初中数学八年级下册第2章一元二次方程2.3一元二次方程的应用第1课时作业
- 格式:doc
- 大小:58.00 KB
- 文档页数:4
2.5 一元二次方程的应用第1课时 增长率问题与经济问题双基演练1.某药品原来每盒售价96元,由于两次降价,现在每盒54元,•则平均每次降价的百分数为_______.2.某农场的粮食产量,若两年内从25万公斤,增加到30.25万公斤,则平均每年的增长率为_______.3.某人在银行存了400元钱,两年后连本带息一共取款484元,设年利率为x ,则列方程为__________________,解得年利率是_________.4.某市2002年底人口为20万人,人均住房面积9m 2,计划2003年、2004年两年内平均每年增加人口为1万,为使到2004年底人均住房面积达到10m ,则该市两年内住房平均增长率必须达到_________.=3.317,精确到1%)5.某林场原有森林木材存量为a ,木材每年以25%的增长率生长,而每年冬天要砍伐的木材量为x ,•••则经过一年木材存量达到________,经过两个木材存量达到__________.6.某商品连续两次降价10%后为m 元,则该商品原价为( )A .1.12m 元B .1.12m 元C .0.81m 元 D .0.81m 元 7.某钢铁厂去年1月份某种钢的产量为5000吨,3月份上升到7200吨,设平均每月的增长率为x ,根据题意,得( )A .5000(1+x 2)=7200B .5000(1+x )+5000(1+x )2=7200C .5000(1+x )2=7200D .5000+5000(1+x )+5000(1+x )2=72008.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.•某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,•发现两次共节省了34元,则该学生第二次购书实际付款________元.能力提升9.益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,•若每件商品售价a 元,则可卖出(350-10a )件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?10.恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,•商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.11.某果园有100棵桃树,一棵桃树平均结1000个桃子,•现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,•如果要使产量增加15.2%,那么应多种多少棵桃树?聚焦中考12.(河北省)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A .23000(1)5000x +=B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=13.(浙江省衢州市)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )A 、256)x 1(2892=-B 、289)x 1(2562=-C 、256)x 21(289=-D 、289)x 21(256=-14.(乌鲁木齐).乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是学校.2005年市政府对农牧区校舍改造的投入资金是5786万元,2007年校舍改造的投入资金是8058.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为x ,则根据题意可列方程为 .15.(贵阳市)汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?16.(南京)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?答案:1.25% 2.10% 3.400(1+x )2=484,10%4.11% 5.54a-x ,2516a-94x 6.C 7.C8.204 点拨:第一次购书付款72元,享受了九折优惠,实际定价为72÷0.9=•80元,省去了8元钱.依题意,第二次节省了26元.设第二次所购书的定价为x 元.(x-200)×0.8+200×0.9=x-26.解之得x=230.所以第二次购书实际付款为230-26=204元.9.解:依题意:(a-21)(350-10a )=400,整理,得a 2-56a+775=0,解得a 1=25,a 2=31.因为21×(1+20%)=25.2,所以a 2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答:需要进货100件,每件商品应定价25元.10.解:设这两个月的平均增长率是x ,依题意列方程,得200(1-20%)(1+x )2=193.6,(1+x )2=1.21,1+x=±1.1,x=-1±1.1,所以x 1=0.1,x 2=-2.1(舍去).答:这两个月的平均增长率是10%.11.设多种x 棵树,则(100+x )(1000-2x )=100×1000×(1+15.2%)•,•整理,•得:•x 2-400x+7600=0,(x-20)(x-380)=0,解得x 1=20,x 2=38012.A 13。
浙教版数学八年级下册2.1《一元二次方程》说课稿1一. 教材分析《一元二次方程》是浙教版数学八年级下册第2章第1节的内容。
本节课的主要内容是一元二次方程的定义、解法以及应用。
一元二次方程是初中数学的重要内容,也是高中数学的基础。
它不仅在数学领域有广泛的应用,而且在物理、化学等自然科学领域也有重要作用。
二. 学情分析八年级的学生已经掌握了代数的基础知识,具备了一定的逻辑思维能力和解决问题的能力。
但是,对于一元二次方程的理解和应用还需要进一步的引导和培养。
因此,在教学过程中,我将以学生已有的知识为基础,通过实例引入一元二次方程,引导学生掌握一元二次方程的解法,并能够应用一元二次方程解决实际问题。
三. 说教学目标1.知识与技能目标:使学生理解一元二次方程的定义,掌握一元二次方程的解法,能够应用一元二次方程解决实际问题。
2.过程与方法目标:通过探究一元二次方程的解法,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:一元二次方程的定义,一元二次方程的解法。
2.教学难点:一元二次方程的解法,应用一元二次方程解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法。
2.教学手段:多媒体课件、黑板、粉笔。
六. 说教学过程1.导入新课:通过一个实际问题引入一元二次方程,激发学生的兴趣。
2.自主学习:学生自主探究一元二次方程的定义和解法,教师给予引导和帮助。
3.课堂讲解:教师讲解一元二次方程的定义和解法,通过实例解释一元二次方程的应用。
4.课堂练习:学生进行课堂练习,巩固一元二次方程的解法。
5.小组讨论:学生分组讨论一元二次方程的应用问题,分享解题思路和方法。
6.总结提升:教师引导学生总结一元二次方程的解法和应用,强调重点和难点。
7.课后作业:学生完成课后作业,巩固所学内容。
浙教版数学(八下) 第二单元综合复习一、 一元二次方程的求解1.因式分解法:若A ·B=0,则A=0或B=0.2.开平方法:形如x 2=a(a ≥0),(mx +n)2=b(m ≠0,b ≥0),可用开平方法直接求解.3.配方法:口诀——除移配开求答.(系数化为1)┘ 4.公式法:求根公式x=﹣b ±b 2-4ac2a (a ≠0).【习题一】(2)已知(a 2+b 2-1)(a 2+b 2+3)-12=0,求a 2+b 2的值.【习题二】解方程:x 2-b 2=a(3x -2a +b).【习题三】解方程:(1)(3x +1)2=9(2x +3)2; (2)(3x -11)(x -2)=2;(3) x(x +1)3 -1=(x -1)(x +2)4; (4)(3x -2)(3x +2)=x.【习题四】设a ,b 是一个直角三角形两条直角边的长,且(a 2+b 2)(a 2+b 2+1)=12,则这个直角三角形的斜边长为___________.【习题五】如果x-3是多项式2x 2-5x+m 的一个因式,则m 等于( ) A .6 B .-6 C .3 D .-3 【习题六】用配方法解下列方程时,配方有错误..的是( ) A .x 2-2x -99=0化为(x -1)2=100 B .x 2+8x +9=0化为(x +4)2=25 C .4t 2-4t -5=0化为(2t -1)2=6 D .9y 2+6y -2=0化为(3y +1) 2=3二、根系关系1.求根关系:x =﹣b ±b 2-4ac2a (a ≠0)2.判别式:△=b 2-4ac3.韦达定理:x 1+x 2=﹣b a ,x 1·x 2=ca4.常见题型:(1)已知方程的一根,求另一根.(2)已知两数的和与积,构造一元二次方程解题. (3)求待定系数的值或取值范围. (4)求对称式和非对称式的值.【习题一】已知方程x 2-5x+15=k 2的一个根是2,则k 的值是_________,方程的另一个根为___________.【习题二】若m 为实数,方程x 2-3x+m=0的一个根的相反数是方程x 2+3x-3=0的一个根,则x 2-3x+m=0的根是___________.【习题三】现定义运算“☆”,对于任意实数a 、b ,都有a ☆b=a 2-3a+b ,若x ☆2=6,则实数x 的值是_________.【习题四】若正数a 是一元二次方程x 2-5x+m=0的一个根,-a 是一元二次方程x 2+5x-m=0的一个根,则a 的值是___________.【习题五】已知关于x 的一元二次方程ax 2+bx+1=0(a ≠0)有两个相等的实数根,求ab 2(a −2)2+b 2−4的值.【习题六】已知关于x 的方程x 2-(k+2)x+2k=0,若一个等腰三角形的一边长为1,另两边长恰是这个方程的两个根,求这个等腰三角形的周长与面积.【习题七】已知关于x的方程x2-(m+2)x+(2m-1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.【习题八】若k是自然数,且关于x的二次方程(k-1)x2-px+k=0有两个正整数根,求k kp•(p p+k k)+k k-p+2 +kp+1的值.【习题九】已知α,β是方程x2+2x-7=0的两个实数根,求α2+3β2+4β的值.【习题十】设x1、x2是一元二次方程x2+x-3=0的两个根,求x13-4x22+19的值.三、生活类应用1. 增长(降低)率问题若基数为a ,平均增长(降低)率为x ,则连续增长n 次后为a(1±x)n . 2. 数字问题① 有关三个连续整数(或连续奇数、连续偶数)的问题,设中间一个数为x ,再根据题 目中的条件用含x 的代数式表示其余两个数. ② 多位数的表示方法:a. 两位数=(十位数字)×10+(个位数字);b. 三位数=(百位数字)×100+(十位数字)×10+(个位数字);… 3. 利润问题① 毛利润=售出价-进货价 ② 纯利润=售出价-进货价-其他费用 ③ 利润率=利润成本×100%4. 储蓄问题① 利息=本金×年(月)利润×年(月)数 ② 利息税=利息×税率③ 本息和=[1+年(月)利率×年(月)数]×本金(不计利息税)④ 不计利息税后,且到期后又连本带利一起再存相同时间,且年利率不变时,本息和=本金×(1+年利率)年数【习题一】某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )A .100(1+x)2=81B .100(1-x)2=81C .100(1-x%)2=81D .100x 2=81【习题二】三个连续自然数的平方和为50,求这三个数.在这个问题中,设中间的自然数为x ,则其余两个自然数为_________、_________,根据题意,可列出方程:________________________________.【习题三】某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( ) A .(3+x)(4-0.5x)=15 B .(x+3)(4+0.5x)=15 C .(x+4)(3-0.5x )=15 D .(x+1)(4-0.5x)=15【习题四】近年来,某县为发展教育事业,加大了对教育经费的投入,2009年投入6000万元,2011年投入8640万元.(1)求2009年至2011年该县投入教育经费的年平均增长率;(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.【习题五】某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?【习题六】某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?【习题七】明在2013年暑假帮某服装店买卖体恤衫时发现,在一段时间内,体恤衫每件80元销售时,每天销售量是20件,单价每降低4元,每天就可以多售出8件,已知该体恤衫进价是每件40元,请问服装店一天能赢利1200元吗?如果设每件降低x元,那么所列方程正确的是()A.(80-x)(20+x)=1200 B.(80-x)(20+2x)=1200C.(40-x)(20+x)=1200 D.(40-x)(20+2x)=1200【习题八】某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【习题九】某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30x,P=170-2x.(1)当日产量为多少时,每日获得的利润为1750元?(2)当日产量为多少时,可获得最大利润?最大利润是多少?四、几何应用1.常用勾股定理,面积公式,图形特点,平移,数形结合,三边关系等解题.【习题一】要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是()A.5个 B.6个 C.7个 D.8个【习题二】某初三一班学生上军训课,把全班人数的18排成一列,这样排成一个正方形的方队后还有7人站在一旁观看,此班有学生________人.【习题三】如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80-100x-80x=7644 B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644 D.100x+80x=356习题三图习题四图【习题四】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于()A.0.5cm B.1cm C.1.5cm D.2cm【习题五】一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,当AE=_____米时,有DC2=AE2+BC2.【习题六】百货大楼服装柜销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十•一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要使平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?请先填空后再列方程求解:设每件童装降价_________元,那么平均每天就可多售出_________件,现在一天可售出_________件,每件盈利_________元.【习题七】配方法不仅可以用来解一元二次方程,还可以用来解决很多问题.例如:因为3a2≥0,所以3a2-1≥-1,即:3a2-1就有最小值-1.只有当a=0时,才能得到这个式子的最小值-1.同样,因为-3a2≤0.所以-3a2+1≤1,即:-3a2+1就有最大值1,只有当a=0时,才能得到这个式子的最大值1.(1)当x=________时,代数式-2(x+1)2-1有最________值(填“大”或“小”值为______. (2)当x=________时,代数式 2x 2+4x+1有最________值(填“大”或“小”)值为______. (3)矩形自行车场地ABCD 一边靠墙(墙长10m ),在AB 和BC 边各开一个1米宽的小门(不用木板),现有能围成14m 长的木板,当AD 长为多少时,自行车场地的面积最大?最大面积是多少?【习题八】在长方形ABCD 中,AB=16cm ,BC=6cm ,点P 从A 点开始沿AB 边向点B 以3cm/s 的速度移动,点Q 从点C 开始沿CD 边向点D 以2cm/s 的速度移动,点P 、Q 从出发开始,经过几秒时,点P 、Q 、D 组成的三角形是等腰三角形?浙教版数学(八下) 第二单元综合复习参考答案一、一元二次方程的求解习题一.(1)m=﹣1;x 1=﹣1+72 ,x 2=﹣1-72.(2) a 2+b 2=3【解答】设a 2+b 2=n(n ≥0),则原方程变形为(n-1)(n-3)-12=0.整理,得n 2+2n-15=0,即(n+5)(n-3)=0,,∴n 1=﹣5(不合题意,舍去),n 2=3,∴a 2+b 2=3. 习题二.x 1=2a+b ,x 2=a-b 【解答】x 2-b 2=a(3x-2a +b) x 2-b 2=3ax-2a 2+ab x 2-3ax+ 94-a 2=14-a 2+b 2+ab(x-32a)2=(12a+b)2∴x-32a=12a+b 或x-32a=-(12a+b)∴x 1=2a+b ,x 2=a-b.习题三.(1)x 1=﹣83 ,x 2=﹣109;(2)x 1=53 ,x 2=4;(3)x 1=2,x 2=﹣3;(4)x 1=1,x 2=﹣23 .习题四. 3【解答】∵a ,b 是一个直角三角形两条直角边的长, 设斜边为c ,∴(a 2+b 2)(a 2+b 2+1)=12,根据勾股定理得:c 2(c 2+1)-12=0,即(c 2-3)(c 2+4)=0, ∵c 2+4≠0, ∴c 2-3=0,解得c= 3 或c=﹣ 3 (舍去). 则直角三角形的斜边长为 3 . 习题五. D【分析】x-3是多项式2x 2-5x+m 的一个因式,即方程2x 2-5x+m=0的一个解是3,代入方程求出m 的值. 习题六. B二、根系关系习题一. ±3,3【解答】已知方程x 2-5x+15=k 2的一个根为x l =2,设另一根是x 2, 则x 1+x 22,则另一个根x 2=3,k=±3.习题二【解答】解方程x 2+3x-3=0的根是,方程x 2-3x+m=0的一个根的相反数是方程x 2+3x-3=0的一个根,因而方程x 2+3x-3=0的一个根的相反数是方程x 2-3x+m=0的一个根,则x 2-3x+m=0的根是﹣(﹣3±21 2 )即3±212.习题三. 4或-1【解答】x ☆2=6,∴x 2-3x+2=6, ∴x 2-3x-4=0,∴(x-4)(x+1)=0, ∴x-4=0,x+1=0,∴x 1=4,x 2=-1. 习题四. 5 【解答】∵a 是一元二次方程x 2-5x+m=0的一个根,-a 是一元二次方程x 2+5x-m=0的一个根,∴a 2-5a+m=0①,a 2-5a-m=0②, ①+②,得2(a 2-5a)=0, ∵a >0,∴a=5. 习题五.4【解答】∵ax 2+bx+1=0(a ≠0)有两个相等的实数根, ∴△=b 2-4ac=0,即b 2-4a=0,∴b 2=4a ,∵ab 2(a −2)2+b 2−4 =ab 2a 2−4a+4+b 2−4 =ab 2a 2−4a+b 2 =ab 2a 2 , ∵a ≠0,∴ab 2a 2 = b 2a =4aa =4.习题六. 周长=5,面积=154. 【解答】∵x 2-(k+2)x+2k=0,∴(x-k)(x-2)=0,解得:x 1=2,x 2=k , ∵三角形是等腰三角形,当k=1时,不能围成三角形;当k=2时,周长为5. 如图:设AB=AC=2,BC=1, 过点A 作AD ⊥BC 于D , ∴BD=CD=12BC=12 ,∴AD=AB 2−BD 2 =152∴S △ABC =12×1×15 2 =154.习题七. (1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在实数范围内,m 无论取何值,(m-2)2+4>0,即△>0,∴关于x 的方程x 2-(m+2)x+(2m-1)=0恒有两个不相等的实数根. (2) 另一根=3,周长=4+10 或4+2 2 【解答】根据题意,得12-1×(m+2)+(2m-1)=0,解得,m=2, 则方程的另一根为:m+2-1=2+1=3.①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为10 , 该直角三角形的周长为1+3+10 =4+10 ;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2 2 ,则该直角三角形的周长为1+3+2 2 = 4+2 2 .k是自然数,∴kk-p+2 +kp+1三、生活类应用习题一 .B习题二 .x-1 x+1 (x-1)2+x2+(x+1) 2=50习题三. A习题四.(1)20% (2)能实现【解答】(1)设每年平均增长的百分率为x.6000(1+x)2=8640,(1+x)2=1.44,∵1+x>0,∴1+x=1.2,x=20%.(2)2012年该县教育经费为8640×(1+20%)=10368(万元)>9500万元.故能实现目标.习题五.0.3或0.2【解答】设应将每千克小型西瓜的售价降低x元.习题六. 定价60元,进货100个 【解答】设每个商品的定价是x 元,由题意,得(x-40)[180-10(x-52)]=2000,整理,得x 2-110x+3000=0,解得x 1=50,x 2=60.当x=50时,进货180-10(50-52)=200个>180个,不符合题意,舍去; 当x=60时,进货180-10(60-52)=100个<180个,符合题意.∴当该商品每个定价为60元时,进货100个.习题七. D习题八. C习题九.(1)25只 (2) 35只,1950元【解答】(1)∵生产x 只玩具熊猫的成本为R (元),售价每只为P (元),且R ,P 与x 的关系式分别为R=500+30x ,P=170-2x ,∴(170-2x )x-(500+30x )=1750,解得 x 1=25,x 2=45(大于每日最高产量为40只,舍去). ∴当日产量为25只时,每日获得利润为1750元.(2)设每天所获利润为W ,由题意得,W=(170-2x )x-(500+30x )=﹣2x 2+140x-500=﹣2(x 2-70x )-500=﹣2(x 2-70x+352-352)-500=﹣2(x 2-70x+352)+2×352-500=﹣2(x-35)2+1950.当x=35时,W 有最大值1950元.四、 几何应用习题一. C【解答】设有x 个队,每个队都要赛(x-1)场,但两队之间只有一场比赛, x (x-1)÷2=21,解得x=7或-6(舍去),∴应邀请7个球队参加比赛. 习题二. 56【解答】设班级学生x 人,依题意,得(18)2+7=x , 整理,得x 2-64x+448=0,解得x 1=56,x 2=8,当x=8时,18x=1,1人不能成为方阵,舍去. ∴此班有学生56人.习题三. C【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.习题四. B【解答】设AC 交A ′B ′于H ,∵∠A=45°,∠D=90°,∴△A ′HA 是等腰直角三角形,设AA ′=x ,则阴影部分的底长为x ,高A ′D=2-x ,∴x •(2-x )=1,∴x=1,即AA ′=1cm .习题五. 143 【解答】如图,连接CD ,设AE=x 米, ∵坡角∠A=30°,∠B=90°,BC=6米,∴AC=12米,∴EC=(12-x )米,∵正方形DEFH 的边长为2米,即DE=2米,∴DC 2=DE 2+EC 2=4+(12-x)2,AE 2+BC 2=x 2+36,∵DC 2=AE 2+BC 2,∴4+(12-x)2=x 2+36,解得:x=143米. 习题六. x 2x 20+2x 40-x每件应降20元【解答】设每件童装降价x 元,则(40-x)(20+2x)=1200即:x 2-30x+200=0,解得:x 1=10,x 2=20,∵要扩大销售量,减少库存,∴舍去x 1=10∴每件童装应降价20元.习题七.(1)-1,大,-1 (2) -1,小,-1(3)设AD=x ,S=x(16-2x)=-2(x-4)2+32,当AD=4m 时,面积最大值为32m 2.习题八. 2秒 或 16−243 7 秒 或 16+247 7 秒 或 ﹣32+659 5秒. 【解答】如图1,设时间为ts ,过P 作PM ⊥CD 于M ,过Q 作QN ⊥AB 于N ,∵四边形ABCD 是矩形,∴DC=AB=16cm ,AD=BC=PM=QN=6cm ,∠A=∠C=∠B=∠ADC=90°, 则DM=AP=3t cm ,CQ=BN=2t cm ,分为三种情况:①当DP=PQ 时,则DM=MQ=3t cm ,∵3t+3t+2t=16,解得:t=2.②当∠PQD 为锐角时,DQ=PQ 时,在Rt △PNQ 中,由勾股定理得:(16-2t)2=62+(16-3t-2t)2,7t 2-32t+12=0,解得:t=32±443 14 =16±243 7, ∵t=16+243 7 >163 (舍去),∴t=16-243 7.当∠PQD 为钝角时,如图2,QD=PQ ,则AP-DQ ≥0,即3t-(16-2t )≥0,∴165 ≤t ≤163. ∵DQ=16-2t ,PH=6,QH=AP-DQ=5t-16,∴(16-2t)2=36+(5t-16)2,解得t=16±247 7 , ∵t ≥165 ,∴t=16+247 7. ③当DP=DQ 时,在Rt △DAP 中,由勾股定理得:(16-2t)2=62+(3t)2,即5t 2+64t-220=0,解得t=−64±1259 10 =﹣32±659 5, ∵﹣32-659 5 <0,∴t=﹣32+659 5. 综上,经过2秒、16−243 7 、16+247 7 、﹣32+659 5秒时,点P 、Q 、D 组成的三角形是等腰三角形.。
2.3 一元二次方程的应用(第1课时)
A 组 基础训练
1. 一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x ,则方程为( )
A. x 2+(x-4)2=10(x-4)+x-4
B. x 2+(x+4)2
=10x+x-4-4 C. x 2+(x+4)2=10(x+4)+x-4 D. x 2+(x+4)2=10x+(x-4)-4 2. (杭州中考)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次,设参观人次的平均年增长率为x ,则( )
A .10.8(1+x )=16.8
B .16.8(1-x )=10.8
C .10.8(1+x )2=16.8
D .10.8[(1+x )+(1+x )2
]=16.8 3. 某种花卉每盆的盈利与每盆的株数有一定的关系. 每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元. 要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列方程( )
A .(3+x )(4-0.5x )=15
B .(3+x )(4+0.5x )=15
C .(4+x )(3-0.5x )=15
D .(1+x )(4-0.5x )=15
4. 一个小组有若干人,新年每人互送贺年卡片一张,已知全组共送贺卡72张,则这个小组共有( )
A .12人
B .18人
C .9人
D .10人
5. 一次足球比赛,每个球队都要与其他球队比赛一场,共赛36场. 设有x 个球队,则可以列方程为 .
6. 为迎接世合赛,绍兴市政府加大了绿化的力度,从2月份开始到4月份,绿化面积增加了44%,则平均每个月的增长率为 .
7. 从飞机上空投下的炸弹速度会越来越快,其下落的高度h (m )与时间t (s )间的公式为h=2
1at 2,若a 取近似值10m/s2,则从2000m 的空中投下的炸弹落至地面目标,大约需要的时间t 为 .
8. 某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元. 求3月份到5月份营业额的平均月增长率.
9. 三年前,小明父亲的年龄恰好是小明年龄的平方,若今年他们父子的年龄和为36,求小明今年的年龄是多少?
10. 有一人患了流感,经过两轮传染后共有64人患了流感.
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
11. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明,这种台灯的售价每上涨1元,其销量就减少10个.
(1)为了实现平均每月10 000元的销售利润,这种台灯的售价可定为多少元?
(2)商场采取涨价措施后,每月能盈利15 000元吗?为什么?
(3)台灯的售价定为多少元时利润最大,最大利润多少?
B组自主提高
12. 平面上不重合的两点确定一条直线,不同的三点最多可确定3条直线.若平面上不同的n个点最多可确定21条直线,则n的值为()
A. 5 B. 6 C. 7 D. 8
13.一个容器内盛满纯酒精20L.第一次倒出若干升后,用水加满,第二次又倒出同样体积的溶液,再用水加满,这时容器内剩下纯酒精5L.那么每次倒出液体多少升?
14. “铁路建设助推经济发展”,近年来我国政府十分重视铁路建设. 渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.
(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?
(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加
10
1m 小时,求m 的值.
参考答案
1—4. CCAC 5. 2
)1(-x x =36 6. 20% 7. 20s 8. 20% 9. 8岁 10. 解:(1)设每轮传染中平均一个人传染了x 个人.由题意,得1+x+x (1+x )=64. 解得x 1=7,x 2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.
(2)7×64=448(人).
答:第三轮又有448人被传染.
11. 解:(1)50元或80元.
(2)不能,可从Δ<0,方程无解说明.
(3)当售价定为65元时,最大利润12 250元.
12. C
13. 解:设每次倒出xL 液体.
第一次倒出xL 酒精加满水后,酒精的浓度为
2020x -. 第二次倒出xL 液体后,剩下浓度为2020x -的混合溶液,其中纯酒精为)20(20
20x x --L ,加满水后,酒精浓度发生变化,但是其中含的纯酒精没有变,仍然是
)20(2020x x --L. 由此可得:)20(20
20x x --=5,解得x=10. 故每次倒出10L 液体.
14. 解:(1)设原时速为xkm/h ,通车后里程为ykm ,则有:8(120+x )=y ,(8+16)x=320+y ,解得x=80,y=1 600. 答:渝利铁路通车后,重庆到上海的列车设计运行里程是1 600千米.
(2)由题意可得出:(80+120)(1-m%)(8+
10
1m )=1600,解得:m 1=20,m 2=0(不合题意舍去). 答:m 的值为20.。