201x年春八年级数学下册第17章一元一次方程17.2一元二次方程的解法第3课时因式分解法课时作业新
- 格式:doc
- 大小:110.50 KB
- 文档页数:6
长兴县实验初中教师集体备课文稿一. 授课内容和课时安排授课内容:八年级下册第17章《函数及其图象》§17. 1变量与函数、§17.2函数的图象、§17.3一次函数课时安排:第一课时:变量与函数(1) 第六课时:一次函数的认识 第二课时:变量与函数(2) 第七课时:一次函数的图象(1) 第三课时:平面直角坐标系(1) 第八课时:一次函数的图象(2) 第四课时:平面直角坐标系(2) 第九课时:一次函数的性质第五课时:函数的图象 第十课时:一次函数的图象及性质二.第16章《数的开方》授课存在的主要问题:1.对于平方根和立方根的概念,学生比较容易接受,但在做题时,对于正数的平方根经常出现漏解的情况;2.对于二次根式的三条性质,前两条比较容易接受,在具体的习题中也能很好的利用。
但 对于性质3:a a =2,很多同学经常容易搞错,特别是a 为负数时,2a 应该等于a 的 相反数容易出错,例如:()=-2)6(,有的同学会填-6;也有同学会写±6;3.对于二次根式的化简,部分同学还不过关,有待进一步加强和相关训练;4.在实数范围内的化简、计算以及因式分解、求方程的解等等,很多同学由于多种原因,解题正确率不高;5.刚接触无理数、实数这两个概念,在区分无理数、有理数、整数、分数时,部分学生容易混淆。
三.三节内容的教材分析【教学目标】本章前三节的主要内容是变量与函数的认识,以及函数图象的认识;另外主要是一次函数的图象及性质。
教学目标是:1.通过对实际问题中数量之间相互依存关系的探索,学会用函数思想去进行描述和研究其变化规律;通过结合丰富的实际问题,让学生了解常量和变量、自变量与函数的意义,初步理解对应的思想,逐步学会运用函数的观点观察、分析问题,预测实际问题中变量的变化趋势。
2.认识并会画平面直角坐标系,了解现实生活中数形结合思想的实例,体会平面直角坐标系在函数研究中的地位和作用。
原(逆)命题,原(逆)定理教学设计通过探索逆命题的写法、培养学生的观察能力、应变能力和语言表达能力。
情感态度与价值观教学中渗透着数学的形式美和内涵美,提高学生对数学美的鉴赏能力.教学重难点重点会识别两个命题是不是互逆命题,会在简单情况下写出一个命题的逆命题,了解原命题成立,其逆命题不一定成立.难点能判断一些命题的真假性,并能运用推理的思想方法证明一类较简单的真命题,同时了解假命题的证明方法是举反例说明.教学过程教学环节(注明每个环节预设的时间)教师活动学生活动设计意图㈠创设情景,导入新课5分钟一、回顾旧知,引入新课1、命题的概念:一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。
2、命题可看做由题设(或条件)和结论两部分组成。
3、命题有真有假。
正确的命题是真命题;错误的命题是假命题.填表并思考学生思考、相互交流本环(三)深入探究,巩固概念 10分钟例1 写出下列命题的逆命题1、直角三角形斜边上的中线等于斜边的一半。
1)如果一个三角形是直角三角形,那么它斜边上中线等于斜边的一半。
2)如果一个三角形斜边上中线等于斜边的一半,那么这个三角形是直角三角形。
3)如果一个三角形一边上的中线等于该边的一半,那么这个三角形是直角三角形。
4)一边上的中线等于该边一半的三角形是直角三形。
2、等腰三角形两底角相等。
如果三角形是等腰三角形,那么它的两底角相等。
如果三角形的两底角相等,那么它是等腰三角形。
两角相等的三角形是等腰三角形。
4、角平分线上的点到角两边的距离相等。
1)如果一个点在角的角平分线上,那么这个点到角两边的距离相等。
2)如果一个点到角两边距离相等,那么这个点在叫的角平分线上。
3)到角两边的距离相等的点在这个角的平分线上。
巩固知识例2 说出下列命题的逆命题,并判定原命题逆命题的真假:1、说出下列命题的逆命题,并判定逆命题的真假;①既是中心对称,又是轴对称的图形是圆。
逆命题:圆既是中心对称,又是轴对称的图形——真命题。
沪科版初中数学教材目录(一)七年级上册第1章有理数1.1正数和负数 1.2 数轴 1.3 有理数的大小1.4 有理数的加减1.5 有理数的乘除 1.6 有理数的乘方1.7 近似数第2章整式加减2.1代数式2.2 整式加减第3章一次方程与方程组3.1一元一次方程及其解法3.2一元一次方程组的应用3.3二元一次方程组及其解法3.4二元一次方程组的应用3.5三元一次方程组的应用3.6一次方程组与CT课件第4章直线与角4.1几何图形4.2线段、射线、直线4.3线段的长短比较4.4角4.5角的比较与补(余)角4.6用尺规作线段与角第5章数据收集与整理5.1数据的收集5.2数据的整理5.3用统计图描述数据5.4综合与实践浪费水资源现象七年级下册第6章实数6.1平方根、立方根6.2实数第7章一元一次不等式与不等式组7.1 不等式及其基本性质7.2一元一次不等式7.3一元一次不等式组7.4综合与实践排队问题第8章整式乘除与因式分解8.1幂的运算(14.1.1同底数幂的乘法)(14.1.2 幂的乘方)(14.1.3积的乘方)(14.1.4单项式乘单项式)(14.1.5同底数幂的除法)(14.1.6多项式乘多项式)8.2 整式乘法8.3完全平方公式与平方差公式8.4 因式分解8.5 综合与实际纳米材料的奇异特性第9章分式9.1分式及其基本性质9.2分式的运算9.3 分式方程第10章相交线、平行线与平移10.1相交线10.2平行线的判定10.3 平行线的性质10.4 平移八年级上册第11章平面直角坐标系12.1平面上的点坐标12.2图形在坐标中的平移第12章一次函数12.1函数12.2一次函数12.3一次函数与二元一次方程13.4综合与实践一次函数模型的应用第13章三角形中的边角关系13.1三角形中的边角关系13.2命题与证明第14章全等三角形14.1全等三角形14.2三角形全等的判定第15章轴对称图形与等腰三角形15.1轴对称图形(13.1.1轴对称)(13.2.1画轴对称图形)15.2线段的垂直平分线15.3等腰三角形15.4角的平分线1/3八年级下册第16章二次根式16.1二次根式16.2二次根式的运算第17章一元二次方程17.1一元二次方程17.2一元二次方程的解法17.3一元二次方程的根的判别式17.4一元二次方程的根与系数的关系17.5 一元二次方程的应用第18章勾股定理18.1勾股定理18.2 勾股定理的逆定理第19章四边形19.1多边形内角和19.2平行四边形19.3 矩形菱形正方形19.4 中心对称图形19.5梯形第20章数据的初步分析20.1数据的频数分布20.2数据的集中趋势与离散程度20.3综合与实践体重指数九年级上册第21章二次函数与反比例函数21.1二次函数21.2二次函数的图象与性质21.3二次函数与一元二次方程21.4二次函数的应用21.5反比例函数21.6综合与实践获得最大利润第22章相似形22.1比例线段22.2相似三角形的判定22.3相似三角形的性质22.4图形的位似变换22.5综合与实践测量与误差第23章解直角三角形23.1锐角的三角函数23.2解直角三角形及其应用九年级下册第24章圆24.1 旋转24.2 圆的对称性24.3 圆周角24.4 直线与圆的位置关系24.5三角形的内切圆24.6 正多边形与圆24.7 弧长与扇形面积24.8 进球路线与最佳射门角第25章投影与视图25.1 投影25.2 三视图第26章概率初步26.1 随机事件26.2 等可能情况下的概率计算26.3 用频率估计概率26.4 概率在遗传学中的应用2/3初中数学王桂兵整理3/3。
附:人教版初中数学各章详细内容卜z~^_z z—z-z-z-^_z z-^_z z-^_z z-^_z z~^_z z-^_z z-^_z z-^_z z-^_z z-^_z ,z'^_z z-^_z z-^_z z-^_z z-^_z z-^_z z-^_z z_^_z z_^_z z_^_z z_^_z z_^_z z_^_z z_^_z z_^_z z_^_z z_^_z z- 第一章有理数1.1正数和负数阅读与思考用正负数表示加工允许误差2.2有理数3.3有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数4.4有理数的乘除法观察与思考翻牌游戏中的数学道理5.5有理数的乘方数学活动小结复习题1第二章整式的加减2.1 整式阅读与思考数字1与字母X的对话6.2整式的加减信息技术应用电子表格与数据计算数学活动小结复习题2第三章一元一次方程7.1从算式到方程阅读与思考“方程”史话3. 2 ― 一元一次方程(一)一一合并同类项与移项实验与探究无限循环小数化分数3. 3 ― 一元一次方程(二)一一去括号与去分母3. 4实际问题与一元一次方程数学活动小结复习题3 第四章图形认识初步4. 1多姿多彩的图形阅读与思考几何学的起源4. 2直线、射线、线段阅读与思考长度的测量4. 3角4.4课题学习设计制作长方体形状的包装纸盒数学活动小结复习题4部分中英文词汇索引z-^.七年级下册第五章相交线与平行线?5. 1 相交线?6.2平行线?7.3平行线的性质?8.4平移?数学活动?小结?复习题5第六章平面直角坐标系?9.1平面直角坐标系?6.2坐标方法的简单应用?数学活动?小结?复习题6第七章三角形?7.1与三角形有关的线段?7.2与三角形有关的角?7.3多边形及其内角和?10.4课题学习镶嵌?数学活动?小结?复习题7第八章二元一次方程组?10.1元一次方程组?11.2消元?8.3再探实际问题与二元一次方程组?数学活动?小结?复习题8第九章不等式与不等式组?9. 1 不等式?9.2实际问题与一元一次不等式?9. 3 一元一次不等式组?12.4课题学习利用不等关系分析比赛(1)?数学活动?小结?复习题9第十章实数?13.1 平方根?14.2立方根?10.3实数?数学活动?小结?复习题10部分中英文词汇索引第十一章一次函数?11.1变量与函数?信息技术应用用计算机画函数图象?15.2 一次函数?阅读与思考科学家如何测算地球的年龄?11.3用函数观点看方程(组)与不等式?数学活动?小结?复习题11第十二章数据的描述?12.1几种常见的统计图表?16.2用图表描述数据?信息技术应用利用计算机画统计图?阅读与思考作者可能是谁?12.3课题学习从数据谈节水?数学活动?小结?复习题12第十三章全等三角形?13.1 全等三角形?13.2三角形全等的条件?阅读与思考为什么要证明?13.3角的平分线的性质?数学活动?小结?复习题13第十四章轴对称?14.1 轴对称?15.2轴对称变换?信息技术应用探索轴对称的性质?16.3等腰三角形?实验与探究三角形中边与角之间的不等关系?数学活动?小结?复习题14第十五章整式?17.1 整式的加减?18.2整式的乘法?19.3乘法公式?阅读与思考杨辉三角?20.4整式的除法?15.5因式分解?观察与猜想x2+(p+q)x+pq型式子的因式分解?数学活动?小结?复习题15八年级下册第十六章分式?16.1 分式?17.1分式的运算?阅读与思考容器中的水能倒完吗?18.1分式方程?数学活动?小结?复习题16第十七章反比例函数?19.1反比例函数?20.1实际问题与反比例函数?阅读与思考生活中的反比例关系?数学活动?小结?复习题17第十八章勾股定理?21.1勾股定理?22.2勾股定理的逆定理?数学活动?小结?复习题18 第十九章四边形?23.1平行四边形?24.1特殊的平行四边形?实验与探究巧拼正方形?25.1梯形?观察与猜想平面直角坐标系中的特殊四边形?数学活动?小结?复习题19第二十章数据的分析?26.1数据的代表?27.2数据的波动?信息技术应用用计算机求几种统计量?阅读与思考数据波动的几种度量?20.3课题学习体质健康测试中的数据分析?数学活动?小结?复习题20第二十一章二次根式?21. 1 二次根式?22.2二次根式乘除?阅读与思考海伦——秦九韶公式?小结?复习题21第二十二章一元二次方程?23. 1 一元二次方程?24.2降次——解一元二次方程?阅读与思考黄金分割数?25.3实际问题与一元二次方程?观察与猜想发现一元二次方程根与系数的关系?数学活动?小结?复习题22第二十三章旋转?26.1图形的旋转?27. 2 中心对称?信息技术应用探索旋转的性质?23.3课题学习图案设计?数学活动?小结?复习题23第二十四章圆?24. 1 圆?24.2与圆有关的位置关系?28.3正多边形和圆?阅读与思考圆周率冗?24.4弧长和扇形面积?实验与研究设计跑道?小结?复习题24 第二十五章概率初步?25. 1 概率?25.2用列举法求概率?阅读与思考概率与中奖?29.3利用频率估计概率?阅读与思考布丰投针实验?25.4课题学习键盘上字母的排列规律?数学活动?小结?复习题25九年级下册第二十六章二次函数?26. 1 二次函数?实验与探究推测植物的生长与温度的关系?26.2用函数观点看一元二次方程?信息技术应用探索二次函数的性质?30.3实际问题与二次函数?数学活动?小结?复习题26第二十四章相似?31.1图形的相似?32.2相似三角形?观察与猜想奇妙的分形图形?33.3位似?信息技术应用探索位似的性质?数学活动?小结?复习题27第二十八章锐角三角函数?34.1锐角三角函数?阅读与思考一张古老的三角函数?28.2解直角三角形?数学活动?小结?复习题28第二十九章投影与视图?29. 1 投影?29.2三视图?阅读与思考视图的产生与应用?35.3课题学习制作立体模型?数学活动?小结?复习题29七年级上册第一章走进数学世界1.2我们周围的“数”1.3计算工具的发展1.4科学计算器的使用第二章对数的认识的发展2.1负数的引入2.2用数轴上的点表示有理数2.3相反数和绝对值2.4有理数的加法2.5有理数的减法2.6有理数加减法的混合运算2.7有理数的乘法2.8有理数的除法2.9有理数的乘方2.10有理数的混合运算2.11有效数字和科学记数法2.12用计算器做有理数的混合运算第三章一元一次方程3.1 字母表示数3.2同类项与合并同类项3.3等式与方程3.4等式的基本性质3.5'兀'次方程3.6列方程解应用问题第四章简单的几何图形4.1平•面图形与立体图形4.2某些立体图形的展开图4.3从不同方向观察立体图形4.4点、线、面、体4.5直线4.6射线4.7线段4.8角及其表示4.9角的分类4.10角的度量4.11 用科学计算器进行角的换算4.12 角平分线4.13两条直线的位置关系4.14相交线与平行线4.15用计算机绘图七年级下册第五章一元一次不等式和一元一次不等式5.1不等式5.2不等式的基本性质5.3不等式的解集5.4一元一次不等式及其解法5.5一元一次不等式组及其解法第六章二元一次方程组6.1二元一'次方程和它的仰华6.2二元一'次方程组和它的角星6.3用代入消元法解二元一次方程组6.4用加减消元法解二元一次方程组6.5二元一次方程组的应用第七章整式的运算7.2幕的运算7.3整式的乘法7.4乘法公式7.5整式的除法第八章观察、猜想与证明8.1观察8.2实验8.3归纳8.4类比8.5猜想8.6证明8.7几种简单几何图形及其推理第九章因式分解9.1因式分解9.2提取公因式法9.3运用公式法第十章数据的收集与表示10.1 总体与样本10.2数据的收集与整理10.3数据的表示10.4用计算机绘制统计图10.5平•均数10.6用科学计算器求平均数10.7众数10.8中位数八年级上册第十一章分式11.1分式11.2分式的基本性质11.3分式的乘除法11.4分式的加减法11.5可化为一元一次方程的分式方第十二章实数和二次根式12.1平方根12.2 立方根12.4无理数与实数12.5二次根式及其性质12.6二次根式的乘除法12.7二次根式的加减法第十三章三角形13.1三角形13.2三角形的性质13.3三角形中的主要线段13.4全等三角形13.5全等三角形的判定13.6等腰三角形13.7直角三角形13.8基本作图13.9逆命题、逆定理13.10轴对称和轴对称图形13.11勾股定理13.12勾股定理的逆定理第十四章事件与可能性14.1确定事件与不确定事件14.2事件发生的可能性14.3求简单事件发生的可能性八年级下册第十五章一次函数,15.1函数15.2函数的表示法15.3函数图象的画法15.4一次函数和它的解析式15.5一次函数的图象15.6一次函数的性质15.7一次函数的应用第十六章四边形,16.1多边形16.2平行四边形和特殊的平行四边.16.3平行四边形的性质与判定16.4 特殊的平行四边形的性质与判.16.6中心对称图形16.7梯形16.8等腰梯形与直角梯形第十七章一元二次方程,17.1一元二次方程17.2一元二次方程的解法17.3列方程解应用问题第十八章方差与频数分布,18.1极差、方差与标准差18.2用计算器计算标准差和方差18.3频数分布表与频数分布图九年级上册第十九章相似形,19.1比例线段19.2黄金分割19.3平行线分三角形两边成比例19.4 相似多边形19.6相似三角形的性质19.7应用举例第二十章二次函数和反比例函数,20.1二次函数20.2二次函数的图象20.3二次函数解析式的确定20.4二次函数的性质20.5二次函数的一些应用20.6反比例函数20.7反比例函数的图象、性质和应第二十一章解直角三角形,21.1锐角三角函数21.2锐角的三角函数伯21.3用计算器求锐角三角函数值21.4解直角三角形21.5应用举例第二十二章圆(上),22.1 圆的有关概念22.2过三点的圆22.3圆的对称性22.4圆周角第二十三章概率的求法与应用,23.1求概率的方法23.2概率的简单应用九年级下册第二十四章圆(下),24.1直线和圆的位置关系24.2圆的切线24.3圆和圆的位置关系24.4正多边形的有关计算第二十五章图形的变换,25.1平移变换25.2旋转变换25.3轴对称变换25.4 位似变换第二十六章投影、视图与展开图,26.1中心投影与平行投影26.2简单几何体的三视图26.3简单几何体的平面展开图第二十七章探索数学问题的一些方法.27.1探索数学问题的一些方法27.2探索数学问题举例第二十八章数学应用的一般思路,28.1数学应用的一般思路28.2数学应用举例。
章末复习【知识与技能】1.了解一元二次方程的概念,掌握一元二次方程的公式解法和其他解法;能够根据方程的特征,灵活运用一元二次方程的解法求方程的根.2.理解一元二次方程的根的判别式,会运用它解决一些简单的问题.3.掌握一元二次方程根与系数的关系,会用它解一些简单的问题.4.会列出一元二次方程解实际问题.【过程与方法】1.进一步培养学生快速准确的计算能力.2.进一步培养学生严密的逻辑推理与论证能力.3.进一步培养学生的分析问题、解决问题的能力.【情感态度】1.进一步渗透知识之间的相互联系和相互作用.2.进一步渗透“转化”的思想方法及对学生进行辩证唯物主义思想教育.3.进一步体会配方法是解决数学问题的一种思想方法.【教学重点】1.一元二次方程的解法及判别式.2.一元二次方程根与系数的关系以及它的简单应用.【教学难点】列方程解决实际问题,灵活运用根与系数的关系解决问题.一、知识框图,整体把握【教学说明】教师引导学生回顾本章知识点,边回顾边画出本章知识框图,使学生对本章知识有一个总体把握,了解各知识点之间的联系,加深对知识点的理解,为后面的运用奠定基础.二、释疑解惑,加深理解1.一元二次方程的定义和一般形式(1)只含有一个未知数、且未知数的最高次数是2的整式方程,叫做一元二次方程.(2)一元二次方程的一般形式是ax2+bx+c=0(a≠0)特别注意:①分母中不含有未知数.②只有当二次项系数a≠0时,整式方程ax2+bx+c=0才是一元二次方程.2.一元二次方程的解法一元二次方程解法有:直接开平方法、配方法、公式法和因式分解法.说明:(1)明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;(2)根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程;值得注意的问题:①一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数.②直接开平方法是最基本的方法.③公式法和配方法是最重要的方法.公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算根的判别式的值,以便判断方程是否有解.配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程.但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好.(三种重要的数学方法:换元法配方法,待定系数法).3.一元二次方程根的判别式一元二次方程ax 2+bx+c=0(a ≠0)中,b 2-4ac 叫做一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式,通常用“Δ”来表示,即Δ=b 2-4ac,①当Δ>0时,一元二次方程有2个不相等的实数根;②当Δ=0时,一元二次方程有2个相同的实数根;③当Δ<0时,一元二次方程没有实数根.4.一元二次方程根与系数的关系如果方程ax 2+bx+c=0(a ≠0)的两个实数根是x 1,x 2,那么x 1+x 2=-a b ,x 1x 2=a c .应用根与系数的关系,可以不解方程,计算两根的和或积,求式子的值.5.建立一元二次方程模型解决实际问题建立一元二次方程模型的步骤是:审题、设未知数、列方程.注意:(1)审题过程是找出已知量、未知量及等量关系;(2)设未知数要带单位;(3)建立一元二次方程模型的关键是依题意找出等量关系.【教学说明】教师引导学生对本章重点知识和需要注意的问题进行详细的回顾,使学生对本章知识有进一步的理解,形成知识网络.三、典例精析,复习新知例1 判断关于x 的方程x 2-mx(2x-m+1)=x 中是不是一元二次方程,如果是,指出二次项系数、一次项系数及常项数.【分析】先把方程化为一般形式ax 2+bx+c=0,然后根据一元二次方程的定义可知,当a ≠0时方程是一元二次方程.解:原方程可化为(1-2m )x 2+(m 2-m-1)x=0.当1-2m=0,即m=21时,原方程整理为-45x=0,原方程是一元一次方程; 当1-2m ≠0,即m ≠21时,原方程是一元二次方程. 此时,二次项系数为1-2m,一次项系数为m 2-m-1,常数项为0.例2 已知关于x 的一元二次方程(m-2)x 2+3x+m 2-2=0的一个根中零.求m 的值. 【分析】(1)正确理解方程的根的概念;(2)要特别注意一元二次方程ax 2+bx+c=0中隐含的a ≠0这个条件.解:方程的一个根是零,即x=0,当x=0时,原方程可化为m 2-2=0.解得m=±2.又∵m-2≠0,即m ≠2,∴m=-2例3(四川绵阳中考)已知关于x 的一元二次方程x 2=2(1-m)x-m 2的两个实数根为x 1,x 2.(1)求m 的取值范围.(2)设y=x 1+x 2,当y 取得最小值时,求相应m 的值,并求出最小值.【分析】(1)一元一次方程ax 2+bx+c=0(a ≠0)有实数根的条件是b 2-4ac ≥0,不要漏掉b 2-4ac=0的情况.先把方程变形成一般形式,把a,b,c 的值代入b 2-4ac,根据b 2-4ac ≥0求出m 的取值范围.(2)可由一次函数y=kx+b,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小的性质,根据自变量取值范围,求出一次函数的最大值或最小值.解:(1)将原方程整理为x 2+2(m-1)x+m 2=0.∵原方程有两个实数根,∴Δ=[2(m-1)]2-4m 2=-8m+4≥0,得m ≤21. (2)∵x 1,x 2=-2m+2,∴y=x 1+x 2=-2m+2,∵y 随m 的增大而减小,且m ≤21, ∴当m=21时,y 取得最小值1. 【教学说明】教师出示典型例题,让学生先尝试解答,教师予以讲解,在讲解的过程中,应着重于知识点的应用和解题方法的渗透.四、复习训练,巩固提高1.若方程x 2-3x -1=0的两根为x 1、x 2,则2111x x 的值为( ). A.3 B.-3 C.31 D.-31 2.关于x 的方程(a-6)x 2-8x+6=0有实数根,则整数a 的最大值是( )A.6B.7C.8D.93.在一幅长为80cm,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm,那么x 满足的方程是( ).A.x 2+130x -1400=0B.x 2+65x -350=0C.x 2-130x -1400=0D.x 2-65x -350=04.关于x 的一元二次方程-x2+(2k+1)x+2-k 2=0有实数根,则k 的取值范围是 .5.已知x 1、x 2是方程x 2-3x -2=0的两个实根,则(x 1-2) (x 2-2)= .6.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为 .7.解方程:(x -3)2+4x(x -3)=08.阅读材料:为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1 看作一个整体,然后设x 2-1=y,那么原方程可化为y 2-5y+4=0……①,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=±2;当y=4时,x 2-1=4,∴x 2=5,∴x=±5,故原方程的解为x 1=2,x 2=-2,x 3=5,x 4=-5. 解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用 法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程x 4-x 2-6=0.9.关于x 的方程kx 2+(k+2)x+4k =0有两个不相等的实数根. (1)求k 的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由.10.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米?(2)能否使所围的矩形场地面积为810平方米,为什么?【答案】1.B 2.C 3.B 4.k ≥-49 5.-4 6.10%10.解:设AD=BC=xm,则AB=(80-2x)m (1)由题意得:x(80-2x)=750解得:x1=15 x2=25当x=15时,AD=BC=15m,AB=50m当x=25时,AD=BC=25m,AB=30m答:当平行于墙面的边长为50m,斜边长为15m时,矩形场地面积为750m2;或当平行于墙面的边长为30m,邻边长为25m时矩形场地面积为750m2.(2)由题意得:x(80-2x)=810Δ=40-4×405=1600-1620=-20<0∴方程无解,即不能围成面积为810m2的矩形场地.【教学说明】学生独立完成练习,进一步熟练相关知识点的应用和提高解题能力.五、师生互动,课堂小结1.一元二次方程的定义和一般形式.2.一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法,要根据具体的问题选择合适的方法.3.根的判别式:Δ=b2-4ac和根与系数的关系:4.列方程解应用题的一般步骤.【教学说明】学生结合刚才所进行的复习,进行自主交流与反思,提出自己的困惑,进一步掌握全章知识.完成同步练习册中本课时的练习.重点是让学生加强对一元二次方程解法的熟练性,难点是让学生掌握根的判别式和根与系数的关系.对于根的判别式这个知识点,学生还不时会在两个方面出问题:一是方程有解的时候,学生通常只考虑到△>0的情况,而漏了△=0情况;二是在对方程中某一待定系数的取值范围的分析的时候,常常会忘记对二次项系数a≠0这种情况的分析.有一部分的学生问题主要还是出在了公式的误差记忆上,从而导致了整个运算的错误.还有一点问题就是学生的运算能力太差,在解方程时,方法基本都已经掌握,但无法保证计算的准确性.。
第3课时因式分解法
知识要点基础练
知识点1因式分解法的原理和一般步骤
1.(滨州中考)下列各式从左到右的变形中,属于因式分解的是(C)
A.a(m+n)=am+an
B.a2-b2-c2=(a-b)(a+b)-c2
C.10x2-5x=5x(2x-1)
D.x2-16x+6x=(x+4)(x-4)+6x
2.用因式分解法解方程x2+5x+4=0时,可转化为两个一次方程,请写出其中一个一元一次方程是x+1=0(或x+4=0).
知识点2用因式分解法解一元二次方程
3.方程(x-1)(x+2)=0的解为(A)
A.x1=1,x2=-2
B.x1=1,x2=2
C.x1=-1,x2=-2
D.x1=-1,x2=2
4.方程m(m-5)=6(m-5)的解是m=6或m=
5.
5.用因式分解法解方程:
(1)x2-2x=0;
解:x(x-2)=0,
∴x=0或x-2=0,
∴x1=0,x2=2.
(2)x2-3x-4=0.
解:(x-4)(x+1)=0,
∴x-4=0或x+1=0,
∴x1=4,x2=-1.
知识点3一元二次方程解法的选择
6.解方程x2-2x=4,最好的方法是(C)
A.直接开平方法
B.公式法
C.配方法
D.因式分解法
7.解一元二次方程(y+2)2-2(y+2)-3=0时,最简单的方法是因式分解法.
综合能力提升练
8.方程x(x-2)+x-2=0的解是(D)
A.x=2
B.x=-2或x=1
C.x=-1
D.x=2或x=-1
9.若x2+4x+4=0,则代数式的值为(A)
A.-3
B.3
C.-
D.
10.已知三角形两边长分别是3和6,第三边长是方程x2-6x+8=0的根,则这个三角形的周长等于(A)
A.13
B.11
C.11或13
D.12或15
11.方程(x+4)(x-1)=6可化为的两个一元一次方程为(D)
A.x+4=6或x-1=1
B.x+4=3或x-1=2
C.x+4=-1或x-1=-6
D.x+5=0或x-2=0
12.已知方程(x+y)(x+y-1)-12=0,则x+y的值为(D)
A.13
B.4
C.-3
D.4或-3
13.若x2+3x+5的值为9,则x的值为1或-4.
14.当x=-1或-2时,分式的值为0.
15.方程2(x-3)2=x2-9的解是x1=3,x2=9.
16.若关于x的一元二次方程(m-1)x2+3mx+(m2+3m-4)=0有一个根是0,那么m=-4.
17.按要求解下列方程:
(1)2x2+6=7x(公式法);
解:将原方程化成一般形式得2x2-7x+6=0,
. ∵a=2,b=-7,c=6,b2-4ac=49-48=1,
∴x=,
∴x1=2,x2=.
(2)2x2-3x+1=0(配方法);
解:(2x-1)(x-1)=0,2x-1=0或x-1=0,
∴x1=1,x2=.
(3)(y+2)2=(3y-1)2(因式分解法);
解:∵(y+2)2-(3y-1)2=0,
∴(y+2+3y-1)(y+2-3y+1)=0,
即(4y+1)(-2y+3)=0,
∴4y+1=0或-2y+3=0,
∴y1=-,y2=.
(4)2(x-3)2=x2-9(适当的方法).
解:∵2(x-3)2=(x+3)(x-3),
∴(x-3)(2x-6-x-3)=0,
即(x-3)(x-9)=0,
∴x-3=0或x-9=0,
∴x1=3,x2=9.
18.已知x2-5xy+6y2=0(xy≠0),求的值.
解:原方程可化为(x-2y)(x-3y)=0,
∴x-2y=0或x-3y=0,
∴x=2y或x=3y,
∴=2或3.
拓展探究突破练
19.阅读下面的例题:
解方程:x2-|x|-2=0.
解:(1)当x≥0时,原方程化为x2-x-2=0,
解得x=2或x=-1(不合题意,舍去);
(2)当x<0时,原方程化为x2+x-2=0,
解得x=-2或x=1(不合题意,舍去).
∴原方程的解为x=2或x=-2.
请参照例题解方程:x2-|x-1|-1=0.
解:(1)当x-1≥0,即x≥1时,原方程化为x2-(x-1)-1=0,即x2-x=0,解得x=1或x=0(不合题意,舍去);
(2)当x-1<0,即x<1时,原方程化为x2-(1-x)-1=0,
即x2+x-2=0,
解得x=-2或x=1(不合题意,舍去).
∴原方程的解为x=1或x=-2.
如有侵权请联系告知删除,感谢你们的配合!。