了解等腰三角形的相关概念,探索并掌握两个
定理的理解及应用;能对等腰三角形的性质进行证明和计算。
2过程与方法目标:理解对称思想的使用,学会运用对称思想观察
思考,运用等腰三角形的思想整体观察对象,总结一些有益的结
论。
3情感态度价值观目标:体会数学的对称美,体验团队精神,培养
合作精神。
教学重难点
重点:1等腰三角形对称的概念。2“等边对等角”的理解和使用。
3“三线合一”的理解和使用。
难点:1等腰三角形“三线合一”的具体应用。2等腰三角形图形
组合的观察,总结和分析。
教学设计策略及
学前准备
教学策略:1回归学生主体,一切围绕着学生的学习活动和当堂的
反馈程度安排教学过程。
2原则性和灵活性相结合,既要完成教学计划,在教学过程中又可
以根据现实的情况,安排问题的难度,体现一些灵活性。
3教学的形式上注重个体化,充分给予学生讨论和发表意见的机
会,注重学习的参与性,努力避免以教师活动为主体的教学过程。
学前准备:分小组预习;自带工具、纸片
二、教学过程设计
教学环节 教师活动 学生活动 设计意图
预习相关概念及定义; 培养学生良好的学
习习惯
创设情境导
入新课
让学生观察课件PPT图片,从三角形分类思考:“课件图片有什么特点” 在对学生思考结果的总结基础上,引入新课题。 学生观察并作出回答 培养学生独立思考
的能力
讲授新课
1等腰三角形的相关概念,腰,底边,顶角,底角。 2指导学生做一做,要求:在事先准备的纸上,画一个腰长为a的等腰三角形,并将它剪下来,与组内其他成员的作品放在一起,并观察和回答问题。 3问题:观察所剪得的三角形形状是否相同,在满足条件的情况下,可以画几个不同类的等腰三角形。 4问题:将这些三角形放在一起,并且使顶点重合,观察另外的一些顶点,看看有什么特点和发现。 5问题:等腰三角形是否为轴对称图形,如何通过具体的操作体现他是轴对称,并指出对称轴。 6问题:等边三角形是否为轴对称图形,对称轴有几条。等腰三角形的对称轴有几条。 7在总结刚才观察结论的基础学生同步回答; 学生运用直尺或圆规和剪刀进行绘图和剪切; 学生观察并思考,然后讨论,然后积极回答; 学生以小组形式进行操作和讨论; 学生对自己剪得的等腰三角形作操作,体会对称的思想。 在讨论的基础上,回答更高层次的问题。 学生观察,并且以小组竞赛的方式进锻炼学生动手操作
能力,体会不同三角
形有不同角、边;培
养学生的观察,猜
测,总结的能力;体
验等腰三角形在圆
中的存在,体会合作
的乐趣、从特殊到一
般的过程,为今后的
轨迹思想做一些准
备。
体现新教材的操作
理念,回归学习的本
质,体验学习的过
程。
通过自己动手操作,
加强知识点的理解;
上,引出两条重要的定理:(1)等腰三角形的两个底角相等; (2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相相等。 行大范围的搜索和体验。 对理解等腰三角形
概念理解更加透彻
巩固练习
1完成例题:已知:在△ABC中,AB=AC,∠B=80°.求∠C和∠A的度数。 2完成例题:如果等腰三角形的一个外角等于140°,那么等腰三角形三个内角等于多少度 3完成例题:在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。 学生思考,看书理解,然后讨论每一步的理由。 体会定理在几何计
算中的运用;体会团
队合作精神
体会数学定理的使
用和数学语言的组
织。
归纳总结
课堂小结:通过今天的学习,你体会到什么 思考:通过今天的学习,你有哪些方法判断剪得的三角形是等腰三角形。 教师总结 学生在自己剪得的等腰三角形上画上已知条件,并且观察是否相等,然后进行相应证明的思考,并积极讨论后发言。 回顾知识;
培养学生开放性思
维的运用
板书设计 《轴对称》 (1)等腰三角形的两个底角相等;
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相相等。
三、流程图
四、教学资源:视频