21.3.3实际问题与一元二次方程第三课时
- 格式:ppt
- 大小:525.50 KB
- 文档页数:13
21.3实际问题与一元二次方程第1课时用一元二次方程解决传播类问题知识要点基础练知识点1传播类问题1.有一个人患了流感,经过两轮传染后共有100人患了流感,设每轮传染中平均一个人传染的人数是x人,则下列方程正确的是(C)A.1+x2=100B.x2=100C.(1+x)+x(1+x)=100D.(1+x)+(1+x)2=1002.今年冬天病毒性流感严重,巢湖一中的学生在一天中一个学生就能传染x个学生同时患上流感.若先有2人同时患上流感,2天后就有128个学生患上流感,则x的值为(C) A.11 B.6C.7D.8【变式拓展】有一个人患了流感,经过两轮传染后共有121人患了流感,按此传染速度若最初有4人患了流感,则第一轮传染后患上流感的总人数是44人.3.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,依此类推,已知经过两轮传播后,共有111人参与了传播活动,则n=10.知识点2握手问题4.合肥市第十五中学的同学毕业聚会时,每两个同学都握手一次,全班共握手36次,则参加这次同学聚会的有(C) A.7人 B.8人C.9人D.10人5.(天津中考)要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据时间和场地等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的解析式为(B)A.x(x+1)=28B.x(x-1)=28C.x(x+1)=28D.x(x-1)=28知识点3数字问题6.两个连续奇数的积是195,则这两个连续奇数的和是(C)A.28B.24C.±28D.±247.两数之差为3,这两数的平方和为117,求这两数的积.解:根据题意列方程得x2+(x+3)2=117,解得x1=6,x2=-9.当x=6时,x+3=9;当x=-9时,x+3=-6.因此这两数的积为6×9=54,(-6)×(-9)=54.所以这两个数的积是54.综合能力提升练8.某班同学毕业时都向全班其他同学各送一张自己的照片表示留念,全班共送2070张照片.如果全班共有x名同学,根据题意,列出方程为(A)A.x(x-1)=2070B.x(x-1)=2070×2C.x(x+1)=2070D.2x(x+1)=20709.一个小组有若干人,新年互相打一个电话祝福,已知全组共打电话36次,则这个小组共有人数为(B) A.12 B.9C.16D.1810.鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为(C) A.10 B.11C.12D.1311.新年当天,安徽屯溪中学的小明收到了一条祝福的短信,他准备发送给其他同学,每个收到短信的人又给相同数量的人转发了这条短信,此时收到这条短信的人共有157人,则小明发送短信的个数为(C) A.10 B.11C.12D.1312.某种植物的主干长出a个支干,每个支干又长出同样数量的小分支,则主干、支干和小分支的总数为1+a+a2.13.小明在一个月历的一个竖列上勾出三个相邻的数,任意两数相乘后,再求和,得194,则这三个日期分别是2,9,16.14.中新网4月26日电,据法新社26日最新消息,墨西哥卫生部长称,可能已有81人死于猪流感(又称甲型H1N1流感).若有一人患某种流感,经过两轮传染后共有81人患流感,则每轮传染中平均一人传染了8人,若不加以控制,以这样的速度传播下去,经三轮传播,将有729人被传染.15.在一次象棋比赛中,实行单循环制(即每位选手都与其他选手比赛一局),每局赢者记2分,输者记0分,如果平局,两位选手各记1分.比赛结束后,统计比赛中全部选手的得分总和为90分,请求出这次比赛中共有多少名选手参加.解:设这次比赛中共有x名选手参加.则2×x(x-1)=90,解得x=10或x=-9(舍去),答:共有10名选手参加.16.太湖中学机房有150台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,这种电脑病毒传播速度非常快,如果一台电脑被感染,经过两轮感染后就会有49台电脑被感染.那么每轮感染中平均一台电脑会感染几台电脑?解:设每轮感染中平均每一台电脑会感染x台电脑,依题意得1+x+(1+x)x=49,整理得(1+x)2=49,则x+1=7或x+1=-7,解得x1=6,x2=-8(舍去).答:每轮感染中平均一台电脑会感染6台电脑.拓展探究突破练17.(毕节中考)一个容器盛满纯药液40 L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10 L,则每次倒出的液体是20 L.18.某市计划举办青少年足球比赛,赛制采取双循环形式(即每两队之间都要打两场比赛),一共组织30场比赛.计分规则为胜一场得3分,平一场得1分,负一场得0分.(1)该市举办方应该邀请多少支球队参赛?(2)此次比赛结束后,如果其中一支参赛球队共平了4场,负了2场,则该球队此次比赛的总积分是多少?解:(1)设该市举办方应邀请x支球队参赛,依题意得x(x-1)=30,解方程得x1=6,x2=-5(不合题意,舍去).答:该市举办方应邀请6支球队参赛.(2)(10-4-2)×3+4×1+2×0=16.答:该球队的总积分为16分.第2课时用一元二次方程解决增降类问题知识要点基础练知识点1变化类问题1.(六盘水中考)2016年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2018年投入将达到9800万元,若每年增长率都为x,根据题意列方程为(B)A.7200(1+x)=9800B.7200(1+x)2=9800C.7200(1+x)+7200(1+x)2=9800D.7200x2=9800【变式拓展】为执行“两免一补”政策,某地区2016年投入教育经费2500万元,预计2017年,2018年两年共投入5775万元.设这两年投入教育经费的年平均增长率为x,那么下面列出的方程正确的是(D)A.2500x2=5775B.2500(1+x%)2=5775C.2500(1+x)2=5775D.2500(1+x)+2500(1+x)2=57752.为积极响应国家提出的“大众创业,万众创新”号召,黄山市加大了对“双创”工作的支持力度,据悉,2015年黄山市对这项拨款为1.5亿元,2017元的拨款达到2.16亿元,这两年该市对“双创”工作专项拨款的平均增长率为20%.3.吴山镇2015年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2017年达到82.8公顷.(1)求该镇2015至2017年绿地面积的年平均增长率;(2)若年增长率保持不变,2018年该镇绿地面积能否达到100公顷?解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8,解得x1=0.2,x2=-2.2(不合题意,舍去),答:增长率为20%.(2)由题意,得82.8(1+0.2)=99.36公顷.答:2018年该镇绿地面积不能达到100公顷.知识点2利润类问题4.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元,若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是(A)A.(x+3)(4-0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=155.(乌鲁木齐中考)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?解:降价x元,则售价为(60-x)元,销售量为(300+20x)件,根据题意得(60-x-40)(300+20x)=6080,解得x1=1,x2=4,又顾客得实惠,故取x=4,即定价为56元.答:应将销售单价定价56元.综合能力提升练6.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是(B) A.100(1+x) B.100(1+x)2C.100(1+x2)D.100(1+2x)7.某商品的进价为每件20元.当售价为每件30元时,每天可卖出100件,现需降价处理,且经市场调查:每降价1元,每天可多卖出10件.现在要使每天利润为750元,每件商品应降价(D) A.2元 B.2.5元C.3元D.5元8.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了(D) A.2x% B.1+2x%C.(1+x%)x%D.(2+x%)x%【变式拓展】某种商品原价50元.因销售不畅,3月份降价10%,从4月份开始涨价,5月份的售价为64.8元,则4,5月份两个月的月平均涨价率为20%.9.某企业今年第四季度中的12月份产值是10月份的1.44倍,为保证该季度的月产值增长率相同,12月产值是11月的1.2倍.10.安徽省某区某农户2014年的年收入为6万元,由于党的惠农政策的落实,2016年的年收入增加到9万元,2015与2016年的年平均增长率相同,如果按这样的增长率,该农户2018年的年收入为13.5万元.11.水果店销售某种水果,每千克可以获利20元,平均每天可售出100千克,若每千克的售价每降低2元,平均每天的销售量可增加20千克,水果店要确保平均每天获利2240元,且尽快减少水果的库存量,每千克的售价应降低6元.12.(巴中中考)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?解:设每个商品的定价是x元,由题意,得(x-40)[180-10(x-52)]=2000,整理,得x2-110x+3000=0,解得x1=50,x2=60.当x=50时,进货180-10(50-52)=200个>180个,不符合题意,舍去;当x=60时,进货180-10(60-52)=100个<180个,符合题意.答:该商品每个定价应为60元,进货为100个.13.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2016年市政府共投资2亿元人民币建设了8万平方米廉租房,预计到2018年年底,三年累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年该市市政府投资的增长率;(2)若这三年内的建设成本不变,求2017,2018这两年可以建设多少万平方米的廉租房?解:(1)设每年该市市政府投资的增长率为x,根据题意,得2+2(1+x)+2(1+x)2=9.5,整理得x2+3x-1.75=0,解得x1=0.5,x2=-3.5(舍去),答:每年该市市政府投资的增长率为50%.(2)2017,2018这两年共建廉租房面积为(9.5-2)÷=30(万平方米).答:2017,2018这两年可以建设30万平方米的廉租房.拓展探究突破练14.(朝阳中考)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%.请你利用所学知识,帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x-3)--=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每个粽子的定价为5元时,每天的销售利润为800元.15.随着人们环保意识的不断增强,黄山市家庭电动自行车的拥有量逐年增加.据统计,某小区2014年年底拥有家庭电动自行车125辆,2016年年底家庭电动自行车的拥有量达到180辆.(1)若该小区2014年年底到2017年年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2017年年底电动自行车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.解:(1)设家庭电动自行车拥有量的年平均增长率为x,则125(1+x)2=180,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).∴180(1+20%)=216(辆).答:该小区到2017年年底家庭电动自行车将达到216辆.(2)设该小区可建室内车位a个,露天车位b个,则①②由①得b=150-5a,代入②得20≤a≤,∵a是正整数,∴a=20或21.当a=20时,b=50;当a=21时,b=45.∴方案一:建室内车位20个,露天车位50个;方案二:建室内车位21个,露天车位45个.第3课时用一元二次方程解决几何图形问题知识要点基础练知识点1一般图形问题1.(衡阳中考)绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为(B) A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900D.2[x+(x+10)]=9002.用一条长为40 cm的绳子围成一个面积为75 cm2的矩形,问矩形的长和宽各是多少?解:设矩形的长为x cm,则矩形的宽为(20-x)cm,∵x>20-x,∴x>10.由题意得x(20-x)=75,整理得x2-20x+75=0,解得x1=5(舍去),x2=15,∴20-x=5.答:矩形的长为15 cm,宽为5 cm.知识点2边框与甬道问题3.如图,要设计一幅宽20 cm、长30 cm的图案,其中有两横两竖的彩条即图中的阴影部分,横竖彩条的宽度比为2∶1.如果要使阴影所占面积是图案面积的,则竖彩条宽度为(A)A.1 cmB.2 cmC.19 cmD.1 cm或19 cm4.如图,在宽为40 m,长为70 m的矩形地面上修筑宽度相等的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m2,求道路的宽.如果设道路的宽为x,根据题意,所列方程为(40-x)(70-x)=540.【变式拓展】某小区的一块长为26米,宽为15米的草坪内要修一条如图所示的宽度相同的甬道,使绿地的面积是甬道面积的4倍,则甬道的宽度为2米.5.如图所示,有一块矩形的广场,长为32米、宽20米,要在上面修筑同样宽的三条石子路(两条纵向,一条横向,横向与纵向互相垂直),这样把矩形广场分成大小不等的六块小矩形,并且总面积为570平方米,求道路的宽是多少米?解:设道路为x米宽,由题意得(32-2x)(20-x)=570,整理得x2-36x+35=0,解得x1=1,x2=35(舍去),答:道路为1米宽.综合能力提升练6.(哈尔滨中考)今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600 m2.设扩大后的正方形绿地边长为x m,下面所列方程正确的是(A) A.x(x-60)=1600 B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=16007.安徽合肥市民为响应市委市政府提出的建设“绿色合肥”的号召,我市某单位准备将院内一块长30米,宽20米的长方形空地,建成一个矩形草坪,要求在草坪中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532平方米,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)(D) A.1.2米 B.3米C.2米D.1米8.如图,在△ABC中,AC=50 m,BC=40 m,∠C=90°,点P从点A开始沿AC边向点C以2 m/s 的速度匀速移动,同时另一点Q由C点开始以3 m/s的速度沿着射线CB匀速移动,当△PCQ 的面积等于300 m2时运动时间为(A)A.5秒B.20秒C.5秒或20秒D.不确定9.如图,在长为10,宽为8的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,则所截去小正方形的边长是2.10.如图,EF是一面长为18米的墙,用总长为32米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块.若围成的矩形ABCD的面积为60平方米,则AB的长为12米.11.如图,要设计一个形状为等腰梯形的花坛,花坛上底长120米,下底长180米,高80米,在两腰中点连线(虚线)处有一条横向甬道,上、下底之间有两条纵向甬道,各甬道宽度相等,设甬道的宽为x米.(1)用含x的式子表示甬道的面积;(2)根据设计要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度(米)成正比,比例系数为5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么甬道宽度为多少米时,所建花坛费用为239万元?解:(1)甬道的面积为(120+180)÷2×x+2×80×x-2x2=(-2x2+310x)平方米.(2)根据题意,得0.02××80-(-2x2+310x)+5.7x=239.整理,得2x2-25x+50=0,即(x-10)(2x-5)=0,解得x1=10,x2=2.5.∵x=10>6(舍去),∴x=2.5.答:甬道的宽度为2.5米时,所建花坛费用为239万元.12.(百色中考)在直角墙角AOB(OA⊥OB,且OA,OB长度不限)中,要砌20 m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96 m2.(1)求该地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少? 解:(1)设该地面矩形的长是x m,依题意得x(20-x)=96,解得x1=12,x2=8(舍去).答:该地面矩形的长是12米.(2)采用规格为0.80×0.80的地板砖所需的费用:[96÷(0.80×0.80)]×55=8250(元).采用规格为1.00×1.00的地板砖所需的费用:[96÷(1.00×1.00)]×80=7680(元).因为8250>7680,所以采用规格为1.00×1.00的地板砖所需的费用较少.拓展探究突破练13.小明是一位动手能力很强的同学,他用橡皮泥做成一个棱长为4 cm的正方体.(1)如图1所示,在顶面中心位置处从上到下打一个边长为1 cm的正方形孔,打孔后的橡皮泥块的表面积为平方厘米;(2)如果在第(1)题打孔后,再在正面中心位置(如图2所示)从前到后打一个边长为1 cm的正方形通孔,那么打孔后的橡皮泥块的表面积为平方厘米;(3)如果把(1)(2)中的边长为1 cm的通孔均改为边长为a cm(a≠1)的通孔,能否使橡皮泥块的表面积为118 cm2?如果能,求出a,如果不能,请说明理由.解:(1)110.(2)118.(3)能使橡皮泥块的表面积为118平方厘米.∵S1=96-2a2+4a×4,S2=S1-4a2+4×4a-4a2,∴96-2a2+16a-8a2+16a=118,整理得5a2-16a+11=0,∴a1=,a2=1.∵a≠1,<4,∴当边长改为cm时,表面积为118 cm2.。
第二十一章一元二次方程21.1一元二次方程1.下列方程中是关于x的一元二次方程的是()A.x2+1x2=1 B.ax2+bx+c=0C.(x-1)(x+2)=1 D.3x2-2xy-5y2=02.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2C.m=-2 D.m≠±23.将方程3x(x-1)=5(x+2)化为一元二次方程的一般式,正确的是()A.4x2-4x+5=0 B.3x2-8x-10=0C.4x2+4x-5=0 D.3x2+8x+10=04.若关于x的一元二次方程(m-3)x2+2x+m2-9=0的常数项为0,则m的值为() A.3 B.-3 C.±3 D.±95.已知关于x的方程x2+3mx+m2=0的一个根是x=1,那么m2+3m=______.6.方程(k2-1)x2+(k-1)x+2k-1=0,(1)当k______时,方程为一元二次方程;(2)当k______时,方程为一元一次方程.7.写出下列一元二次方程的二次项系数、一次项系数及常数项.一元二次方程二次项系数一次项系数常数项x2-3x+4=04x2+3x-2=03x2-5=06x2-x=08.设未知数列出方程,将方程化成一般形式后,指出二次项系数,一次项系数和常数项:一个矩形的面积是50平方厘米,长比宽多5厘米,求这个矩形的长和宽.9.已知关于x的方程x2-mx+1=0的一个根为1,求m2-6m+9+1-2m+m2的值.10.已知a 是方程x 2-2011x +1=0的一个根,求a 2-2010a +2011a 2+1的值.21.2 解一元二次方程 第1课时 配方法、公式法1.方程(x -2)2=9的解是( )A .x 1=5,x 2=-1B .x 1=-5,x 2=1C .x 1=11,x 2=-7D .x 1=-11,x 2=72.把方程x 2-8x +3=0化成(x +m )2=n 的形式,则m ,n 的值是( ) A .4,13 B .-4,19 C .-4,13 D .4,193.方程x 2-x -2=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .无实数根 D .不能确定4.方程x 2+x -1=0的根是( )A .1- 5 B.-1+52C .-1+ 5 D.-1±525.(2012年广东广州)已知关于x 的一元二次方程x 2-2 3+k =0有两个相等的实数根,则k 值为________.6.用配方法解下列方程: (1)x 2+5x -1=0; (2)2x 2-4x -1=0; (3)2x 2+1=3x .7.用公式法解下列方程:(1)x2-6x-2=0;(2)4y2+4y-1=-10-8y.8.阅读下面的材料并解答后面的问题:小力:能求出x2+4x+3的最小值吗?如果能,其最小值是多少?小强:能.求解过程如下:因为x2+4x+3=x2+4x+4-4+3=(x2+4x+4)+(-4+3)=(x+2)2-1,而(x+2)2≥0,所以x2+4x+3的最小值是-1.问题:(1)小强的求解过程正确吗?(2)你能否求出x2-8x+5的最小值?如果能,写出你的求解过程.9.已知关于x的一元二次方程x2-mx-2=0.(1)若x=-1是这个方程的一个根,求m的值和方程的另一根;(2)对于任意的实数m,判断方程的根的情况,并说明理由.10.已知关于x的方程x2-2x-2n=0有两个不相等的实数根.(1)求n的取值范围;(2)若n<5,且方程的两个实数根都是整数,求n的值.第2课时因式分解法1.方程x2+2x=0的根是()A.x=0 B.x=-2C.x1=0,x2=-2 C.x1=x2=-22.一元二次方程(x-3)(x-5)=0的两根分别为()A.3,-5 B.-3,-5C.-3,5 D.3,53.用因式分解法把方程5y(y-3)=3-y分解成两个一次方程,正确的是() A.y-3=0,5y-1=0B.5y=0,y-3=0C.5y+1=0,y-3=0D.3-y=0,5y=04.解一元二次方程x2-x-12=0,正确的是()A.x1=-4,x2=3B.x1=4,x2=-3C.x1=-4,x2=-3D.x1=4,x2=35.(2011年四川南充)方程(x+1)(x-2)=x+1的解是()A.2 B.3C.-1,2 D.-1,36.用因式分解法解方程3x(x-1)=2-2x时,可把方程分解成______________.7.已知[(m+n)2-1][(m+n)2+3]=0,则m+n=___________.8.(2012年广东珠海)已知关于x的一元二次方程x2+2x+m=0.(1)当m=3时,判断方程的根的情况;(2)当m=-3时,求方程的根.9.关于x 的一元二次方程x 2+bx +c =0的两根为x 1=1,x 2=2,则x 2+bx +c 分解因式的结果为________.10.用换元法解分式方程x -1x -3x x -1+1=0时,如果设x -1x =y ,将原方程化为关于y的整式方程,那么这个整式方程是( )A .y 2+y -3=0B .y 2-3y +1=0C .3y 2-y +1=0D .3y 2-y -1=011.阅读题例,解答下题: 例:解方程x 2-|x -1|-1=0.解:(1)当x -1≥0,即x ≥1时,x 2-(x -1)-1=x 2-x =0. 解得x 1=0(不合题设,舍去),x 2=1.(2)当x -1<0,即x <1时,x 2+(x -1)-1=x 2+x -2=0. 解得x 1=1(不合题设,舍去),x 2=-2. 综上所述,原方程的解是x =1或x =-2. 依照上例解法,解方程x 2+2|x +2|-4=0. *第3课时 一元二次方程的根与系数的关系1.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1+x 2的值是( ) A .1 B .5 C .-5 D .62.设方程x 2-4x -1=0的两个根为x 1与x 2,则x 1x 2的值是( ) A .-4 B .-1 C .1 D .0 3.两个实数根的和为2的一元二次方程可能是( ) A .x 2+2x -3=0 B .2x 2-2x +3=0 C .x 2+2x +3=0 D .x 2-2x -3=04.孔明同学在解一元二次方程x 2-3x +c =0时,正确解得x 1=1,x 2=2,则c 的值为______.5.已知一元二次方程x 2-6x -5=0的两根为a ,b ,则1a +1b的值是________.6.求下列方程两根的和与两根的积: (1)3x 2-x =3; (2)3x 2-2x =x +3.7.已知一元二次方程x 2-2x +m =0. (1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为x 1,x 2,且x 1+3x 2=3,求m 的值.8.点(α,β)在反比例函数y =kx的图象上,其中α,β是方程x 2-2x -8=0的两根,则k=__________9.已知x 1,x 2是方程x 2+6x +3=0的两实数根,则x 2x 1+x 1x 2的值为________.10.已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值.21.3 实际问题与一元二次方程1.制造一种产品,原来每件成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本的( )A .8.5%B .9%C .9.5%D .10% 2.用13 m 的铁丝网围成一个长边靠墙面积为20 m 2的长方形,求这个长方形的长和宽,设平行于墙的一边为x m ,可得方程( )A .x (13-x )=20B .x ·13-x2=20C .x (13-12x )=20 D .x ·13-2x 2=203.(2012年广东湛江)湛江市2009年平均房价为每平方米4000元,连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x ,根据题意,下面所列方程正确的是( )A .5500(1+x )2=4000B .5500(1-x )2=4000C .4000(1-x )2=5500D .4000(1+x )2=55004.将进货单价为40元的商品按50元出售时,能卖500个,已知该商品每涨价1元,其销量就要减少10个,为了赚8000元利润,则应进货( )A .400个B .200个C .400个或200个D .600个5.三个连续正偶数,其中两个较小的数的平方和等于第三个数的平方,则这三个数是( )A .-2,0,2B .6,8,10C .2,4,6D .3,4,56.读诗词解题(通过列方程,算出周瑜去世时的年龄): 大江东去浪淘尽,千古风流人物. 而立之年督东吴,早逝英才两位数. 十位恰小个位三,个位平方与寿符. 哪位学子算得快,多少年华属周瑜. 周瑜去世时 ________岁.7.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.青山村种的水稻2007年平均每公顷产8000 kg,2009年平均每公顷产9680 kg ,求该村水稻每公顷产量的年平均增长率.解题方案:设该村水稻每公顷产量的年平均增长率为x . (1)用含x 的代数式表示:①2008年种的水稻平均每公顷的产量为__________________; ②2009年种的水稻平均每公顷的产量为__________________; (2)根据题意,列出相应方程________________; (3)解这个方程,得________________;(4)检验:_________________________________________________________________; (5)答:该村水稻每公顷产量的年平均增长率为____________%.8.如图21-3-2,有一长方形的地,长为x米,宽为120米,建筑商将它分成三部分:甲、乙、丙.甲和乙为正方形.现计划甲建设住宅区,乙建设商场,丙开辟成公司.若已知丙地的面积为3200平方米,试求x的值.图21-3-29.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元,每提高一个档次,每件利润增加2元,但一天产量减少4件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y 关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1080元,求该产品的质量档次.10.国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元.请问哪种方案更优惠?第二十一章 一元二次方程 21.1 一元二次方程 【课后巩固提升】 1.C 2.B 3.B4.B 解析:m 2-9=0,且m -3≠0,解得m =-3. 5.-1 6.(1)≠±1 (2)=-1 解析:当所给方程为一元二次方程时,k 2-1≠0,即k ≠±1;当所给方程为一元一次方程时,需满足k 2-1=0且k -1≠0,即k =-1.7.解:8.所列方程为x (x -5)=50.整理后,得一般形式:x 2-5x -50=0.二次项系数为1,一次项系数为-5,常数项为-50. 解法二:设宽为x 厘米,则长为(x +5)厘米, 所列方程为x (x +5)=50.整理后,得一般形式:x 2+5x -50=0.二次项系数为1,一次项系数为5,常数项为-50.9.解:把x =1代入方程x 2-mx +1=0中,得1-m +1=0,所以m =2,故m 2-6m +9+1-2m +m 2=(m -3)2+(1-m )2=|2-3|+|1-2|=2.10.解:a 是方程x 2-2011x +1=0的一个根, 则a 2-2011a +1=0,所以a 2+1=2011a ,a 2=2011a -1.a 2-2010a +2011a 2+1=2011a -1-2010a +20112011a=a -1+1a =a 2-a +1a =2011a -aa =2010.21.2 解一元二次方程第1课时 配方法、公式法 【课后巩固提升】 1.A 2.C 3.B 4.D 5.D6.解:(1)移项,得x 2+5x =1.配方,得x 2+5x +254=294,⎝⎛⎭⎫x +522=294. ∴x +52=±292.∴x 1=29-52,x 2=-29-52.(2)系数化为1,得x 2-2x -12=0.移项,得x 2-2x =12.配方,得x 2-2x +1=32,(x -1)2=32.∴x -1=±62.∴x 1=6+22,x 2=-6+22.(3)移项,得2x 2-3x =-1.系数化为1,得x 2-32x =-12.配方,得x 2-32x +⎝⎛⎭⎫342=-12+⎝⎛⎭⎫342,⎝⎛⎭⎫x -342=116,x -34=±14,∴x 1=1,x 2=12. 7.解:(1)∵a =1,b =-6,c =-2, ∴b 2-4ac =(-6)2-4×1×(-2)=44>0.∴x =6±442=6±2 112=3±11.∴x 1=3+11,x 2=3-11.(2)原方程可化为4y 2+12y +9=0. ∵a =4,b =12,c =9,∴b 2-4ac =122-4×4×9=0.∴y =-12±02×4=-32.∴y 1=y 2=-32.8.解:(1)正确.(2)能.过程如下:x 2-8x +5=x 2-8x +16-16+5=(x -4)2-11, ∵(x -4)2≥0,∴x 2-8x +5的最小值是-11.9.解:(1)因为x =-1是方程的一个根, 所以1+m -2=0,解得m =1.方程为x 2-x -2=0,解得x 1=-1,x 2=2. 所以方程的另一根为x =2.(2)b 2-4ac =m 2+8,因为对于任意实数m ,m 2≥0,所以m 2+8>0,所以对于任意的实数m ,方程有两个不相等的实数根.10.解:(1)∵关于x 的方程x 2-2x -2n =0, a =1,b =-2,c =-2n , ∴Δ=b 2-4ac =4+8n >0.解得n >-12.(2)由原方程,得(x -1)2=2n +1. ∴x =1±2n +1.∵方程的两个实数根都是整数,且n <5, ∴0<2n +1<11,且2n +1是完全平方形式. ∴2n +1=1,2n +1=4或2n +1=9. 解得,n =0,n =1.5或n =4. 第2课时 因式分解法 【课后巩固提升】 1.C 2.D 3.C 4.B 5.D 6.(x -1)(3x +2)=07.±1 解析:∵[(m +n )2-1][(m +n )2+3]=0,∴(m +n )2=1或(m +n )2=-3.又∵(m +n )2≥0,∴(m +n )2=1,即m +n =±1.8.解:(1)当m =3时,b 2-4ac =22-4×1×3=-8<0,∴原方程没有实数根.(2)当m =-3时,x 2+2x -3=0,(x +3)(x -1)=0.∴x 1=-3,x 2=1.9.(x -1)(x -2)10.A 解析:由题意可将方程化为y -3y+1=0,两边同乘以y ,得y 2+y -3=0. 11.解:①当x +2≥0,即x ≥-2时,x 2+2(x +2)-4=0,x 2+2x =0,解得x 1=0,x 2=-2;②当x +2<0,即x <-2时,x 2-2(x +2)-4=0,x 2-2x -8=0,解得x 1=4(不合题设,舍去),x 2=-2(不合题设,舍去).综上所述,原方程的解是x =0或x =-2.*第3课时 一元二次方程的根与系数的关系【课后巩固提升】1.B 2.B 3.D 4.25.-65解析:∵a ,b 是一元二次方程的两根, ∴a +b =6,ab =-5.1a +1b =a +b ab =-65. 6.解:(1)原方程化为一般形式为3x 2-x -3=0.所以x 1+x 2=--13=13,x 1x 2=-33=-1. (2)原方程化为一般形式为3x 2-3x -3=0,即x 2-x -1=0.所以x 1+x 2=--11=1,x 1x 2=-11=-1. 7.解:(1)∵方程x 2-2x +m =0有两个实数根,∴Δ=(-2)2-4m ≥0.解得m ≤1.(2)由两根关系可知,x 1+x 2=2,x 1·x 2=m .解方程组121223 3.x x x x ⎧⎨⎩+=,+=解得123,21.2x x ⎧⎪⎪⎨⎪⎪⎩== ∴m =x 1·x 2=34. 8.-89.10 解析:x 1+x 2=-6,x 1x 2=3, x 2x 1+x 1x 2=x 22+x 21x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=10. 10.解:(1)由方程有两个实数根,可得Δ=b 2-4ac =4(k -1)2-4k 2=4k 2-8k +4-4k 2=-8k +4≥0.解得k ≤12. (2)依据题意,可得x 1+x 2=2(k -1).由(1)可知k ≤12, ∴2(k -1)<0,x 1+x 2<0.∴|x 1+x 2|=-x 1-x 2=x 1·x 2-1.∴-2(k -1)=k 2-1.解得k 1=1(舍去),k 2=-3.∴k 的值是-3.21.3 实际问题与一元二次方程【课后巩固提升】1.D 解析:设每次降低x ,则100(1-x )2=81,解得x =10%.2.B 3.D 4.C 5.B6.36 解析:设周瑜去世时的年龄的个位数字为x ,则十位数字为x -3. 依题意,得x 2=10(x -3)+x ,即x 2-11x +30=0.解得x 1=5,x 2=6.当x =5时,十位数字是2,即是25,与“而立之年督东吴”不符,故舍去; 当x =6时,其年龄为36.即周瑜去世时36岁.7.解:(1)①8000(1+x )②8000(1+x )(1+x )=8000(1+x )2(2)8000(1+x )2=9680(3)x 1=0.1,x 2=-2.1(4)x 1=0.1,x 2=-2.1都是原方程的根,但x 2=-2.1不符合题意,所以只取x =0.1.(5)108.解:根据题意,得(x -120)[120-(x -120)]=3200,即x 2-360x +32 000=0.解得x 1=200,x 2=160.答:x 的值为200或160.9.解:(1)由题意,得y =[10+2(x -1)][76-4(x -1)].整理,得y =-8x 2+128x +640.(2)由题意,得-8x 2+128x +640=1080.x 2-16x +55=0,解得x 1=5,x 2=11(舍去).即当一天的利润为1080元时,生产的是第5档次的产品.10.解:(1)设平均每次下调的百分率为x .5000×(1-x )2=4050.(1-x )2=0.81,解得1-x =0.9或1-x =-0.9(不合题意,舍去).∵1-x =0.9,∴x =0.1=10%.答:平均每次下调的百分率为10%.(2)方案一的总费用为:100×4050×9.810=396 900(元); 方案二的总费用为:100×4050-2×12×1.5×100=401 400(元). ∴方案一优惠.。