基于权值选择的粒子滤波算法研究
- 格式:pdf
- 大小:700.11 KB
- 文档页数:4
收稿日期:2012-07-25;修回日期:2012-09-11基金项目:军队科研预研项目作者简介:常天庆(1963-),男,河南郑州人,教授,博导,主要研究方向为装备自动化系统检测与故障诊断(changtianqing@263.net );李勇(1983-),男,湖南浏阳人,博士研究生,主要研究方向为装备智能故障诊断、预测与健康管理;刘忠仁(1973-),男,河南巩义人,讲师,主要研究方向为测控技术;董田沼(1987-),男,山东淄博人,硕士,主要研究方向为检测技术与自动化装置.一种改进重采样的粒子滤波算法*常天庆,李勇,刘忠仁,董田沼(装甲兵工程学院控制工程系,北京100072)摘要:针对粒子滤波重采样过程中存在的粒子多样性丧失问题,提出一种改进重采样的粒子滤波算法。
按照局部重采样算法对粒子进行分类,中等权值的粒子保持不变,大、小两种权值的粒子采用Thompson-Taylor 算法进行随机线性组合产生新粒子。
实验结果表明,该算法能在降低计算复杂度的同时不丧失粒子多样性,提高了滤波性能。
关键词:局部重采样;Thompson-Taylor 算法;粒子滤波中图分类号:TP301.6文献标志码:A文章编号:1001-3695(2013)03-0748-03doi :10.3969/j.issn.1001-3695.2013.03.026Particle filter algorithm based on improved resamplingCHANG Tian-qing ,LI Yong ,LIU Zhong-ren ,DONG Tian-zhao(Dept.of Control Engineering ,Academy of Armored Force Engineering ,Beijing 100072,China )Abstract :In order to solve the loss of particle diversity exiting in resampling process of particle filter ,this paper presented a particle filter algorithm based on improved resampling.It classified the particles to different groups according to partial resam-pling.It kept the particles with medium weight values same ,and combined the other two groups with high and low weight val-ues linearly and randomly to generate new particles using Thompson-Taylor algorithm.Experimental results show that the im-proved algorithm can reduce computational complexity and keep the diversity of particles and it also enhances the performance of filter.Key words :partial resampling ;Thompson-Taylor algorithm ;particle filter粒子滤波采用序贯Monte Carlo 方法来解决非线性非高斯动态系统的状态估计问题,其核心思想是用一组加权随机样本(称做粒子)来逼近所要估计状态的后验概率密度函数[1]。
粒子滤波算法综述作者:李孟敏来源:《中国新通信》2015年第10期【摘要】对粒子滤波算法的原理、发展历史以及应用领域进行综述,首先针对非线性非高斯系统的状态滤波问题阐述粒子滤波的原理,而后讨论粒子滤波算法存在的主要问题和改进手段,最后阐明其在多个研究领域中的应用现状。
【关键字】非线性滤波概率密度重采样粒子退化一、引言粒子滤波(PF)是一种在处理非线性非高斯系统状态估计问题时具有较好估计效果的方法,其原理是通过非参数蒙特卡洛方法实现贝叶斯滤波。
其最早起源于Hammersley等人在20实际50年代末提出的顺序重要性采样(SIS)滤波思想。
但由于上述方法存在严重的样本权值退化从而导致的粒子数匮乏现象,直到1993年Gordon等人将重采样技术引入蒙特卡洛重要性采样过程,提出一种Bootstrap滤波方法,从而奠定了粒子滤波算法的基础。
二、基本粒子滤波算法三、粒子滤波算法存在的主要问题及改进对于SIS算法来说,容易出现粒子的退化问题,目前存在的诸多对SIS算法的改进中,能够降低该现象影响的有效方法是选择合适的重要性函数和采用重采样方法。
针对状态空间模型的改进算法,如辅助变量粒子滤波算法(APF),局部线性化方法,代表的算法主要有EKF,UKF等。
针对重采样改进方法,文献通过将遗传算法和进化算法引入粒子滤波算法中,增加重采样过程中粒子的多样性。
然APF算法在过程噪声较小时,可获得比标准粒子滤波更高的滤波精度,在过程噪声较大时,其效果则大大降低。
采用局部线性化的方法EKF,UKF都是针对非线性系统的线性卡尔曼滤波方法的变形和改进,因此受到线性卡尔曼滤波算法的条件制约,而对于非高斯分布的状态模型,其滤波性能变差。
将遗传算法和进化算法与粒子滤波结合的改进粒子滤波算法,虽取得了较好的滤波效果,然而是以消耗过多计算资源为代价的。
四、粒子滤波的应用4.1 目标跟踪对目标进行定位和跟踪是典型的动态系统状态估计问题,在诸如纯角度跟踪的运动模型中,采用粒子滤波方法进行实现目标跟踪已获得了较好的跟踪精度,文献研究了多目标跟踪与数据融合问题,文献给出了基于粒子滤波的群目标跟踪算法。
基于粒子滤波的目标跟踪算法作者:宋光彦来源:《科技创新导报》2012年第16期摘要:随着当前计算机性能的不断提高,粒子滤波算法日益受到人们的关注,因为其在非线性、非高斯系统和状态滤波等方面具有独到的优势,也被广泛应用到运动目标跟踪研究当中。
关键词:粒子滤波图像信号目标跟踪中图分类号:TP301 文献标识码:A 文章编号:1674-098X(2012)6(a)-0031-011 粒子滤波算法描述粒子滤波的思想基于蒙特卡洛方法,它是利用粒子集来表示概率,即通过随机抽取的加权粒子来代替状态的后验概率分布,这是一种顺序重要性采样法。
当随机采取的粒子数量时,结果也就无限接近于实际的状态后验分布。
因其在非线性、非高斯系统表现出来的优越性,粒子滤波已经成为视频监控、图像处理、生物测定、金融数据等领域的研究热点。
1.1 初始化图像特征是表征一个图像最基本的属性,是图像分析的分布重要依据,它分为自然特征和人工特征。
被跟踪的运动目标要具有一定的先验特征,如目标的颜色分布特征、灰度边缘特征、纹理、光谱等。
我们可以根据实际的需要,选择不同特点的先验特征来描述粒子滤波中每个粒子的初始状态,其决定着滤波的先验概率形式,初始权重取1/Ns。
值得注意的是粒子数的选取与跟踪的实际要求有关,粒子数越多,跟踪就越稳定,精度也就越高,但同时计算量也会变得越大。
1.2 系统状态转移系统状态转移,是指运动目标状态随时间的更新。
需要通过系统模型中的状态方程来描述其状态转移关系。
布朗运动模型、匀速运动模型和匀加速运动模型是处理图像跟踪中的有三种比较普遍的数学模型。
布朗运动模型也被叫作随机游走模型,其目标方程为:xk=Axk-1+Bjk-1,其中,A,B为常数,xk为目标在k时刻的状态,jk-1为归一化噪声量。
匀速和匀加速运动模型的目标方程采用高阶自回归模型,其方程为:ck=Ack-2+Bck-1+Cjk-1,A、B、C均为常数。
1.3 系统观测系统观测是指在通过状态转移方程对目标状态的传播进行“假设”后,用所得的观测量对其进行验证。
粒子滤波算法的应用研究及优化近年来,随着计算机技术的不断发展,人工智能等领域的应用不断扩展,各种算法也不断被提出和应用。
粒子滤波算法是一种常见的非参数滤波算法,其主要应用于状态估计和目标跟踪等领域。
在实际应用中,粒子滤波算法也存在许多问题,需要进行优化和改进。
一、粒子滤波算法的基本原理粒子滤波算法基于蒙特卡罗方法,根据现有的状态量,通过不断地提出指定数量的粒子,不断逼近滤波目标的状态。
具体算法流程如下:1. 初始化。
在搜寻状态量的范围内,随机生成一定数量的粒子(通常为1000个左右),并按照一定的分布方式进行粒子的分配。
2. 预测。
根据系统的动态模型预测每个粒子的下一个状态。
3. 权值更新。
根据每个粒子的当前状态和实际观测值,计算每个粒子的权值,并进行归一化处理。
4. 重采样。
根据每个粒子的权值,进行筛选和抽样,让具有更高权值的粒子具有更高的概率被采样。
5. 状态估计。
根据采样到的粒子状态计算滤波后的目标状态。
二、粒子滤波算法的应用研究1. 目标跟踪。
在目标跟踪中,粒子滤波算法被广泛应用。
通过将目标的位置作为特征,将粒子在搜索范围内分布,并根据目标的位置和速度对每个粒子进行预测和权值更新,从而得到目标的实时跟踪结果。
2. 机器人定位。
在机器人定位领域,粒子滤波算法也有着广泛的应用。
通过机器人的传感器,计算机器人位置的先验概率,并根据传感器获得的信息对每个粒子进行预测和更新,从而得到机器人位置的后验概率估计。
3. 海洋探索。
在海洋探索中,粒子滤波算法也有着广泛的应用。
通过探测器获取海洋中目标的信息,并将其传入计算机进行处理。
在搜寻范围内随机产生一定数量的粒子,并根据海洋环境的不同,在粒子的状态估计过程中添加不同的判据和约束条件,以得到更精确的目标跟踪结果。
三、粒子滤波算法的优化粒子滤波算法的性能受到多个因素的影响,例如粒子数、粒子初始分布、重采样方法等。
为了提高粒子滤波算法的估计精度,以下几个方面可以进行优化:1. 优化初始分布。
粒子滤波(PF: Particle Filter)的思想基于蒙特卡洛方法(Monte Carlo methods),它是利用粒子集来表示概率,可以用在任何形式的状态空间模型上。
其核心思想是通过从后验概率中抽取的随机状态粒子来表达其分布,是一种顺序重要性采样法(Sequential Importance Sampling)。
简单来说,粒子滤波法是指通过寻找一组在状态空间传播的随机样本对概率密度函数进行近似,以样本均值代替积分运算,从而获得状态最小方差分布的过程。
这里的样本即指粒子,当样本数量N→∝时可以逼近任何形式的概率密度分布。
尽管算法中的概率分布只是真实分布的一种近似,但由于非参数化的特点,它摆脱了解决非线性滤波问题时随机量必须满足高斯分布的制约,能表达比高斯模型更广泛的分布,也对变量参数的非线性特性有更强的建模能力。
因此,粒子滤波能够比较精确地表达基于观测量和控制量的后验概率分布,可以用于解决SLAM 问题。
粒子滤波的应用粒子滤波技术在非线性、非高斯系统表现出来的优越性,决定了它的应用范围非常广泛。
另外,粒子滤波器的多模态处理能力,也是它应用广泛有原因之一。
国际上,粒子滤波已被应用于各个领域。
在经济学领域,它被应用在经济数据预测;在军事领域已经被应用于雷达跟踪空中飞行物,空对空、空对地的被动式跟踪;在交通管制领域它被应用在对车或人视频监控;它还用于机器人的全局定位。
粒子滤波的缺点虽然粒子滤波算法可以作为解决SLAM问题的有效手段,但是该算法仍然存在着一些问题。
其中最主要的问题是需要用大量的样本数量才能很好地近似系统的后验概率密度。
机器人面临的环境越复杂,描述后验概率分布所需要的样本数量就越多,算法的复杂度就越高。
因此,能够有效地减少样本数量的自适应采样策略是该算法的重点。
另外,重采样阶段会造成样本有效性和多样性的损失,导致样本贫化现象。
如何保持粒子的有效性和多样性,克服样本贫化,也是该算法研究重点。
一种基于神经网络的粒子滤波算法设计谢世龙;周玉国;刘真【期刊名称】《自动化技术与应用》【年(卷),期】2017(036)011【摘要】粒子退化现象是粒子滤波算法应用中的一个主要问题,标准重采样粒子滤波算法虽然可以有效的解决粒子退化现象,改善粒子滤波性能,但同时也会出现其他问题,如粒子样本的多样性缺失、具有较高权值的粒子多次被统计等等.对此,提出一种基于神经网络的粒子滤波算法研究,将BP神经网络算法和标准粒子滤波算法相结合,调整较小权值的粒子,分裂较大权值的粒子,仿真结果表明,提出的算法是可行的.%Degeneracy phenomenon is a main disadvantage to particle filter application,common re-sampling methods can resolve degeneracy phenomenon,improve the performance of particle filter,but it also has other problems,such as the sample impoverishment is deduced and particles with high weights repeatedly statistics.Therefore,a particle filter algorithm based on neural network is bine neural network with particle filter algorithm,the degeneracy phenomenon is relieved by weight adjustment and weight division.Simulation results show the feasibility of the proposed algorithm.【总页数】4页(P1-4)【作者】谢世龙;周玉国;刘真【作者单位】青岛理工大学自动化学院,山东青岛266520;青岛理工大学自动化学院,山东青岛266520;青岛理工大学自动化学院,山东青岛266520【正文语种】中文【中图分类】TP273+.4【相关文献】1.基于System Generator的简化粒子滤波算法设计及硬件实现 [J], 王佳辉;王义平;薛雅丽2.基于优化粒子滤波器的体育视频目标跟踪算法设计 [J], 王俊鹏;侯小毛3.一种基于卷积神经网络的立体匹配算法设计 [J], 鲁志敏; 袁勋; 陈松4.一种基于卷积神经网络的立体匹配算法设计 [J], 鲁志敏; 袁勋; 陈松5.基于粒子滤波的LAI时间序列重构算法设计与实现 [J], 李曼曼;刘峻明;王鹏新因版权原因,仅展示原文概要,查看原文内容请购买。