2015步步高高中数学文科文档第六章 6.4
- 格式:doc
- 大小:469.32 KB
- 文档页数:17
2015年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A ∩B中元素的个数为()A.5 B.4 C.3 D.22.(5分)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4) C.(﹣1,4)D.(1,4)3.(5分)已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i4.(5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A .B .C .D .5.(5分)已知椭圆E 的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3 B.6 C.9 D.126.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()最新修正版A.14斛B.22斛C.36斛D.66斛7.(5分)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10 D.128.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.810.(5分)已知函数f(x)=,且f(α)=﹣3,则f(6﹣α)=()A.﹣ B.﹣ C.﹣ D.﹣11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.812.(5分)设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f(﹣4)=1,则a=()A.﹣1 B.1 C.2 D.4二、本大题共4小题,每小题5分.13.(5分)在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=.14.(5分)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.15.(5分)若x,y满足约束条件,则z=3x+y的最大值为.16.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.18.(12分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(xi﹣)2 (w i ﹣)(x i ﹣)(y i )(w i ﹣)表中w i =i ,=(Ⅰ)根据散点图判断,y=a +bx 与y=c +d 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x 、y 的关系为z=0.2y ﹣x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x=49时,年销售量及年利润的预报值是多少?(ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2)…..(u n v n ),其回归线v=α+βu 的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x ﹣2)2+(y ﹣3)2=1交于点M 、N 两点.(1)求k 的取值范围;(2)若•=12,其中O为坐标原点,求|MN|.21.(12分)设函数f(x)=e2x﹣alnx.(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln.四、请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.五、【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.六、【选修4-5:不等式选讲】24.已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A ∩B中元素的个数为()A.5 B.4 C.3 D.2【分析】根据集合的基本运算进行求解.【解答】解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4) C.(﹣1,4)D.(1,4)【分析】顺序求出有向线段,然后由=求之.【解答】解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故选:A.【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.3.(5分)已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i【分析】由已知等式变形,然后利用复数代数形式的乘除运算化简求得z﹣1,进一步求得z.【解答】解:由(z﹣1)i=1+i,得z﹣1=,∴z=2﹣i.故选:C.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.4.(5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.【分析】一一列举出所有的基本事件,再找到勾股数,根据概率公式计算即可.【解答】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C.【点评】本题考查了古典概型概率的问题,关键是不重不漏的列举出所有的基本事件,属于基础题.5.(5分)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3 B.6 C.9 D.12【分析】利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B坐标,即可求解所求结果.【解答】解:椭圆E的中心在坐标原点,离心率为,E的右焦点(c,0)与抛物线C:y2=8x的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以A(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.【点评】本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.【点评】本题主要考查椎体的体积的计算,比较基础.7.(5分)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10 D.12【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:∵{a n}是公差为1的等差数列,S8=4S4,∴8a1+×1=4×(4a1+),解得a1=.则a10=+9×1=.故选:B.【点评】本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos(πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.8【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)已知函数f(x)=,且f(α)=﹣3,则f(6﹣α)=()A.﹣ B.﹣ C.﹣ D.﹣【分析】利用分段函数,求出α,再求f(6﹣α).【解答】解:由题意,α≤1时,2α﹣1﹣2=﹣3,无解;α>1时,﹣log2(α+1)=﹣3,∴α=7,∴f(6﹣α)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.【点评】本题考查分段函数,考查学生的计算能力,比较基础.11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f(﹣4)=1,则a=()A.﹣1 B.1 C.2 D.4【分析】先求出与y=2x+a的反函数的解析式,再由题意f(x)的图象与y=2x+a的反函数的图象关于原点对称,继而求出函数f(x)的解析式,问题得以解决.【解答】解:∵与y=2x+a的图象关于y=x对称的图象是y=2x+a的反函数,y=log2x﹣a(x>0),即g(x)=log2x﹣a,(x>0).∵函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,∴f(x)=﹣g(﹣x)=﹣log2(﹣x)+a,x<0,∵f(﹣2)+f(﹣4)=1,∴﹣log22+a﹣log24+a=1,解得,a=2,故选:C.【点评】本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法,属于基础题二、本大题共4小题,每小题5分.13.(5分)在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=6.【分析】由a n=2a n,结合等比数列的定义可知数列{a n}是a1=2为首项,以2为+1公比的等比数列,代入等比数列的求和公式即可求解.【解答】解:∵a n=2a n,+1∴,∵a1=2,∴数列{a n}是a1=2为首项,以2为公比的等比数列,∴S n===2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:6【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,解题的关键是熟练掌握基本公式.14.(5分)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=1.【分析】求出函数的导数,利用切线的方程经过的点求解即可.【解答】解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.【点评】本题考查函数的导数的应用,切线方程的求法,考查计算能力.15.(5分)若x,y满足约束条件,则z=3x+y的最大值为4.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,代入最优解的坐标得答案.【解答】解:由约束条件作出可行域如图,化目标函数z=3x+y为y=﹣3x+z,由图可知,当直线y=﹣3x+z过B(1,1)时,直线在y轴上的截距最大,此时z有最大值为3×1+1=4.故答案为:4.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为12.【分析】利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF 周长最小时,该三角形的面积.【解答】解:由题意,设F′是左焦点,则△APF周长=|AF|+|AP|+|PF|=|AF|+|AP|+|PF′|+2≥|AF|+|AF′|+2(A,P,F′三点共线时,取等号),直线AF′的方程为与x2﹣=1联立可得y2+6y﹣96=0,∴P的纵坐标为2,∴△APF周长最小时,该三角形的面积为﹣=12.故答案为:12.【点评】本题考查双曲线的定义,考查三角形面积的计算,确定P的坐标是关键.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【分析】(I)sin2B=2sinAsinC,由正弦定理可得:b2=2ac,再利用余弦定理即可得出.(II)利用(I)及勾股定理可得c,再利用三角形面积计算公式即可得出.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.==1.∴S△ABC【点评】本题考查了正弦定理余弦定理、勾股定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.18.(12分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.【分析】(Ⅰ)根据面面垂直的判定定理即可证明:平面AEC⊥平面BED;(Ⅱ)根据三棱锥的条件公式,进行计算即可.【解答】证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC⊂平面AEC,∴平面AEC⊥平面BED;解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC=x,GB=GD=,∵BE⊥平面ABCD,∴BE⊥BG,则△EBG为直角三角形,∴EG=AC=AG=x,则BE==x,∵三棱锥E﹣ACD的体积V===,解得x=2,即AB=2,∵∠ABC=120°,∴AC2=AB2+BC2﹣2AB•BCcosABC=4+4﹣2×=12,即AC=,在三个直角三角形EBA,EBG,EBC中,斜边AE=EC=ED,∵AE⊥EC,∴△EAC为等腰三角形,则AE2+EC2=AC2=12,即2AE2=12,∴AE2=6,则AE=,∴从而得AE=EC=ED=,∴△EAC的面积S==3,在等腰三角形EAD中,过E作EF⊥AD于F,则AE=,AF==,则EF=,∴△EAD的面积和△ECD的面积均为S==,故该三棱锥的侧面积为3+2.【点评】本题主要考查面面垂直的判定,以及三棱锥体积的计算,要求熟练掌握相应的判定定理以及体积公式.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(xi﹣)2(w i ﹣)(x i ﹣)(y i )(w i ﹣)表中w i =i ,=(Ⅰ)根据散点图判断,y=a +bx 与y=c +d 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x 、y 的关系为z=0.2y ﹣x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x=49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2)…..(u n v n ),其回归线v=α+βu 的斜率和截距的最小二乘估计分别为:=,=﹣.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.【点评】本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.(1)求k的取值范围;(2)若•=12,其中O为坐标原点,求|MN|.【分析】(1)由题意可得,直线l的斜率存在,用点斜式求得直线l的方程,根据圆心到直线的距离等于半径求得k的值,可得满足条件的k的范围.(2)由题意可得,经过点M、N、A的直线方程为y=kx+1,根据直线和圆相交的弦长公式进行求解.【解答】(1)由题意可得,直线l的斜率存在,设过点A(0,1)的直线方程:y=kx+1,即:kx﹣y+1=0.由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由<1,故当<k<,过点A(0,1)的直线与圆C:(x﹣2)2+(y﹣3)2=1相交于M,N两点.(2)设M(x1,y1);N(x2,y2),由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C的方程(x﹣2)2+(y﹣3)2=1,可得(1+k2)x2﹣4(k+1)x+7=0,∴x1+x2=,x1•x2=,∴y1•y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1=•k2+k•+1=,由•=x1•x2+y1•y2==12,解得k=1,故直线l的方程为y=x+1,即x﹣y+1=0.圆心C在直线l上,MN长即为圆的直径.所以|MN|=2.【点评】本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力.21.(12分)设函数f(x)=e2x﹣alnx.(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln.【分析】(Ⅰ)先求导,在分类讨论,当a≤0时,当a>0时,根据零点存在定理,即可求出;(Ⅱ)设导函数f′(x)在(0,+∞)上的唯一零点为x0,根据函数f(x)的单调性得到函数的最小值f(x0),只要最小值大于2a+aln,问题得以证明.【解答】解:(Ⅰ)f(x)=e2x﹣alnx的定义域为(0,+∞),∴f′(x)=2e2x﹣.当a≤0时,f′(x)>0恒成立,故f′(x)没有零点,当a>0时,∵y=e2x为单调递增,y=﹣单调递增,∴f′(x)在(0,+∞)单调递增,又f′(a)>0,假设存在b满足0<b<ln时,且b<,f′(b)<0,故当a>0时,导函数f′(x)存在唯一的零点,(Ⅱ)由(Ⅰ)知,可设导函数f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0,当x∈(x0+∞)时,f′(x)>0,故f(x)在(0,x0)单调递减,在(x0+∞)单调递增,所欲当x=x0时,f(x)取得最小值,最小值为f(x0),由于﹣=0,所以f(x0)=+2ax0+aln≥2a+aln.故当a>0时,f(x)≥2a+aln.【点评】本题考查了导数和函数单调性的关系和最值的关系,以及函数的零点存在定理,属于中档题.四、请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x 值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°【点评】本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.五、【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.【点评】本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.六、【选修4-5:不等式选讲】24.已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f (x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
§9.6双曲线1.双曲线的概念平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a>0,c>0:(1)当a<c时,P点的轨迹是双曲线;(2)当a=c时,P点的轨迹是两条射线;(3)当a>c时,P点不存在.2.双曲线的标准方程和几何性质1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × )(2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线为共轭双曲线).( √ )2. 若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A. 5 B .5 C. 2 D .2 答案 A解析 焦点(c,0)到渐近线y =b a x 的距离为bca 2+b 2=2a ,解得b =2a ,又a 2+b 2=c 2,∴5a 2=c 2, ∴离心率e =ca= 5.3. (2013·福建)双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A.25B.45C.255D.455 答案 C解析 双曲线的顶点(2,0)到渐近线y =±12x 的距离d =25=255.4. (2012·天津)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与双曲线C 2:x 24-y 216=1有相同的渐近线,且C 1的右焦点为F (5,0),则a =________,b =________. 答案 1 2解析 与双曲线x 24-y 216=1有共同渐近线的双曲线的方程可设为x 24-y 216=λ,即x 24λ-y 216λ=1.由题意知c =5,则4λ+16λ=5⇒λ=14,则a 2=1,b 2=4.又a >0,b >0,故a =1,b =2.5. (2012·辽宁)已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________. 答案 2 3解析 设P 在双曲线的右支上,|PF 2|=x (x >0),|PF 1|=2+x ,因为PF 1⊥PF 2,所以(x +2)2+x 2=(2c )2=8,所以x =3-1,x +2=3+1, 所以|PF 2|+|PF 1|=2 3.题型一 双曲线的定义及标准方程例1 (1)已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________.(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2)的双曲线方程为__________. (3)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________.思维启迪 设双曲线方程为x 2a 2-y 2b 2=1,求双曲线方程,即求a 、b ,为此需要关于a 、b的两个方程,由题意易得关于a 、b 的两个方程;也可根据双曲线的定义直接确定a 、b 、c ;根据双曲线的定义求轨迹方程.(注意条件) 答案 (1)x 24-y 23=1 (2)y 22-x 24=1(3)x 2-y 28=1(x ≤-1)解析 (1)椭圆x 216+y 29=1的焦点坐标为F 1(-7,0),F 2(7,0),离心率为e =74.由于双曲线x 2a 2-y 2b 2=1与椭圆x 216+y 29=1有相同的焦点,因此a 2+b 2=7.又双曲线的离心率e =a 2+b 2a =7a ,所以7a =274,所以a =2,b 2=c 2-a 2=3,故双曲线的方程为x 24-y 23=1.(2)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=k ,将点(2,-2)代入得k=222-(-2)2=-2. ∴双曲线的标准方程为y 22-x 24=1.(3)如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B . 根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1、C 2的距离的差是常数且小于|C 1C 2|.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).思维升华 求双曲线的标准方程的基本方法是定义法和待定系数法.待定系数法具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为x 2a 2-y 2b 2=λ (λ≠0),再由条件求出λ的值即可.利用定义时,要特别注意条件“差的绝对值”,弄清所求轨迹是整条双曲线,还是双曲线的一支.(1)(2012·湖南)已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 (2)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( ) A.x 242-y 232=1 B.x 2132-y 252=1 C.x 232-y 242=1 D.x 2132-y 2122=1答案 (1)A (2)A解析 (1)根据双曲线标准方程中系数之间的关系求解. ∵x 2a 2-y 2b 2=1的焦距为10,∴c =5=a 2+b 2.① 又双曲线渐近线方程为y =±ba x ,且P (2,1)在渐近线上,∴2ba=1,即a =2b .② 由①②解得a =25,b =5,则C 的方程为x 220-y 25=1,故应选A.(2)由题意知椭圆C 1的焦点坐标为F 1(-5,0),F 2(5,0),设曲线C 2上的一点P ,则||PF 1|-|PF 2||=8.由双曲线的定义知:a =4,b =3. 故曲线C 2的标准方程为x 242-y 232=1.题型二 双曲线的几何性质例2 (1)(2013·浙江)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边 形AF 1BF 2为矩形,则C 2的离心率是 )A. 2B. 3C.32D.62(2)若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞)思维启迪 (1)求圆锥曲线的离心率e ,可以求出a ,c 的关系式,进而求出e .(2)在圆锥曲线中求某一量的值或范围,一定要注意圆锥曲线本身的x ,y 的取值范围. 答案 (1)D (2)B解析 (1)|F 1F 2|=2 3.设双曲线的方程为x 2a 2-y 2b 2=1.∵|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a , ∴|AF 2|=2+a ,|AF 1|=2-a . 在Rt △F 1AF 2中,∠F 1AF 2=90°, ∴|AF 1|2+|AF 2|2=|F 1F 2|2,即(2-a )2+(2+a )2=(23)2, ∴a =2,∴e =c a =32=62.故选D.(2)由条件知a 2+1=22=4,∴a 2=3, ∴双曲线方程为x 23-y 2=1,设P 点坐标为(x ,y ),则OP →=(x ,y ),FP →=(x +2,y ), ∵y 2=x 23-1,∴OP →·FP →=x 2+2x +y 2=x 2+2x +x 23-1=43x 2+2x -1=43(x +34)2-74. 又∵x ≥3(P 为右支上任意一点), ∴OP →·FP →≥3+2 3.故选B.思维升华 在研究双曲线的性质时,实半轴、虚半轴所构成的直角三角形是值得关注的一个重要内容;双曲线的离心率涉及的也比较多.由于e =ca 是一个比值,故只需根据条件得到关于a 、b 、c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形求e ,并且需注意e >1.同时注意双曲线方程中x ,y 的范围问题.(1)(2013·课标全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x(2)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB →=2F A →,则此双曲线的离心率为( )A. 2B. 3 C .2 D. 5 答案 (1)C (2)C解析 (1)由e =c a =52知,a =2k ,c =5k (k ∈R +),由b 2=c 2-a 2=k 2知b =k . 所以b a =12.即渐近线方程为y =±12x .故选C.(2)如图,∵FB →=2F A →, ∴A 为线段BF 的中点, ∴∠2=∠3.又∠1=∠2,∴∠2=60°, ∴ba =tan 60°=3, ∴e 2=1+(ba )2=4,∴e =2.题型三 直线与双曲线的位置关系例3 已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值. 思维启迪 本题主要考查直线与双曲线的位置关系,解题关键是联立方程用根与系数的关系求解.解 (1)双曲线C 与直线l 有两个不同的交点,则方程组⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0.∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+8(1-k 2)>0, 解得-2<k <2且k ≠±1.双曲线C 与直线l 有两个不同的交点时,k 的取值范围是(-2,-1)∪(-1,1)∪(1,2). (2)设交点A (x 1,y 1),B (x 2,y 2), 直线l 与y 轴交于点D (0,-1),由(1)知,C 与l 联立的方程为(1-k 2)x 2+2kx -2=0. ∴⎩⎪⎨⎪⎧x 1+x 2=-2k 1-k 2,x 1x 2=-21-k 2.当A ,B 在双曲线的一支上且|x 1|>|x 2|时, S △OAB =S △OAD -S △OBD =12(|x 1|-|x 2|)=12|x 1-x 2|;当A ,B 在双曲线的两支上且x 1>x 2时,S △OAB =S △ODA +S △OBD =12(|x 1|+|x 2|)=12|x 1-x 2|.∴S △OAB =12|x 1-x 2|=2,∴(x 1-x 2)2=(22)2,即(-2k 1-k 2)2+81-k 2=8,解得k =0或k =±62. 又∵-2<k <2,且k ≠±1,∴当k =0或k =±62时,△AOB 的面积为 2.思维升华 (1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定. (2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3.(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 左支交于A 、B 两点,求k 的取值范围;(3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,m ),求m 的取值范围. 解 (1)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0).由已知得:a =3,c =2,再由a 2+b 2=c 2,得b 2=1, ∴双曲线C 的方程为x 23-y 2=1.(2)设A (x A ,y A )、B (x B ,y B ), 将y =kx +2代入x 23-y 2=1,得,(1-3k 2)x 2-62kx -9=0.由题意知⎩⎪⎨⎪⎧1-3k 2≠0,Δ=36(1-k 2)>0,x A+x B=62k1-3k 2<0,x A x B=-91-3k 2>0,解得33<k <1. ∴当33<k <1时,l 与双曲线左支有两个交点. (3)由(2)得:x A +x B =62k1-3k 2,∴y A +y B =(kx A +2)+(kx B +2)=k (x A +x B )+22=221-3k 2. ∴AB 的中点P 的坐标为(32k 1-3k 2,21-3k 2). 设直线l 0的方程为y =-1kx +m ,将P 点坐标代入直线l 0的方程,得m =421-3k 2.∵33<k <1,∴-2<1-3k 2<0. ∴m <-2 2.∴m 的取值范围为(-∞,-22).忽视“判别式”致误典例:(12分)已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?易错分析 由于“判别式”是判断直线与圆锥曲线是否有公共点的重要方法,在解决直线与圆锥曲线相交的问题时,有时不需要考虑判别式,致使有的考生思维定势的原因,任何情况下都没有考虑判别式,导致解题错误. 规范解答解 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0), 若直线l 的斜率不存在,显然不符合题意.[2分] 设经过点P 的直线l 的方程为y -1=k (x -1), 即y =kx +1-k .[3分]由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0 (2-k 2≠0).① [6分] ∴x 0=x 1+x 22=k (1-k )2-k 2.由题意,得k (1-k )2-k 2=1,解得k =2.[8分]当k =2时,方程①成为2x 2-4x +3=0. Δ=16-24=-8<0,方程①没有实数解.[11分]∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点.[12分] 温馨提醒 (1)本题是以双曲线为背景,探究是否存在符合条件的直线,题目难度不大,思路也很清晰,但结论却不一定正确.错误原因是忽视对直线与双曲线是否相交的判断,从而导致错误,因为所求的直线是基于假设存在的情况下所得的.(2)本题属探索性问题.若存在,可用点差法求出AB 的斜率,进而求方程;也可以设斜率k ,利用待定系数法求方程.(3)求得的方程是否符合要求,一定要注意检验.方法与技巧1. 与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有公共渐近线的双曲线的方程可设为x 2a 2-y 2b 2=t (t ≠0).2. 已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的两条渐近线方程. 失误与防范1. 区分双曲线中的a ,b ,c 大小关系与椭圆中的a ,b ,c 大小关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.2. 双曲线的离心率e ∈(1,+∞),而椭圆的离心率e ∈(0,1).3. 双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b2=1 (a >0,b >0)的渐近线方程是y =±a bx .4. 若利用弦长公式计算,在设直线斜率时要注意说明斜率不存在的情况.5. 直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.A 组 专项基础训练 (时间:40分钟)一、选择题1. (2013·北京)若双曲线x 2a 2-y 2b2=1的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±2xC .y =±12xD .y =±22x答案 B解析 由e =3,知c =3a ,得b =2a . ∴渐近线方程为y =±bax ,y =±2x .2. (2013·湖北)已知0<θ<π4 ,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x 2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等答案 D 解析 双曲线C 1:e 21=sin2θ+cos 2θcos 2θ=1cos 2θ, 双曲线C 2:e 22=sin2θ+sin 2θtan 2θsin 2θ=1+tan 2θ=1cos 2θ, ∴C 1,C 2离心率相等.3. 设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为 ( )A. 2B. 3 C .2 D .3 答案 B解析 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1得y 2=b 2(c 2a 2-1)=b 4a2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a 2=e 2-1=2,∴e = 3.4. 以椭圆x 2169+y 2144=1的右焦点为圆心,且与双曲线x 29-y 216=1的渐近线相切的圆的方程是( )A .x 2+y 2-10x +9=0B .x 2+y 2-10x -9=0C .x 2+y 2+10x +9=0D .x 2+y 2+10x -9=0答案 A解析 由于右焦点(5,0)到渐近线4x -3y =0的距离d =205=4,所以所求的圆是圆心坐标为(5,0),半径为4的圆.即圆的方程为x 2+y 2-10x +9=0. 5. 已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2)C .(1,1+2)D .(2,1+2)答案 B解析 由题意易知点F 的坐标为(-c,0),A (-c ,b 2a ),B (-c ,-b 2a ),E (a,0),因为△ABE 是锐角三角形,所以EA →·EB →>0, 即EA →·EB →=(-c -a ,b 2a )·(-c -a ,-b 2a )>0,整理得3e 2+2e >e 4,∴e (e 3-3e -3+1)<0, ∴e (e +1)2(e -2)<0,解得e ∈(0,2),又e >1, ∴e ∈(1,2),故选B. 二、填空题6. 已知双曲线的渐近线方程为x ±2y =0,且双曲线过点M (4,3),则双曲线的方程为________. 答案 x 24-y 2=1解析 ∵双曲线过点M (4,3),M 在y =x2下方,∴双曲线焦点在x 轴上,设双曲线方程为x 2a 2-y 2b 2=1,又b a =12,因此设a =2k ,b =k (k >0),∴x 24k 2-y 2k 2=1,代入M (4,3)解得k =1,a =2,b =1, ∴方程为x 24-y 2=1.7. 已知双曲线x 2n -y 212-n=1的离心率是3,则n =________.答案 4解析 根据双曲线方程得n (12-n )>0,∴0<n <12, ∴a 2=n ,b 2=12-n ,c 2=a 2+b 2=12, 则双曲线的离心率e =c a =12n=3,∴n =4.8. (2013·湖南)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为________. 答案3解析 不妨设|PF 1|>|PF 2|,则|PF 1|-|PF 2|=2a , 又∵|PF 1|+|PF 2|=6a , ∴|PF 1|=4a ,|PF 2|=2a .又在△PF 1F 2中,∠PF 1F 2=30°,由正弦定理得,∠PF 2F 1=90°,∴|F 1F 2|=23a , ∴双曲线C 的离心率e =23a 2a = 3.三、解答题9. 已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:点M 在以F 1F 2为直径的圆上; (3)在(2)的条件下求△F 1MF 2的面积.(1)解 ∵离心率e =2,∴双曲线为等轴双曲线, 可设其方程为x 2-y 2=λ(λ≠0), 则由点(4,-10)在双曲线上, 可得λ=42-(-10)2=6, ∴双曲线方程为x 2-y 2=6.(2)证明 ∵点M (3,m )在双曲线上, ∴32-m 2=6,∴m 2=3,又双曲线x 2-y 2=6的焦点为F 1(-23,0),F 2(23,0), ∴MF 1→·MF 2→=(-23-3,-m )·(23-3,-m ) =(-3)2-(23)2+m 2=9-12+3=0,∴MF 1⊥MF 2,∴点M 在以F 1F 2为直径的圆上. (3)解1F MF S =12×43×|m |=6.10.直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.解 (1)将直线l 的方程y =kx +1代入双曲线C 的方程 2x 2-y 2=1后,整理得(k 2-2)x 2+2kx +2=0.①依题意,直线l 与双曲线C 的右支交于不同两点,故⎩⎪⎨⎪⎧k 2-2≠0,Δ=(2k )2-8(k 2-2)>0,-2k k 2-2>0,2k 2-2>0.解得k 的取值范围是-2<k <- 2.(2)设A 、B 两点的坐标分别为(x 1,y 1)、(x 2,y 2),则由①式得⎩⎨⎧x 1+x 2=2k2-k 2,x 1·x 2=2k 2-2.②假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0). 则由F A ⊥FB 得:(x 1-c )(x 2-c )+y 1y 2=0. 即(x 1-c )(x 2-c )+(kx 1+1)(kx 2+1)=0. 整理得(k 2+1)x 1x 2+(k -c )(x 1+x 2)+c 2+1=0.③ 把②式及c =62代入③式化简得5k 2+26k -6=0. 解得k =-6+65或k =6-65∉(-2,-2)(舍去),可知存在k =-6+65使得以线段AB 为直径的圆经过双曲线C 的右焦点.B 组 专项能力提升 (时间:30分钟)1. 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A. 2B. 3C.3+12D.5+12答案 D解析 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),如图所示,双曲线的一条渐近线方程为y =b a x ,而k BF =-bc ,∴b a ·(-bc )=-1,整理得b 2=ac .∴c 2-a 2-ac =0,两边同除以a 2,得e 2-e -1=0, 解得e =1+52或e =1-52(舍去),故选D.2. (2013·重庆)设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1,B 1和A 2,B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( )A.⎝⎛⎦⎤233,2B.⎣⎡⎭⎫233,2C.⎝⎛⎭⎫233,+∞D.⎣⎡⎭⎫233,+∞ 答案 A解析 由双曲线的对称性知,满足题意的这一对直线也关于x 轴(或y 轴)对称.又由题意知有且只有一对这样的直线,故该双曲线在第一象限的渐近线的倾斜角范围是大于30°且小于等于60°,即tan 30°<b a ≤tan 60°,∴13<b 2a 2≤3.又e 2=(c a )2=c 2a 2=1+b 2a 2,∴43<e 2≤4,∴233<e ≤2,故选A. 3. 已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点P 在双曲线上,则双曲线的离心率是( )A .4+2 3 B.3-1 C.3+12D.3+1 答案 D解析 因为MF 1的中点P 在双曲线上,|PF 2|-|PF 1|=2a , △MF 1F 2为正三角形,边长都是2c ,所以3c -c =2a , 所以e =c a =23-1=3+1,故选D.4. (2013·辽宁)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________. 答案 44解析 由双曲线C 的方程,知a =3,b =4,c =5, ∴点A (5,0)是双曲线C 的右焦点, 且|PQ |=|QA |+|P A |=4b =16,由双曲线定义,得|PF |-|P A |=6,|QF |-|QA |=6. ∴|PF |+|QF |=12+|P A |+|QA |=28, 因此△PQF 的周长为|PF |+|QF |+|PQ |=28+16=44.5. 已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为________. 答案 53解析 由定义,知|PF 1|-|PF 2|=2a . 又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a .在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2.要求e 的最大值,即求cos ∠F 1PF 2的最小值, ∴当cos ∠F 1PF 2=-1时,得e =53,即e 的最大值为53.6. 已知离心率为45的椭圆的中心在原点,焦点在x 轴上,双曲线以椭圆的长轴为实轴,短轴为虚轴,且焦距为234. (1)求椭圆及双曲线的方程;(2)设椭圆的左、右顶点分别为A 、B ,在第二象限内取双曲线上一点P ,连接BP 交椭圆于点M ,连接P A 并延长交椭圆于点N ,若BM →=MP →,求四边形ANBM 的面积. 解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则根据题意知双曲线的方程为x 2a 2-y 2b 2=1且满足⎩⎪⎨⎪⎧a 2-b 2a=45,2a 2+b 2=234,解方程组得⎩⎪⎨⎪⎧a 2=25,b 2=9.∴椭圆的方程为x 225+y 29=1,双曲线的方程为x 225-y 29=1.(2)由(1)得A (-5,0),B (5,0),|AB |=10, 设M (x 0,y 0),则由BM →=MP →得M 为BP 的中点,所以P 点坐标为(2x 0-5,2y 0). 将M 、P 坐标代入椭圆和双曲线方程,得⎩⎨⎧x 2025+y 209=1,(2x 0-5)225-4y209=1,消去y 0,得2x 20-5x 0-25=0.解之,得x 0=-52或x 0=5(舍去).∴y 0=332.由此可得M (-52,332),∴P (-10,33). 当P 为(-10,33)时,直线P A 的方程是y =33-10+5(x +5),即y =-335(x +5),代入x 225+y 29=1,得2x 2+15x +25=0. 所以x =-52或-5(舍去),∴x N =-52,x N =x M ,MN ⊥x 轴.∴S 四边形ANBM =2S △AMB =2×12×10×332=15 3.。
选修4-4 坐标系与参数方程1.极坐标系(1)极坐标系的建立:在平面上取一个定点O ,叫做________,从O 点引一条射线Ox ,叫做________,再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就确定了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的________,记为ρ,以极轴Ox 为始边,射线OM 为终边的角叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).(2)极坐标与直角坐标的关系:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标为(ρ,θ),则它们之间的关系为x =______,y =________. 另一种关系为ρ2=________,tan θ=________. 2.简单曲线的极坐标方程 (1)直线的极坐标方程θ=α (ρ∈R )表示过极点且与极轴成α角的直线; ρcos θ=a 表示过(a,0)且垂直于极轴的直线; ρsin θ=b 表示过⎝⎛⎭⎫b ,π2且平行于极轴的直线; ρsin(α-θ)=ρ1sin(α-θ1)表示过(ρ1,θ1)且与极轴成α角的直线方程. (2)圆的极坐标方程ρ=2r cos θ表示圆心在(r,0),半径为|r |的圆; ρ=2r sin θ表示圆心在⎝⎛⎭⎫r ,π2,半径为|r |的圆; ρ=r 表示圆心在极点,半径为|r |的圆. 3.曲线的参数方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变量t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ).并且对于t 的每一个允许值上式所确定的点M (x ,y )都在这条曲线上,则称上式为该曲线的________________,其中变量t 称为________. 4.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为________________(t 为参数). (2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为________________________(θ为参数). (3)椭圆方程x 2a 2+y 2b 2=1(a >b >0)的参数方程为________________(θ为参数).(4)抛物线方程y 2=2px (p >0)的参数方程为________________(t 为参数).1.在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为________.2.极坐标方程ρ=sin θ+2cos θ能表示的曲线的直角坐标方程为____________________.3.已知点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t (t 为参数)上,则PF =________.4.直线⎩⎪⎨⎪⎧x =-1+t sin 40°,y =3+t cos 40°(t 为参数)的倾斜角为________.5.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数).则点M 1(0,1),M 2(5,4)在曲线C 上的是________.题型一 极坐标与直角坐标的互化例1 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos(θ-π3)=1,M ,N 分别为C 与x 轴、y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.思维升华 直角坐标方程化为极坐标方程,只需把公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程要通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须保持同解,因此应注意对变形过程的检验.在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,求实数a 的值.题型二 参数方程与普通方程的互化例2 已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),求它们的交点坐标.思维升华 (1)参数方程化为普通方程常用的消参技巧有代入消元、加减消元、平方后再加减消元等.对于与角θ有关的参数方程,经常用到的公式有sin 2θ+cos 2θ=1,1+tan 2θ=1cos 2θ等.(2)在将曲线的参数方程化为普通方程时,还要注意其中的x ,y 的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性.将下列参数方程化为普通方程.(1)⎩⎪⎨⎪⎧x =2t 21+t 2,y =4-2t21+t2(t 为参数);(2)⎩⎪⎨⎪⎧x =2-4cos 2θ,y =-1+sin 2θ(θ为参数).题型三 极坐标、参数方程的综合应用例3 在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.曲线C 的极坐标方程是ρ=4cos θ,直线l 的参数方程是⎩⎨⎧x =-3+32t ,y =12t(t 为参数),M ,N分别为曲线C 、直线l 上的动点,求MN 的最小值.思维升华 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.转化后可使问题变得更加直观,它体现了化归思想的具体运用.(2013·辽宁)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.参数的几何意义不明致误典例:(10分)已知直线l 的参数方程为⎩⎨⎧x =12t ,y =22+32t(t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为ρ=2cos(θ-π4).(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于A ,B 两点,求AB .易错分析 不明确直线的参数方程中的几何意义导致错误. 规范解答解 (1)直线的参数方程可以化为⎩⎪⎨⎪⎧x =t cos 60°,y =22+t sin 60°,[2分] 根据直线参数方程的意义,直线l 经过点(0,22), 倾斜角为60°.[4分](2)直线l 的直角坐标方程为y =3x +22,[6分] ρ=2cos(θ-π4)的直角坐标方程为(x -22)2+(y -22)2=1,[8分]所以圆心(22,22)到直线l 的距离d =64. 所以AB =102.[10分] 温馨提醒 对于直线的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)来说,要注意t 是参数,而α则是直线的倾斜角.与此类似,椭圆参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ的参数φ有特别的几何意义,它表示离心角.方法与技巧1.曲线的极坐标方程与直角坐标系的互化思路:对于简单的我们可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同时乘以ρ等.2.参数方程化普通方程常用的消参技巧:代入消元、加减消元、平方后加减消元等,经常用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ.3.利用曲线的参数方程来求解两曲线间的最值问题非常简捷方便,是我们解决这类问题的好方法. 失误与防范1.极径ρ是一个距离,所以ρ≥0,但有时ρ可以小于零.极角θ规定逆时针方向为正,极坐标与平面直角坐标不同,极坐标与P 点之间不是一一对应的,所以我们又规定ρ≥0,0≤θ<2π,来使平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点. 2.在将曲线的参数方程化为普通方程时,还要注意其中的x ,y 的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性.A 组 专项基础训练1.(2013·江苏)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.2.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin α,y =cos 2α,α∈[0,2π),曲线D 的极坐标方程为ρsin(θ+π4)=- 2.(1)将曲线C 的参数方程化为普通方程; (2)曲线C 与曲线D 有无公共点?试说明理由.3.(2013·福建)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知点A 的极坐标为(2,π4),直线l 的极坐标方程为ρcos(θ-π4)=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.4.在极坐标系中,P 是曲线ρ=12sin θ上的动点,Q 是曲线ρ=12cos ⎝⎛⎭⎫θ-π6上的动点,试求PQ 的最大值.5.在极坐标系中,已知三点M ⎝⎛⎭⎫2,-π3、N (2,0)、P ⎝⎛⎭⎫23,π6. (1)将M 、N 、P 三点的极坐标化为直角坐标; (2)判断M 、N 、P 三点是否在一条直线上.6.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=12x ,y ′=13y后,曲线C :x 2+y 2=36变为何种曲线,并求曲线的焦点坐标.B 组 专项能力提升1.在极坐标系中,已知圆O :ρ=cos θ+sin θ和直线l :ρsin(θ-π4)=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标.2.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos(θ-π4)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.3.(2013·课标全国Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).4.(2012·辽宁)在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示); (2)求圆C 1与C 2的公共弦的参数方程.答案要点梳理1.(1)极点 极轴 极径(2)ρcos θ ρsin θ x 2+y 2 y x3.参数方程 参数4.(1)⎩⎪⎨⎪⎧ x =x 0+t cos αy =y 0+t sin α (2)⎩⎪⎨⎪⎧ x =a +r cos θy =b +r sin θ (3)⎩⎪⎨⎪⎧ x =a cos θy =b sin θ (4)⎩⎪⎨⎪⎧x =2pt 2y =2pt 夯基释疑1.43 2.x 2+y 2-2x -y =0 3.4 4.50° 5.M 1题型分类·深度剖析例1 解 (1)由ρcos(θ-π3)=1 得ρ(12cos θ+32sin θ)=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2. 当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N (233,π2). (2)M 点的直角坐标为(2,0).N 点的直角坐标为(0,233). 所以P 点的直角坐标为(1,33). 则P 点的极坐标为(233,π6), 所以直线OP 的极坐标方程为θ=π6(ρ∈R ). 跟踪训练1 解 将极坐标方程化为直角坐标方程,得圆的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,直线的方程为3x +4y +a =0.由题设知,圆心(1,0)到直线的距离为1, 即有|3×1+4×0+a |32+42=1,解得a =-8或a =2.故a 的值为-8或2.例2 解 将两曲线的参数方程化为普通方程分别为x 25+y 2=1 (0≤y ≤1,-5<x ≤5)和y 2=45x ,联立解得交点为⎝⎛⎭⎫1,255. 跟踪训练2 解 (1)∵x =2t 21+t 2, ∴y =4-2t 21+t 2=4(1+t 2)-6t 21+t 2=4-3×2t 21+t 2=4-3x . 又x =2t 21+t 2=2(1+t 2)-21+t 2=2-21+t 2∈[0,2). ∴x ∈[0,2).∴所求的普通方程为3x +y -4=0(x ∈[0,2)).(2)∵4cos 2θ=2-x,4sin 2θ=4(y +1).∴4cos 2θ+4sin 2θ=2-x +4y +4.∴4y -x +2=0.∵0≤4cos 2θ≤4,∴0≤2-x ≤4,∴-2≤x ≤2.∴所求的普通方程为x -4y -2=0(x ∈[-2,2]).例3 解 化极坐标方程ρ=4cos θ为直角坐标方程x 2+y 2-4x =0,所以曲线C 是以(2,0)为圆心,2为半径的圆.化参数方程⎩⎨⎧ x =-3+32t ,y =12t(t 为参数)为普通方程x -3y +3=0. 圆心到直线l 的距离d =|2+3|1+3=52, 此时,直线与圆相离, 所以MN 的最小值为52-2=12. 跟踪训练3 解 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0, 得⎩⎪⎨⎪⎧ x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab 2+1, 所以⎩⎨⎧ b 2=1,-ab 2+1=2,解得a =-1,b =2.练出高分A 组 1.解 因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数), 由x =t +1得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x .联立方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x , 解得公共点的坐标为(2,2),⎝⎛⎭⎫12,-1.2.解 (1)由⎩⎪⎨⎪⎧x =sin α,y =cos 2α,α∈[0,2π)得 x 2+y =1,x ∈[-1,1].(2)由ρsin(θ+π4)=-2得曲线D 的普通方程为 x +y +2=0.⎩⎪⎨⎪⎧x +y +2=0,x 2+y =1得x 2-x -3=0. 解得x =1±132∉[-1,1], 故曲线C 与曲线D 无公共点.3.解 (1)由点A (2,π4)在直线ρcos(θ-π4)=a 上,可得a = 2. 所以直线l 的方程可化为ρcos θ+ρsin θ=2,从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1,因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.4.解 ∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0,即x 2+(y -6)2=36.又∵ρ=12cos ⎝⎛⎭⎫θ-π6, ∴ρ2=12ρ⎝⎛⎭⎫cos θcos π6+sin θsin π6, ∴x 2+y 2-63x -6y =0,∴(x -33)2+(y -3)2=36,∴PQ max =6+6+(33)2+32=18.5.解 (1)由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得M 的直角坐标为(1,-3); N 的直角坐标为(2,0);P 的直角坐标为(3,3).(2)∵k MN =32-1=3,k NP =3-03-2= 3. ∴k MN =k NP ,∴M 、N 、P 三点在一条直线上.6.解 圆x 2+y 2=36上任一点为P (x ,y ),伸缩变换后对应的点的坐标为P ′(x ′,y ′),则⎩⎪⎨⎪⎧x =2x ′,y =3y ′, ∴4x ′2+9y ′2=36,即x ′29+y ′24=1. ∴曲线C 在伸缩变换后得椭圆x 29+y 24=1,其焦点坐标为(±5,0). B 组1.解 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为x 2+y 2=x +y ,即x 2+y 2-x -y =0,直线l :ρsin(θ-π4)=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1,故直线l 与圆O 公共点的极坐标为(1,π2). 2.解 (1)由ρ=2知ρ2=4,所以x 2+y 2=4;因为ρ2-22ρcos(θ-π4)=2, 所以ρ2-22ρ(cos θcos π4+sin θsin π4)=2, 所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin(θ+π4)=22. 3.解 (1)∵C 1的参数方程为⎩⎪⎨⎪⎧ x =4+5cos t y =5+5sin t. ∴⎩⎪⎨⎪⎧5cos t =x -45sin t =y -5. ∴(x -4)2+(y -5)2=25(cos 2t +sin 2t )=25, 即C 1的直角坐标方程为(x -4)2+(y -5)2=25, 把x =ρcos θ,y =ρsin θ代入(x -4)2+(y -5)2=25, 化简得:ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的直角坐标方程为x 2+y 2=2y ,解方程组⎩⎪⎨⎪⎧(x -4)2+(y -5)2=25x 2+y 2=2y 得⎩⎪⎨⎪⎧ x =1y =1或⎩⎪⎨⎪⎧x =0y =2. ∴C 1与C 2交点的直角坐标为(1,1),(0,2).∴C 1与C 2交点的极坐标为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2. 4.解 (1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ.解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3, 故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3. 注:极坐标系下点的表示不唯一.(2)方法一 由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ 得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧ x =1,y =t ,-3≤t ≤ 3. ⎝ ⎛⎭⎪⎫或参数方程写成⎩⎪⎨⎪⎧ x =1,y =y ,-3≤y ≤3 方法二 将x =1代入⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ 得ρcos θ=1,从而ρ=1cos θ. 于是圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =tan θ, -π3 ≤θ≤π3.。
专题二 高考中的三角函数的综合问题1. (2013·北京)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件. 2. 已知向量a =(2,sin x ),b =(cos 2x,2cos x ),则函数f (x )=a·b 的最小正周期是( )A.π2 B .π C .2π D .4π 答案 B解析 f (x )=2cos 2x +2sin x cos x =1+cos 2x +sin 2x =1+2sin ⎝⎛⎭⎫2x +π4,T =2π2=π. 3. 若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1 D.3+2答案 B解析 依题意,得f (x )=cos x +3sin x =2sin(x +π6),当0≤x <π2时,π6≤x +π6<2π3,f (x )的最大值是2.4. 已知向量OB →=(2,0),向量OC →=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向量OB→的夹角的取值范围是( )A.⎣⎡⎦⎤0,π4B.⎣⎡⎦⎤π4,512π C.⎣⎡⎦⎤512π,π2 D.⎣⎡⎦⎤π12,512π答案 D解析 由题意,得:OA →=OC →+CA →=(2+2cos α,2+2sin α),所以点A 的轨迹是圆(x -2)2+(y -2)2=2,如图,当A 位于使向量OA →与圆相切时,向量OA →与向量OB →的夹角分别达到最大、最小值,故选D.5. (2012·四川改编)如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC 、ED ,则sin ∠CED =__________. 答案1010解析 方法一 应用两角差的正弦公式求解. 由题意知,在Rt △ADE 中,∠AED =45°, 在Rt △BCE 中,BE =2,BC =1, ∴CE =5,则sin ∠CEB =15,cos ∠CEB =25. 而∠CED =45°-∠CEB , ∴sin ∠CED =sin(45°-∠CEB ) =22(cos ∠CEB -sin ∠CEB ) =22×⎝⎛⎭⎫25-15=1010.方法二 利用余弦定理及同角三角函数基本关系式求解. 由题意得ED =2,EC =12+22= 5. 在△EDC 中,由余弦定理得cos ∠CED =CE 2+DE 2-DC 22CE ·DE =31010,又0<∠CED <π,∴sin ∠CED =1-cos 2∠CED =1-⎝⎛⎭⎫310102=1010.题型一 三角函数的图象和性质例1 已知函数f (x )=sin(ωx +π6)+sin(ωx -π6)-2cos 2ωx2,x ∈R (其中ω>0).(1)求函数f (x )的值域;(2)若函数y =f (x )的图象与直线y =-1的两个相邻交点间的距离为π2,求函数y =f (x )的单调增区间.思维启迪 对三角函数的性质的讨论,首先要化成y =A sin(ωx +φ)+k (一角、一次、一函数)的形式;根据(2)中条件可确定ω. 解 (1)f (x )=32sin ωx +12cos ωx +32sin ωx -12cos ωx -(cos ωx +1) =2(32sin ωx -12cos ωx )-1=2sin(ωx -π6)-1. 由-1≤sin(ωx -π6)≤1,得-3≤2sin(ωx -π6)-1≤1,所以函数f (x )的值域为[-3,1].(2)由题设条件及三角函数图象和性质可知,y =f (x )的周期为π, 所以2πω=π,即ω=2.所以f (x )=2sin(2x -π6)-1,再由2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ).所以函数y =f (x )的单调增区间为[k π-π6,k π+π3](k ∈Z ).思维升华 三角函数的图象和性质是高考考查的重点,通常先将三角函数化为y =A sin(ωx +φ)+k 的形式,然后将t =ωx +φ视为一个整体,结合y =sin t 的图象求解.已知函数f (x )=sin 2x -2sin x cos x +3cos 2x .(1)求函数f (x )的最小正周期;(2)当x ∈[19π24,π]时,求函数f (x )的最大值和最小值.解 f (x )=sin 2x -2sin x cos x +3cos 2x =1-sin 2x +2cos 2x =2+cos 2x -sin 2x =2+2cos(2x +π4).(1)函数f (x )的最小正周期T =π.(2)因为19π24≤x ≤π,所以116π≤2x +π4≤9π4.所以22≤cos(2x +π4)≤1. 所以3≤2+2cos(2x +π4)≤2+2,即3≤f (x )≤2+ 2.所以函数f (x )的最小值为3,最大值为2+ 2. 题型二 三角函数和解三角形例2 (2013·重庆)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2.(1)求C ;(2)设cos A cos B =325,cos (α+A )cos (α+B )cos 2α=25,求tan α的值. 思维启迪 (1)利用余弦定理求C ;(2)由(1)和cos A cos B =325可求得A +B ,代入求tan α.解 (1)因为a 2+b 2+2ab =c 2,由余弦定理有cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.又0<C <π,故C =3π4.(2)由题意得(sin αsin A -cos αcos A )(sin αsin B -cos αcos B )cos 2α=25. 因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25, tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.① 因为C =3π4,所以A +B =π4,所以sin(A +B )=22,因为cos(A +B )=cos A cos B -sin A sin B , 即325-sin A sin B =22, 解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4.思维升华 三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和差公式的灵活运用是解决此类问题的关键.(2012·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,且有2sinB cos A =sin A cosC +cos A sin C . (1)求角A 的大小;(2)若b =2,c =1,D 为BC 的中点,求AD 的长. 解 (1)方法一 由题设知,2sin B cos A =sin(A +C )=sin B .因为sin B ≠0,所以cos A =12.由于0<A <π,故A =π3.方法二 由题设可知,2b ·b 2+c 2-a 22bc =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc ,于是b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.由于0<A <π,故A =π3.(2)方法一 因为AD →2=⎝ ⎛⎭⎪⎫AB→+AC →22=14(AB →2+AC →2+2AB →·AC →) =14(1+4+2×1×2×cos π3)=74, 所以|AD →|=72.从而AD =72.方法二 因为a 2=b 2+c 2-2bc cos A =4+1-2×2×1×12=3,所以a 2+c 2=b 2,B =π2.因为BD =32,AB =1,所以AD = 1+34=72. 题型三 三角函数与平面向量的综合应用例3 已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x 4. (1)若m·n =1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)记f (x )=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.思维启迪 (1)由向量数量积的运算转化成三角函数式,化简求值.(2)在△ABC 中,求出∠A 的范围,再求f (A )的取值范围. 解 (1)m·n =3sin x 4·cos x 4+cos 2x 4=32sin x2+1+cosx22=sin ⎝⎛⎭⎫x 2+π6+12,∵m·n =1,∴sin ⎝⎛⎭⎫x 2+π6=12.∵cos ⎝⎛⎭⎫x +π3=1-2sin 2⎝⎛⎭⎫x 2+π6=12, ∴cos ⎝⎛⎭⎫2π3-x =-cos ⎝⎛⎭⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B -sin C cos B =sin B cos C . ∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ≠0. ∴cos B =12,∵0<B <π,∴B =π3.∴0<A <2π3.∴π6<A 2+π6<π2,sin ⎝⎛⎭⎫A 2+π6∈⎝⎛⎭⎫12,1. 又∵f (x )=sin ⎝⎛⎭⎫x 2+π6+12. ∴f (A )=sin ⎝⎛⎭⎫A 2+π6+12.故函数f (A )的取值范围是⎝⎛⎭⎫1,32. 思维升华 (1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响.已知a =(53cos x ,cos x ),b =(sin x,2cos x ),设函数f (x )=a ·b +|b |2+32.(1)当x ∈[π6,π2]时,求函数f (x )的值域;(2)当x ∈[π6,π2]时,若f (x )=8,求函数f (x -π12)的值;(3)将函数y =f (x )的图象向右平移π12个单位后,再将得到的图象上各点的纵坐标向下平移5个单位,得到函数y =g (x )的图象,求函数g (x )的表达式并判断奇偶性. 解 (1)f (x )=a ·b +|b |2+32=53sin x cos x +2cos 2x +4cos 2x +sin 2x +32=53sin x cos x +5cos 2x +52=532sin 2x +5×1+cos 2x 2+52=5sin(2x +π6)+5.由π6≤x ≤π2,得π2≤2x +π6≤7π6, ∴-12≤sin(2x +π6)≤1,∴当π6≤x ≤π2时,函数f (x )的值域为[52,10].(2)f (x )=5sin(2x +π6)+5=8,则sin(2x +π6)=35,所以cos(2x +π6)=-45,f (x -π12)=5sin 2x +5=5sin(2x +π6-π6)+5=332+7.(3)由题意知f (x )=5sin(2x +π6)+5→g (x )=5sin[2(x -π12)+π6]+5-5=5sin 2x ,即g (x )=5sin 2x ,g (-x )=5sin(-2x )=-5sin 2x =-g (x ), 故g (x )为奇函数.(时间:80分钟)1. 函数y =sin(ωx +φ)(ω>0,|φ|<π2)在同一个周期内,当x =π4时,y 取最大值1,当x =7π12时,y 取最小值-1.(1)求函数的解析式y =f (x );(2)函数y =sin x 的图象经过怎样的变换可得到y =f (x )的图象;(3)若函数f (x )满足方程f (x )=a (0<a <1),求在[0,2π]内的所有实数根之和. 解 (1)∵T =2(712π-π4)=23π,∴ω=3,又∵sin(34π+φ)=1,∴3π4+φ=2k π+π2,k ∈Z .又|φ|<π2,得φ=-π4,∴函数的解析式为f (x )=sin(3x -π4).(2)y =sin x 的图象向右移π4个单位,得到y =sin(x -π4)的图象,再由y =sin(x -π4)的图象上所有点的横坐标变为原来的13,纵坐标不变,得到y =sin(3x -π4)的图象. (3)∵f (x )=sin(3x -π4)的最小正周期为23π,∴f (x )=sin(3x -π4)在[0,2π]内恰有3个周期,∴sin(3x -π4)=a (0<a <1)在[0,2π]内有6个实数根且x 1+x 2=π2.同理,x 3+x 4=11π6,x 5+x 6=196π,故所有实数根之和为π2+11π6+19π6=11π2.2. (2013·安徽)已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2 =2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0. 从而有2π2ω=π,故ω=1. (2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4, 即π8≤x ≤π2时,f (x )单调递减.综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增, 在区间⎣⎡⎦⎤π8,π2上单调递减.3. (2013·四川)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B2cos B -sin(A -B )sin B +cos(A +C )=-35.(1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影.解 (1)由2cos 2A -B 2cos B -sin(A -B )sin B +cos(A +C )=-35,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35,即cos(A -B )cos B -sin(A -B )sin B =-35.则cos(A -B +B )=-35,即cos A =-35.(2)由cos A =-35,0<A <π,得sin A =45,由正弦定理,有a sin A =b sin B ,所以,sin B =b sin A a =22. 由题知a >b ,则A >B ,故B =π4,根据余弦定理,有(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1或c =-7(舍去).故向量BA →在BC →方向上的投影为|BA →|cos B =22.4. 已知向量a =(cos α,sin α),b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中0<α<x <π.(1)若α=π4,求函数f (x )=b ·c 的最小值及相应x 的值;(2)若a 与b 的夹角为π3,且a ⊥c ,求tan 2α的值.解 (1)∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π4,∴f (x )=b ·c=cos x sin x +2cos x sin α+sin x cos x +2sin x cos α =2sin x cos x +2(sin x +cos x ). 令t =sin x +cos x ⎝⎛⎭⎫π4<x <π,则2sin x cos x =t 2-1,且-1<t < 2. 则y =t 2+2t -1=⎝⎛⎭⎫t +222-32,-1<t <2, ∴t =-22时,y min =-32,此时sin x +cos x =-22, 即2sin ⎝⎛⎭⎫x +π4=-22, ∵π4<x <π,∴π2<x +π4<54π, ∴x +π4=76π,∴x =11π12.∴函数f (x )的最小值为-32,相应x 的值为11π12.(2)∵a 与b 的夹角为π3,∴cos π3=a ·b |a |·|b |=cos αcos x +sin αsin x =cos(x -α).∵0<α<x <π,∴0<x -α<π,∴x -α=π3.∵a ⊥c ,∴cos α(sin x +2sin α)+sin α(cos x +2cos α)=0, ∴sin(x +α)+2sin 2α=0,即sin ⎝⎛⎭⎫2α+π3+2sin 2α=0. ∴52sin 2α+32cos 2α=0,∴tan 2α=-35.5. 函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.解 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32.又f (-π6)=2sin[32×(-π6)+φ]=2sin(-π4+φ)=0,∴sin(φ-π4)=0,∵0<φ<π2,∴-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,∴f (x )=2sin(32x +π4).(2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4]=2sin(32x +π8), ∴g (x )=[f (x -π12)]2=4×1-cos (3x +π4)2=2-2cos(3x +π4), ∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4, ∴当3x +π4=π,即x =π4时,[g (x )]max =4. 6. 设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =2b sin A .(1)求B 的大小;(2)求cos A +sin C 的取值范围.解 (1)由a =2b sin A ,根据正弦定理得sin A =2sin B sin A ,所以sin B =12,由△ABC 为锐角三角形可得B =π6. (2)由(1)可知A +C =π-B =5π6,故C =5π6-A . 故cos A +sin C =cos A +sin ⎝⎛⎭⎫5π6-A =cos A +sin ⎝⎛⎭⎫π6+A =cos A +12cos A +32sin A =32cos A +32sin A =3⎝⎛⎭⎫32cos A +12sin A =3sin ⎝⎛⎭⎫A +π3, 由△ABC 为锐角三角形可得,0<C <π2, 故0<5π6-A <π2,解得π3<A <5π6, 又0<A <π2,所以π3<A <π2. 故2π3<A +π3<5π6,所以12<sin ⎝⎛⎭⎫A +π3<32, 所以32<3sin ⎝⎛⎭⎫A +π3<32, 即cos A +sin C 的取值范围为⎝⎛⎭⎫32,32.。
§6.4 数列求和、数列的综合应用考点一数列求和1.(2014山东,19,12分)已知等差数列{an }的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(1)求数列{an}的通项公式;(2)令bn =(-1)n-14na n a n+1,求数列{bn}的前n项和Tn.解析(1)因为S1=a1,S2=2a1+2×12×2=2a1+2,S 4=4a1+4×32×2=4a1+12,由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以an=2n-1.(2)bn =(-1)n-14na n a n+1=(-1)n-14n(2n-1)(2n+1)=(-1)n-112n-1+12n+1.当n为偶数时,T n =1+13-13+15+…+12n-3+12n-1-12n-1+12n+1=1-12n+1=2n2n+1.当n为奇数时,T n =1+13-13+15+…-12n-3+12n-1+12n-1+12n+1=1+12n+1=2n+22n+1.所以Tn =2n+22n+1,n为奇数,2n2n+1,n为偶数.或T n=2n+1+(-1)n-1考点二数列的综合应用2.(2014江西,17,12分)已知首项都是1的两个数列{an },{bn}(bn≠0,n∈N*)满足a n bn+1-an+1bn+2bn+1bn=0.(1)令cn =a nb n,求数列{cn}的通项公式;(2)若bn =3n-1,求数列{an}的前n项和Sn.解析(1)因为an bn+1-an+1bn+2bn+1bn=0,bn≠0(n∈N*),所以a n+1b n+1-a nb n=2,即cn+1-cn=2.所以数列{cn}是以1为首项,2为公差的等差数列,故cn=2n-1.(2)由bn =3n-1知an=cnbn=(2n-1)3n-1,于是数列{an }的前n项和Sn=1·30+3·31+5·32+…+(2n-1)·3n-1,3Sn=1·31+3·32+…+(2n-3)·3n-1+(2n-1)·3n,相减得-2Sn=1+2·(31+32+…+3n-1)-(2n-1)·3n=-2-(2n-2)3n,所以Sn=(n-1)3n+1.3.(2014四川,19,12分)设等差数列{an }的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=-2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-1ln2,求数列a nb n的前n项和T n.解析(1)由已知,b7=2a7,b8=2a8=4b7,有2a8=4×2a7=2a7+2.解得d=a8-a7=2.所以,Sn =na1+n(n-1)2d=-2n+n(n-1)=n2-3n.(2)函数f(x)=2x在(a2,b2)处的切线方程为y-2a2=(2a2ln 2)(x-a2),它在x轴上的截距为a2-1ln2.由题意,a2-1ln2=2-1ln2,解得a2=2.所以d=a2-a1=1.从而an =n,bn=2n.所以Tn =12+222+323+…+n-12n-1+n2n,2Tn =11+22+32+…+n2n-1.因此,2Tn -Tn=1+12+12+…+12n-1-n2=2-12n-1-n2=2n+1-n-22.所以,Tn =2n+1-n-22n.4.(2014浙江,19,14分)已知数列{an }和{bn}满足a1a2a3…an=(2)b n(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(1)求an 与bn;(2)设c n =1a n-1b n(n∈N *).记数列{c n }的前n 项和为S n .(i)求S n ;(ii)求正整数k,使得对任意n∈N *均有S k ≥S n . 解析 (1)由题意a 1a 2a 3…a n =( 2)bn ,b 3-b 2=6, 知a 3=( 2)b 3-b 2=8.又由a 1=2,得公比q=2(q=-2舍去),所以数列{a n }的通项为a n =2n (n∈N *), 所以,a 1a 2a 3…a n =2n (n +1)=( 2)n(n+1).故数列{b n }的通项为b n =n(n+1)(n∈N *). (2)(i)由(1)知c n =1a n-1b n=12n - 1n -1n +1 (n∈N *),所以S n =1n +1-12(n∈N *). (ii)因为c 1=0,c 2>0,c 3>0,c 4>0; 当n≥5时,c n =1n (n +1) n (n +1)2-1 , 而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n (n +1)2n≤5·(5+1)25<1,所以,当n≥5时,c n <0.综上,对任意n∈N *,恒有S 4≥S n ,故k=4.5.(2014湖北,18,12分)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n,使得S n >60n+800?若存在,求n 的最小值;若不存在,说明理由.解析 (1)设数列{a n }的公差为d,依题意,2,2+d,2+4d 成等比数列,故有(2+d)2=2(2+4d),化简得d 2-4d=0,解得d=0或d=4. 当d=0时,a n =2;当d=4时,a n =2+(n-1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n-2. (2)当a n =2时,S n =2n.显然2n<60n+800,此时不存在正整数n,使得S n >60n+800成立. 当a n =4n-2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n+800,即n 2-30n-400>0, 解得n>40或n<-10(舍去),此时存在正整数n,使得S n >60n+800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n;当a n =4n-2时,存在满足题意的n,其最小值为41.6.(2014湖南,20,13分)已知数列{a n }满足a 1=1,|a n+1-a n |=p n ,n∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;(2)若p=12,且{a 2n-1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式. 解析 (1)因为{a n }是递增数列,所以|a n+1-a n |=a n+1-a n =p n .而a 1=1,因此a 2=p+1,a 3=p 2+p+1.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p 2-p=0,解得p=13或p=0. 当p=0时,a n+1=a n ,这与{a n }是递增数列矛盾.故p=13. (2)由于{a 2n-1}是递增数列,因而a 2n+1-a 2n-1>0, 于是(a 2n+1-a 2n )+(a 2n -a 2n-1)>0.① 但122n <122n -1,所以|a 2n+1-a 2n |<|a 2n -a 2n-1|.②由①,②知,a 2n -a 2n-1>0, 因此a 2n -a 2n-1= 12 2n -1=(-1)2n22n -1.③因为{a 2n }是递减数列,同理可得,a 2n+1-a 2n <0,故a 2n+1-a 2n =- 12 2n =(-1)2n +12.④ 由③,④知,a n+1-a n =(-1)n +12.于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) =1+12-12+…+(-1)n2n -1=1+12·1- -12 n -11+12=43+13·(-1)n2n -1,故数列{a n }的通项公式为 a n =43+13·(-1)n2n -1.。
§1.2 命题及其关系、充分条件与必要条件1.命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;(2)如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)“x 2+2x -3<0”是命题.( × )(2)“sin 45°=1”是真命题.( × )(3)命题“三角形的内角和是180°”的否命题是三角形的内角和不是180°.( × )(4)若一个命题是真命题,则其逆否命题是真命题.( √ )(5)“a =2”是“(a -1)(a -2)=0”的必要不充分条件.( × )(6)若α∈(0,2π),则“sin α=-1”的充要条件是“α=π”.( √ )322.设a ,b 是向量,命题“若a =-b ,则|a |=|b |”的逆命题是( )A .若a ≠-b ,则|a |≠|b |B .若a =-b ,则|a |≠|b |C .若|a |≠|b |,则a ≠-bD .若|a |=|b |,则a =-b 答案 D解析 命题“若a =-b ,则|a |=|b |”的逆命题为“若|a |=|b |,则a =-b ”,故选D.3.命题“若α=,则tan α=1”的逆否命题是( )π4A .若α≠,则tan α≠1π4B .若α=,则tan α≠1π4C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”,故选C.π4π44.(2013·福建)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件 B .必要而不充分条件C .充分必要条件 D .既不充分也不必要条件答案 A解析 a =3时A ={1,3},显然A ⊆B .但A ⊆B 时,a =2或3.所以A 正确.5.给出下列四个结论:①命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是“若a ≠0或b ≠0,则a 2+b 2≠0”;②“(x -3)(x -4)=0”是“x -3=0”的充分而不必要条件;③命题“若m >0,则方程x 2+x -m =0有实数根”的逆否命题为真命题;④若a >0,b >0,a +b =4,则+的最小值为1.1a 1b 其中正确结论的个数为( )A .1B .2C .3D .4答案 C解析 四种命题形式知①正确;(x -3)(x -4)=0⇒x =3或x =4,x =3⇒(x -3)(x -4)=0,所以“(x -3)(x -4)=0”是“x -3=0”的必要而不充分条件,所以②错误;由四种命题的关系知③正确;∵a >0,b >0,a +b =4,∴+=·(+)=++≥+2=1,1a 1b a +b 41a 1b 12b 4a a 4b 12b 4a ·a 4b 当且仅当a =b 时取“=”.∴④正确.题型一 四种命题及真假判断例1 (1)下面是关于复数z =的四个命题:2-1+i p 1:|z |=2,p 2:z 2=2i ,p 3:z 的共轭复数为1+i ,p 4:z 的虚部为-1.其中的真命题为( )A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 4(2)已知命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的是( )A .否命题“若函数f (x )=e x -mx 在(0,+∞)上是减函数,则m >1”是真命题B .逆命题“若m ≤1,则函数f (x )=e x -mx 在(0,+∞)上是增函数”是假命题C .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上是减函数”是真命题D .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上不是增函数”是真命题思维启迪 (1)可化简复数z ,再利用复数的知识判断命题真假;(2)利用四种命题的定义判断四种命题形式是否正确,可利用四种命题的关系判断命题是否为真.答案 (1)C (2)D解析 (1)z ===-1-i ,2-1+i 2(-1-i )(-1+i )(-1-i )所以|z |=,p 1为假命题;z 2=(-1-i)2=(1+i)2=2i ,p 2为真命题,=-1+i ,p 3为假命题;2z p 4为真命题.故选C.(2)命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”是真命题,所以其逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上不是增函数”是真命题.思维升华 (1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键;(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假;(3)判断一个命题为假命题可举反例. (1)命题“若α=,则cos α=”的逆命题是( )π312A .若α=,则cos α≠π312B .若α≠,则cos α≠π312C .若cos α=,则α=12π3D .若cos α≠,则α≠12π3(2)命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数答案 (1)C (2)C解析 (1)命题“若α=,则cos α=”的逆命题是π312“若cos α=,则α=”.12π3(2)由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.题型二 充要条件的判定例2 已知下列各组命题,其中p 是q 的充分必要条件的是( )A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点B .p :=1;q :y =f (x )是偶函数f (-x )f (x )C .p :cos α=cos β;q :tan α=tan βD .p :A ∩B =A ;q :A ⊆U ,B ⊆U ,∁U B ⊆∁U A思维启迪 首先要分清条件和结论,然后可以从逻辑推理、等价命题或集合的角度思考问题,做出判断.答案 D解析 对于A ,由y =x 2+mx +m +3有两个不同的零点,可得Δ=m 2-4(m +3)>0,从而可得m <-2或m >6.所以p 是q 的必要不充分条件;对于B ,由=1⇒f (-x )=f (x )⇒y =f (x )是偶函数,但由y =f (x )是偶函数不能推出f (-x )f (x )=1,例如函数f (x )=0,所以p 是q 的充分不必要条件;f (-x )f (x )对于C ,当cos α=cos β=0时,不存在tan α=tan β,反之也不成立,所以p 是q 的既不充分也不必要条件;对于D ,由A ∩B =A ,知A ⊆B ,所以∁U B ⊆∁U A ;反之,由∁U B ⊆∁U A ,知A ⊆B ,即A ∩B =A .所以p ⇔q .综上所述,p 是q 的充分必要条件的是D.思维升华 充要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的何种条件,即可转化为判断“x =1且y =1”是“xy =1”的何种条件. (1)(2012·福建)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( )A .x =- B .x =-112C .x =5D .x =0(2)设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 (1)D (2)C解析 (1)∵a =(x -1,2),b =(2,1),∴a ·b =2(x -1)+2×1=2x .又a ⊥b ⇔a ·b =0,∴2x =0,∴x =0.(2)因为A ={x |x -2>0}={x |x >2}=(2,+∞),B ={x |x <0}=(-∞,0),所以A ∪B =(-∞,0)∪(2,+∞),C ={x |x (x -2)>0}={x |x <0或x >2}=(-∞,0)∪(2,+∞).即A ∪B =C .故“x ∈A ∪B ”是“x ∈C ”的充要条件. 题型三 充分条件与必要条件的应用例3 (1)函数f (x )=Error!有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C.<a <1D .a ≤0或a >112(2)设p :|4x -3|≤1,q :x 2-(2a +1)x +a (a +1)≤0,若非p 是非q 的必要不充分条件,则实数a 的取值范围是( )A.B.[0,12](0,12)C .(-∞,0]∪D .(-∞,0)∪[12,+∞)(12,+∞)思维启迪 (1)根据图象交点先求得f (x )有一个零点的充要条件,再利用“以小推大”(集合间关系)判定;(2)考虑条件所对应集合间的包含关系.答案 (1)A (2)A解析 (1)因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合,可得a ≤0或a >1.观察选项,根据集合间关系{a |a <0} {a |a ≤0或a >1},∴答案选A.(2)p :|4x -3|≤1⇒-1≤4x -3≤1,∴≤x ≤1;12q :x 2-(2a +1)x +a (a +1)≤0⇒(x -a )[x -(a +1)]≤0,∴a ≤x ≤a +1.由题意知p 是q 的充分不必要条件,故有Error!或Error!,则0≤a ≤.12思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验. (1)若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为________.(2)已知命题p :实数m 满足m 2+12a 2<7am (a >0),命题q :实数m 满足方程+=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范x 2m -1y 22-m 围为________.答案 (1)-1 (2)[13,38]解析 (1)由x 2>1,得x <-1,或x >1.又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.(2)由a >0,m 2-7am +12a 2<0,得3a <m <4a ,即命题p :3a <m <4a ,a >0.由+=1表示焦点在y 轴上的椭圆,x 2m -1y 22-m 可得2-m >m -1>0,解得1<m <,32即命题q :1<m <.32因为p 是q 的充分不必要条件,所以Error!或Error!解得≤a ≤,1338所以实数a 的取值范围是.[13,38]等价转化思想在充要条件中的应用典例:(12分)已知集合A ={y |y =x 2-x +1,x ∈[,2]},3234B ={x |x +m 2≥1}.p :x ∈A ,q :x ∈B ,并且p 是q 的充分条件,求实数m 的取值范围.思维启迪 (1)先对集合进行化简;(2)将条件间的关系转化为集合间的包含关系;(3)利用集合间的关系列出关于m 的不等式,求出实数m 的范围.规范解答解 化简集合A ,由y =x 2-x +1.32配方,得y =2+.(x -34)716∵x ∈,[34,2]∴y min =,y max =2.716∴y ∈.[716,2]∴A =Error!.[4分]化简集合B ,由x +m 2≥1,得x ≥1-m 2,B ={x |x ≥1-m 2}.[6分]∵命题p 是命题q 的充分条件,∴A ⊆B .[8分]∴1-m 2≤,解得m ≥,或m ≤-.[11分]7163434∴实数m 的取值范围是∪.[12分](-∞,-34][34,+∞)温馨提醒 本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.方法与技巧1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题及其逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充要关系的几种判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:即利用A⇒B与綈B⇒綈A;B⇒A与綈A⇒綈B;A⇔B与綈B⇔綈A的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A={x|p(x)},B={x|q(x)},若A⊆B,则p是q的充分条件或q是p的必要条件;若A=B,则p是q的充要条件.失误与防范1.当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p则q”的形式.3.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.A组 专项基础训练一、选择题1.命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析 依题意,得原命题的逆命题:若一个数的平方是正数,则它是负数.2.下列命题中为真命题的是( ) A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题答案 A解析 对于A ,其逆命题:若x >|y |,则x >y ,是真命题,这是因为x >|y |=Error!,必有x >y ;对于B ,否命题:若x ≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题:若x ≠1,则x 2+x -2≠0,因为x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x >0或x <0,不一定有x >1,因此原命题的逆否命题是假命题,故选A.3.已知集合M ={x |0<x <1},集合N ={x |-2<x <1},那么“a ∈N ”是“a ∈M ”的( )A .充分而不必要条件 B .必要而不充分条件C .充要条件 D .既不充分也不必要条件答案 B解析 因为M N ,所以a ∈M ⇒a ∈N ,反之,则不成立,故“a ∈N ”是“a ∈M ”的必要而不充分条件.故选B.4.与命题“若a ,b ,c 成等比数列,则b 2=ac ”等价的命题是( )A .若a ,b ,c 成等比数列,则b 2≠acB .若a ,b ,c 不成等比数列,则b 2≠acC .若b 2=ac ,则a ,b ,c 成等比数列D .若b 2≠ac ,则a ,b ,c 不成等比数列答案 D解析 因为原命题与其逆否命题是等价的,所以与命题“若a ,b ,c 成等比数列,则b 2=ac ”等价的命题是“若b 2≠ac ,则a ,b ,c 不成等比数列”.5.已知向量a =(m 2,-9),b =(1,-1),则“m =-3”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 当m =-3时,a =(9,-9),b =(1,-1),则a =9b ,所以a ∥b ,即“m =-3”⇒“a ∥b ”;当a ∥b 时,m 2=9,得m =±3,所以不能推得m =-3,即“m =-3”D ⇐/“a ∥b ”.故“m =-3”是“a ∥b ”的充分不必要条件.6.在△ABC 中,“A =60°”是“cos A =”的( )12A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 C解析 当A =60°时,有cos A =;因为角A 是△ABC 的内角,所以,当cos A =时,也只1212有A =60°,因此,是充分必要条件.7.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( )A .3B .2C .1D .0答案 C解析 原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.8.函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是( )A .m =-2B .m =2C .m =-1D .m =1答案 A 解析 已知函数f (x )=x 2-2x +1的图象关于直线x =1对称,则m =-2;反之也成立.所以函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是m =-2.二、填空题9.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.答案 [-3,0]解析 ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得Error!,解得-3≤a <0,故-3≤a ≤0.10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是________.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.11. “sin α=”是“cos 2α=”的________条件.1212答案 充分不必要解析 ∵cos 2α=1-2sin 2α=,解得sin α=±,故“sin α=”是“cos 2α=”的充分不12121212必要条件.12.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________.答案 [0,2]解析 由已知易得{x |x 2-2x -3>0} {x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴Error!或Error!,∴0≤m ≤2.B 组 专项能力提升1.若集合A ={x |2<x <3},B ={x |(x +2)(x -a )<0},则“a =1”是“A ∩B =∅”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 当a =1时,B ={x |-2<x <1},满足A ∩B =∅;反之,若A ∩B =∅,只需a ≤2即可,故“a =1”是“A ∩B =∅”的充分不必要条件.2. “λ<1”是“数列a n =n 2-2λn (n ∈N *)是递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 若数列a n =n 2-2λn (n ∈N *)为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是可得3>2λ,即λ<.32注意到由λ<1可得λ<;32但反过来,由λ<不能得到λ<1,32故“λ<1”是“数列a n =n 2-2λn (n ∈N *)是递增数列”的充分不必要条件.3.命题“函数y =f (x )的导函数为f ′(x )=e x +-(其中e 为自然对数的底数,k 为实数),k 2e x 1k 且f (x )在R 上不是单调函数”是真命题,则实数k 的取值范围是( )A. B.(-∞,-22)(-22,0)C. D.(0,22)(22,+∞)答案 C解析 当k =-1时,f ′(x )=e x ++1≥2+1=3,1e x 则f (x )在R 上单调递增,不满足题意,应排除A ;当k =-时,f ′(x )=e x ++2≥1+2=3,1214e x所以f (x )在R 上单调递增,不满足题意,应排除B ;当k =1时,f ′(x )=e x +-1≥2-1=2-1=1,1e x e x ·1e x 则f (x )在R 上单调递增,不满足题意,应排除D.选C.二、填空题4.“m <”是“一元二次方程x 2+x +m =0有实数解”的____________条件.14答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤,∵m <⇒m ≤,反之不成立.141414故“m <”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.145.已知集合A =,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个{x |12<2x <8,x ∈R }充分不必要的条件是x ∈A ,则实数m 的取值范围是________.答案 (2,+∞)解析 A =={x |-1<x <3},{x |12<2x <8,x ∈R }∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.6.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件;④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件.正确的是________.答案 ①④解析 由λ=0可以推出λa =0,但是由λa =0不一定推出λ=0成立,所以①正确.由AB 2+AC 2=BC 2可以推出△ABC 是直角三角形,但是由△ABC 是直角三角形不能确定哪个角是直角,所以②不正确.由a 2+b 2≠0可以推出a ,b 不全为零;反之,由a ,b 不全为零可以推出a 2+b 2≠0,所以③不正确,④正确.。
§6.3 平面向量的数量积1.向量的夹角已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角,向量夹角的范围是[0,π]. 2.平面向量的数量积3.平面向量数量积的性质设a ,b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角,则 (1)e ·a =a ·e =|a |cos θ. (2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a ||b |; 当a 与b 反向时,a ·b =-|a ||b |.特别地,a ·a =|a |2或|a |(4)cos θ=a ·b |a ||b |.(5)|a ·b |≤|a ||b |.4.平面向量数量积满足的运算律 (1)a·b =b·a ;(2)(λa )·b =λ(a·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a·c +b·c .5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到(1)若a =(x ,y ),则|a |2=x 2+y 2或|a |(2)设A (x 1,y 1),B (x 2,y 2),则A ,B 两点间的距离|AB |=|AB →|(3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0. (4)若a ,b 都是非零向量,θ是a 与b 的夹角,则cos θ=a ·b|a ||b |=知识拓展1.两个向量a ,b 的夹角为锐角⇔a·b >0且a ,b 不共线; 两个向量a ,b 的夹角为钝角⇔a·b <0且a ,b 不共线.2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a·b +b 2. (3)(a -b )2=a 2-2a·b +b 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)向量在另一个向量方向上的投影为数量,而不是向量.( √ )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (3)由a ·b =0可得a =0或b =0.( × ) (4)(a ·b )c =a (b ·c ).( × )(5)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( × ) (6)若a·b >0,则a 和b 的夹角为锐角;若a·b <0,则a 和b 的夹角为钝角.( × )题组二 教材改编2.[P105例4]已知向量a =(2,1),b =(-1,k ),a·(2a -b )=0,则k =________. 答案 12解析 ∵2a -b =(4,2)-(-1,k )=(5,2-k ), 由a ·(2a -b )=0,得(2,1)·(5,2-k )=0, ∴10+2-k =0,解得k =12.3.[P106T3]已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________. 答案 -2解析 由数量积的定义知,b 在a 方向上的投影为 |b |cos θ=4×cos 120°=-2. 题组三 易错自纠4.设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于________. 答案 52解析 a +2b =(-1+2m,4),2a -b =(-2-m,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以a·b =-1×⎝⎛⎭⎫-12+2×1=52. 5.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为________. 答案322解析 AB →=(2,1),CD →=(5,5),由定义知,AB →在CD →方向上的投影为AB →·CD →|CD →|=1552=322.6.已知△ABC 的三边长均为1,且AB →=c ,BC →=a ,CA →=b ,则a·b +b·c +a·c =________. 答案 -32解析 ∵〈a ,b 〉=〈b ,c 〉=〈a ,c 〉=120°,|a |=|b |=|c |=1, ∴a·b =b·c =a·c =1×1×cos 120°=-12,∴a·b +b·c +a·c =-32.题型一 平面向量数量积的运算1.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( ) A.20 B. 15 C.9 D.6 答案 C解析 AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →,∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9, 故选C.2.(2017·温州中学模拟)已知a ,b 为单位向量,|a +b |=2|a -b |,则a 在a +b 方向上的投影为( ) A.13 B.-263C.63D.223答案 C解析 由题设可得2+2a ·b =2-4a ·b +2, 即a ·b =13,则a ·(a +b )=1+13=43,设a 与a +b 的夹角为α, 则|a |·|a +b |cos α=43.又|a +b |=2+2×13=223,故|a |cos α=43×322=63.3.在△ABC 中,AB =4,BC =6,∠ABC =π2,D 是AC 的中点,E 在BC 上,且AE ⊥BD ,则AE →·BC→等于( ) A.16 B.12 C.8 D.-4答案 A解析 以B 为原点,BA ,BC 所在直线分别为x ,y 轴建立平面直角坐标系(图略),A (4,0),B (0,0),C (0,6),D (2,3),设E (0,t ),BD →·AE →=(2,3)·(-4,t )=-8+3t =0, t =83,即E ⎝⎛⎭⎫0,83,AE →·BC →=⎝⎛⎭⎫-4,83·(0,6)=16. 故选A.4.(2012·浙江)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16 解析 如图所示,AB →=AM →+MB →, AC →=AM →+MC → =AM →-MB →,∴AB →·AC →=(AM →+MB →)·(AM →-MB →)=AM →2-MB →2=|AM →|2-|MB →|2=9-25=-16. 思维升华 平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b =|a ||b |cos 〈a ,b 〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.(3)利用数量积的几何意义求解.题型二 平面向量数量积的应用命题点1 求向量的模典例 (1)已知向量a ,b 的夹角为60°,|a |=2,|a -2b |=2,则|b |等于( ) A.4 B.2 C. 2 D.1 答案 D解析 由|a -2b |=2,得(a -2b )2=|a |2-4a·b +4|b |2=4, 即|a |2-4|a||b |cos 60°+4|b |2=4,则|b |2-|b |=0,解得|b |=0(舍去)或|b |=1,故选D.(2)(2014·浙江)设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,|b +t a |的最小值为1,则( )A.若θ确定,则|a |唯一确定B.若θ确定,则|b |唯一确定C.若|a |确定,则θ唯一确定D.若|b |确定,则θ唯一确定 答案 B解析 |b +t a |2=b 2+2a ·b ·t +t 2a 2 =|a |2t 2+2|a |·|b |cos θ·t +|b |2. 因为|b +t a |min =1, 所以4|a |2·|b |2-4|a |2·|b |2cos 2θ4|a |2=|b |2(1-cos 2θ)=1. 所以|b |2sin 2θ=1, 所以|b |sin θ=1,即|b |=1sin θ. 即θ确定,|b |唯一确定. 命题点2 求向量的夹角典例 (1)已知单位向量e 1与e 2的夹角为π3,向量e 1+2e 2与2e 1+λe 2的夹角为2π3,则λ等于( )A.-23B.-3C.-23或-3D.-1答案 B解析 由题意可得|e 1+2e 2|=(e 1)2+4e 1·e 2+(2e 2)2=7, 同理,|2e 1+λe 2|=4+2λ+λ2, 而(e 1+2e 2)·(2e 1+λe 2)=4+52λ,又向量e 1+2e 2与2e 1+λe 2的夹角为2π3,可知(e 1+2e 2)·(2e 1+λe 2)|e 1+2e 2|·|2e 1+λe 2|=4+52λ7×4+2λ+λ2=-12,由此解得λ=-23或-3,又4+52λ<0,∴λ=-3.(2)(2011·浙江)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________.答案 ⎣⎡⎦⎤π6,5π6解析 由题意知S =|α||β|sin θ=12≤sin θ,∵θ∈[0,π],∴θ∈⎣⎡⎦⎤π6,5π6. 思维升华 (1)求解平面向量模的方法①把几何图形放到适当的坐标系中,写出有关向量的坐标,求向量的长度.如若向量a =(x ,y ),求向量a 的模只需利用公式|a |=x 2+y 2即可;②当向量坐标无法表示时,利用向量的线性运算和向量的数量积公式进行求解,关键是会把向量a 的模进行如下转化:|a |=a 2. (2)求平面向量的夹角的方法①定义法:利用向量数量积的定义知,cos θ=a·b |a||b |,其中两个向量的夹角θ的取值范围为[0,π],求解时应求出三个量:a·b ,|a |,|b |或者找出这三个量之间的关系; ②坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22;③解三角形法:可以把所求两向量的夹角放到三角形中,利用正、余弦定理和三角形的面积公式等进行求解.跟踪训练 (1)(2017·全国Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 3 解析 方法一 |a +2b |=(a +2b )2 =a 2+4a ·b +4b 2=22+4×2×1×cos 60°+4×12 =12=2 3.方法二 (数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC →|.又∠AOB =60°,所以|a +2b |=2 3.(2)(2013·浙江)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值为________. 答案 2解析 ①当x =0时,|x ||b |=0;②当x ≠0时, |b |2=(x e 1+y e 2)2 =x 2+y 2+2xy e 1·e 2 =x 2+y 2+3xy . ∴|x ||b |=|x |x 2+y 2+3xy =1⎝⎛⎭⎫y x 2+3⎝⎛⎭⎫y x +1=1⎝⎛⎭⎫y x +322+14≤2⎝⎛⎭⎫当且仅当y x =-32时取等号.由①②知|x ||b |的最大值为2.题型三 平面向量与三角函数典例 (2017·广州海珠区摸底)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 解 (1)由m·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝⎛⎭⎫-352=45.(2)由正弦定理,得a sin A =bsin B ,则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4,由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1.故向量BA →在BC →方向上的投影为 |BA →|cos B =c cos B =1×22=22.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. 跟踪训练 在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),m ⊥n . 所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝⎛⎭⎫x -π4=12, 因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.转化与化归思想在向量问题中的应用典例 (1)(2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________.(2)(2010·浙江)已知平面向量α,β(α≠0,α≠β)满足|β|=1,且α与β-α的夹角为120°,则|α|的取值范围是________.思想方法指导 解决向量问题要深入理解向量的概念和几何意义,回归向量运算的实质,选择使用数形结合或代数运算求解题目. 解析 因为|e 1|=|e 2|=1且e 1·e 2=12.所以e 1与e 2的夹角为60°. 又因为b ·e 1=b ·e 2=1,所以b ·e 1-b ·e 2=0,即b ·(e 1-e 2)=0, 所以b ⊥(e 1-e 2).所以b 与e 1的夹角为30°, 所以b ·e 1=|b |·|e 1|cos 30°=1.∴|b |=233. (2)如图所示,记θ=〈β,β-α〉,由正弦定理得|β|sin 60°=|α|sin θ,∴|α|=sin θ×23=233sin θ.又0°<θ<120°,∴0<sin θ≤1.即0<|α|≤233. 答案 (1)233 (2)⎝⎛⎦⎤0,2331.(2017·全国Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A.a ⊥b B.|a |=|b | C.a ∥b D.|a |>|b |答案 A解析 方法一 ∵|a +b |=|a -b |, ∴|a +b |2=|a -b |2,∴a 2+b 2+2a·b =a 2+b 2-2a·b , ∴a·b =0,∴a ⊥b .故选A.方法二 利用向量加法的平行四边形法则.在▱ABCD 中,设AB →=a ,AD →=b ,由|a +b |=|a -b |知,|AC →|=|DB →|,从而四边形ABCD 为矩形,即AB ⊥AD ,故a ⊥b .故选A.2.(2018届台州调研)已知向量a =(2,1),b =(1,3),则向量2a -b 与a 的夹角为( )A.135°B.60°C.45°D.30°答案 C解析 由题意可得2a -b =2(2,1)-(1,3)=(3,-1),则|2a -b |=32+(-1)2=10,|a |=22+12=5,且(2a -b )·a =(3,-1)·(2,1)=6-1=5,设所求向量的夹角为θ,由题意可得cos θ=(2a -b )·a |2a -b |·|a |=510×5=22, 则向量2a -b 与a 的夹角为45°.3.已知向量a =(m,2),b =(2,-1),且a ⊥b ,则|2a -b |a·(a +b )等于( ) A.-53B.1C.2D.54 答案 B解析 ∵a ⊥b ,∴2m -2=0,∴m =1,则2a -b =(0,5),a +b =(3,1),∴a ·(a +b )=1×3+2×1=5,|2a -b |=5,∴|2a -b |a·(a +b )=55=1,故选B. 4.(2017·宁波质检)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →等于( )A.89B.109C.259D.269答案 B解析 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,它们的长不可能为0,所以AB 与AC 垂直,所以△ABC为直角三角形.以A 为原点,以AC 所在直线为x 轴,以AB 所在直线为y轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0).不妨令E 为BC 的靠近C 的三等分点,则E ⎝⎛⎭⎫23,23,F ⎝⎛⎭⎫13,43, 所以AE →=⎝⎛⎭⎫23,23,AF →=⎝⎛⎭⎫13,43,所以AE →·AF →=23×13+23×43=109. 5.(2017·温州“十五校联合体”期中联考)已知向量a ,b 的夹角为θ,|a +b |=6,|a -b |=23,则θ的取值范围是( )A.0≤θ≤π3B.π3≤θ<π2C.π6≤θ<π2D.0<θ<2π3答案 A解析 由|a +b |=6,得|a |2+2a ·b +|b |2=36,① 由|a -b |=23,得|a |2-2a ·b +|b |2=12,② 由①②得|a |2+|b |2=24,且a ·b =6,从而有cos θ=a ·b |a ||b |≥2a ·b |a |2+|b |2=12, 又0≤θ≤π,故0≤θ≤π3. 6.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( )A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形 答案 C解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0,即CB →·(AB →+AC →)=0,因为AB →-AC →=CB →,所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|,所以△ABC 是等腰三角形,故选C.7.(2017·全国Ⅰ)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________. 答案 7解析 ∵a =(-1,2),b =(m,1),∴a +b =(-1+m,2+1)=(m -1,3).又a +b 与a 垂直,∴(a +b )·a =0,即(m -1)×(-1)+3×2=0,解得m =7.8.已知向量a ,b 的夹角为3π4,|a |=2,|b |=2,则a·(a -2b )=________. 答案 6解析 a·(a -2b )=a 2-2a·b=2-2×2×2×⎝⎛⎭⎫-22=6. 9.已知平面内三个不共线向量a ,b ,c 两两夹角相等,且|a |=|b |=1,|c |=3,则|a +b +c |=________.答案 2解析 因为平面内三个不共线向量a ,b ,c 两两夹角相等,所以由题意可知,a ,b ,c 的夹角为120°,又|a |=|b |=1,|c |=3,所以a·b =-12,a·c =b·c =-32,|a +b +c |= 1+1+9+2×⎝⎛⎭⎫-12+2×⎝⎛⎭⎫-32+2×⎝⎛⎭⎫-32=2. 10.已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是______________.答案 ⎝⎛⎭⎫-∞,-43∪⎝⎛⎭⎫0,13∪⎝⎛⎭⎫13,+∞ 解析 a 与b 的夹角为锐角,则a·b >0且a 与b 不共线,则⎩⎪⎨⎪⎧ 3λ2+4λ>0,2λ-6λ2≠0, 解得λ<-43或0<λ<13或λ>13,所以λ的取值范围是⎝⎛⎭⎫-∞,-43∪⎝⎛⎭⎫0,13∪⎝⎛⎭⎫13,+∞. 11.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)因为(2a -3b )·(2a +b )=61,所以4|a |2-4a·b -3|b |2=61.又|a |=4,|b |=3,所以64-4a·b -27=61,所以a·b =-6,所以cos θ=a·b |a||b |=-64×3=-12. 又0≤θ≤π,所以θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a·b +|b |2=42+2×(-6)+32=13,所以|a +b |=13.(3)因为AB →与BC →的夹角θ=2π3, 所以∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,所以S △ABC =12|AB →||BC →|·sin ∠ABC =12×4×3×32=3 3. 12.(2017·江苏)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b ,所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,故cos x ≠0.于是tan x =-33. 又x ∈[0,π],所以x =5π6. (2)f (x )=a·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6, 从而-1≤cos ⎝⎛⎭⎫x +π6≤32, 于是,当x +π6=π6,即x =0时,f (x )取得最大值3; 当x +π6=π,即x =5π6时,f (x )取得最小值-2 3.13.已知△DEF 的外接圆的圆心为O ,半径R =4,如果OD →+DE →+DF →=0,且|OD →|=|DF →|,则向量EF →在FD →方向上的投影为________.答案 -6解析 由OD →+DE →+DF →=0,得DO →=DE →+DF →.∴DO 经过EF 的中点,∴DO ⊥EF .连接OF ,∵|OF →|=|OD →|=|DF →|=4,∴△DOF 为等边三角形,∴∠ODF =60°,∴∠DFE =30°,且EF =4×sin 60°×2=4 3.∴向量EF →在FD →方向上的投影为|EF →|·cos 〈EF →,FD →〉=43cos 150°=-6.14.在等腰直角△ABC 中,∠ABC =90°,AB =BC =2,M ,N 为AC 边上的两个动点(M ,N 不与A ,C 重合),且满足|MN →|=2,则BM →·BN →的取值范围为________.答案 ⎣⎡⎭⎫32,2解析 不妨设点M 靠近点A ,点N 靠近点C ,以等腰直角三角形ABC 的直角边所在直线为坐标轴建立平面直角坐标系,如图所示,则B (0,0),A (0,2),C (2,0),线段AC 的方程为x +y -2=0(0≤x ≤2).设M (a,2-a ),N (a +1,1-a )(由题意可知0<a <1),∴BM →=(a,2-a ),BN →=(a +1,1-a ),∴BM →·BN →=a (a +1)+(2-a )(1-a )=2a 2-2a +2=2⎝⎛⎭⎫a -122+32, ∵0<a <1,∴由二次函数的知识可得BM →·BN →∈⎣⎡⎭⎫32,2.15.(2018·湖州二模)已知平面向量a ,b ,c 满足|a |=|b |=1,a ⊥(a -2b ),(c -2a )·(c -b )=0,则|c |的最大值与最小值的和为( )A.0B. 3C. 2D.7 答案 D解析 ∵a ⊥(a -2b ),∴a·(a -2b )=0,即a 2=2a·b ,又|a |=|b |=1,∴a·b =12,a 与b 的夹角为60°.设OA →=a ,OB →=b ,OC →=c ,以O 为坐标原点,OB →的方向为x 轴正方向建立如图所示的平面直角坐标系,则a =⎝⎛⎭⎫12,32,b =(1,0). 设c =(x ,y ),则c -2a =(x -1,y -3),c -b =(x -1,y ).又∵(c -2a )·(c -b )=0,∴(x -1)2+y (y -3)=0.即(x -1)2+⎝⎛⎭⎫y -322=34, ∴点C 的轨迹是以点M ⎝⎛⎭⎫1,32为圆心,32为半径的圆. 又|c |=x 2+y 2表示圆M 上的点与原点O (0,0)之间的距离,所以|c |max =|OM |+32,|c |min =|OM |-32, ∴|c |max +|c |min =2|OM |=2×12+⎝⎛⎭⎫322=7, 故选D.16.已知在△ABC 所在平面内有两点P ,Q ,满足P A →+PC →=0,QA →+QB →+QC →=BC →,若|AB →|=4,|AC →|=2,S △APQ =23,则AB →·AC →的值为________. 答案 ±4 3解析 由P A →+PC →=0知,P 是AC 的中点, 由QA →+QB →+QC →=BC →,可得QA →+QB →=BC →-QC →,即QA →+QB →=BQ →,即QA →=2BQ →,∴Q 是AB 边靠近B 的三等分点,∴S △APQ =23×12×S △ABC =13S △ABC , ∴S △ABC =3S △APQ =3×23=2. ∵S △ABC =12|AB →||AC →|sin A =12×4×2×sin A =2, ∴sin A =12, ∴cos A =±32, ∴AB →·AC →=|AB →||AC →|·cos A =±4 3.。
§6.4 数列求和 1.求数列的前n项和的方法 (1)公式法 ①等差数列的前n项和公式
Sn=na1+an2=na1+nn-12d. ②等比数列的前n项和公式 (Ⅰ)当q=1时,Sn=na1;
(Ⅱ)当q≠1时,Sn=a11-qn1-q=a1-anq1-q. (2)分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法 把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法 主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法 一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解. 例如,Sn=1002-992+982-972+„+22-12=(100+99)+(98+97)+„+(2+1)=5 050. 2.常见的裂项公式
(1)1nn+1=1n-1n+1;
(2)12n-12n+1=1212n-1-12n+1; (3)1n+n+1=n+1-n. 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)如果数列{an}为等比数列,且公比不等于1,则其前n项和Sn=a1-an+11-q. ( √ ) (2)当n≥2时,1n2-1=12(1n-1-1n+1). ( √ ) (3)求Sn=a+2a2+3a3+„+nan之和时只要把上式等号两边同时乘以a即可根据错位相减法求得. ( × )
(4)数列{12n+2n-1}的前n项和为n2+12n. ( × ) (5)若数列a1,a2-a1,„,an-an-1是首项为1,公比为3的等比数列,则数列{an}的通项公式是an=3n-12. ( √ ) (6)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin21°+sin22°+sin23°+„+sin288°+sin289°=44.5. ( √ )
2.(2012·大纲全国)已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列1anan+1的前100项和为 ( ) A.100101 B.99101 C.99100 D.101100 答案 A 解析 利用裂项相消法求和. 设等差数列{an}的首项为a1,公差为d. ∵a5=5,S5=15,
∴ a1+4d=5,5a1+5×5-12d=15,∴ a1=1,d=1, ∴an=a1+(n-1)d=n. ∴1anan+1=1nn+1=1n-1n+1,
∴数列1anan+1的前100项和为1-12+12-13+„+1100-1101=1-1101=100101. 3.若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n项和Sn为 ( ) A.2n+n2-1 B.2n+1+n2-1 C.2n+1+n2-2 D.2n+n2-2 答案 C 解析 Sn=(2+22+23+„+2n)+(1+3+5+„+(2n-1))
=21-2n1-2+n1+2n-12=2n+1-2+n2. 4.数列{an}的通项公式为an=(-1)n-1·(4n-3),则它的前100项之和S100等于 ( ) A.200 B.-200 C.400 D.-400 答案 B 解析 S100=(4×1-3)-(4×2-3)+(4×3-3)-„-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 5.3·2-1+4·2-2+5·2-3+„+(n+2)·2-n=________.
答案 4-n+42n 解析 设S=3×12+4×122+5×123+„+(n+2)×12n, 则12S=3×122+4×123+5×124+„+(n+2)×12n+1. 两式相减得12S=3×12+(122+123+„+12n)-n+22n+1. ∴S=3+(12+122+„+12n-1)-n+22n
=3+12[1-12n-1]1-12-n+22n=4-n+42n.
题型一 分组转化求和 例1 已知数列{an}是3+2-1,6+22-1,9+23-1,12+24-1,„,写出数列{an}的通项公式并求其前n项和Sn. 思维启迪 先写出通项,然后对通项变形,分组后利用等差数列、等比数列的求和公式求解. 解 由已知得,数列{an}的通项公式为 an=3n+2n-1=3n-1+2n, ∴Sn=a1+a2+„+an =(2+5+„+3n-1)+(2+22+„+2n) =n2+3n-12+21-2n1-2 =12n(3n+1)+2n+1-2. 思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.
求和Sn=1+1+12+1+12+14+„+1+12+14+„+12n-1. 解 和式中第k项为
ak=1+12+14+„+12k-1=1-12k1-12=21-12k. ∴Sn=21-12+1-122+„+1-12n =2[(1+1+„+1-(12+122+„+12n)] n个
=2n-121-12n1-12=12n-1+2n-2. 题型二 错位相减法求和 例2 已知等差数列{an}的前3项和为6,前8项和为-4. (1)求数列{an}的通项公式; (2)设bn=(4-an)qn-1(q≠0,n∈N*),求数列{bn}的前n项和Sn. 思维启迪 (1)列方程组求{an}的首项、公差,然后写出通项an. (2)q=1时,bn为等差数列,直接求和;q≠1时,用错位相减法求和. 解 (1)设等差数列{an}的公差为d.
由已知得 3a1+3d=68a1+28d=-4,解得 a1=3d=-1. 故an=3+(n-1)·(-1)=4-n. (2)由(1)得,bn=n·qn-1,于是 Sn=1·q0+2·q1+3·q2+„+n·qn-1. 若q≠1,将上式两边同乘以q有 qSn=1·q1+2·q2+„+(n-1)·qn-1+n·qn. 两式相减得到(q-1)Sn=nqn-1-q1-q2-„-qn-1 =nqn-qn-1q-1=nqn+1-n+1qn+1q-1. 于是,Sn=nqn+1-n+1qn+1q-12. 若q=1,则Sn=1+2+3+„+n=nn+12.
所以Sn= nn+12,q=1nqn+1-n+1qn+1q-12,q≠1. 思维升华 (1)错位相减法是求解由等差数列{bn}和等比数列{cn}对应项之积组成的数列{an},即an=bn×cn的前n项和的方法.这种方法运算量较大,要重视解题过程的训练. (2)注意错位相减法中等比数列求和公式的应用范围. 已知等差数列{an}满足a2=0,a6+a8=-10. (1)求数列{an}的通项公式;
(2)求数列an2n-1的前n项和. 解 (1)设等差数列{an}的公差为d,
由已知条件可得 a1+d=0,2a1+12d=-10,解得 a1=1,d=-1. 故数列{an}的通项公式为an=2-n. (2)设数列an2n-1的前n项和为Sn, 即Sn=a1+a22+„+an2n-1, ① 故S1=1,Sn2=a12+a24+„+an2n. ② 所以,当n>1时,①-②得 Sn2=a1+a2-a12+„+an-an-12n-1-an
2n
=1-(12+14+„+12n-1)-2-n2n =1-(1-12n-1)-2-n2n=n2n. 所以Sn=n2n-1.当n=1时也成立. 综上,数列an2n-1的前n项和Sn=n2n-1. 题型三 裂项相消法求和 例3 在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足S2n=anSn-12. (1)求Sn的表达式; (2)设bn=Sn2n+1,求{bn}的前n项和Tn.
思维启迪 第(1)问利用an=Sn-Sn-1 (n≥2)后,再同除Sn-1·Sn转化为1Sn的等差数列即可求Sn. 第(2)问求出{bn}的通项公式,用裂项相消法求和.
解 (1)∵S2n=anSn-12, an=Sn-Sn-1 (n≥2), ∴S2n=(Sn-Sn-1)Sn-12, 即2Sn-1Sn=Sn-1-Sn, ① 由题意得Sn-1·Sn≠0,
①式两边同除以Sn-1·Sn,得1Sn-1Sn-1=2,
∴数列1Sn是首项为1S1=1a1=1,公差为2的等差数列. ∴1Sn=1+2(n-1)=2n-1,∴Sn=12n-1. (2)∵bn=Sn2n+1=12n-12n+1 =1212n-1-12n+1, ∴Tn=b1+b2+„+bn=12[(1-13)+(13-15)+„+(12n-1-12n+1)] =121-12n+1=n2n+1. 思维升华 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.
已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a2,a7,a22
成等比数列.
(1)求数列{an}的通项公式; (2)设数列1Sn的前n项和为Tn,求证:16≤Tn<38.