2018年苏州中考数学《第四讲:应用题》专题复习含答案
- 格式:pdf
- 大小:502.33 KB
- 文档页数:8
2018年江苏省苏州市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1. 在下列四个实数中,最大的数是()A.−3B.0C.32D.34【答案】C【考点】实数大小比较【解析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:−3<0<34<32,则最大的数是:32.故选C.2. 地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6−1=5.【解答】384 000=3.84×105.3. 下列四个图案中,不是轴对称图案的是()A. B. C. D.【答案】B【考点】轴对称图形【解析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.4. 若√x+2在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A. B.C. D.【答案】D【考点】二次根式有意义的条件在数轴上表示不等式的解集【解析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥−2.故选D.5. 计算(1+1x )÷x2+2x+1x的结果是()A.x+1B.1x+1C.xx+1D.x+1x【答案】B【考点】分式的混合运算【解析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】原式=(xx +1x)÷(x+1)2x=x+1x⋅x(x+1)2=1x+1,6. 如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.59【答案】 C【考点】 几何概率 【解析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值. 【解答】∵ 总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴ 飞镖落在阴影部分的概率是49,7. 如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC ⌢上的点,若∠BOC =40∘,则∠D 的度数为( )A.100∘B.110∘C.120∘D.130∘ 【答案】 B【考点】 圆周角定理 【解析】根据互补得出∠AOC 的度数,再利用圆周角定理解答即可. 【解答】解:∵ ∠BOC =40∘,∴ ∠AOC =180∘−40∘=140∘, ∴ ∠D =12×(360∘−140∘)=110∘,故选B .8. 如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30∘方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( )A.40海里B.60海里C.20√3海里D.40√3海里【答案】 D解直角三角形的应用-方向角问题【解析】首先证明PB=BC,推出∠C=30∘,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30∘,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60∘,∴∠C=30∘,∴PC=2PA,∵PA=AB⋅tan60∘,∴PC=2×20×√3=40√3(海里).故选D.BC,过AC中点E作EF // CD(点F位9. 如图,在△ABC中,延长BC至D,使得CD=12于点E右侧),且EF=2CD,连结DF.若AB=8,则DF的长为()A.3B.4C.2√3D.3√2【答案】B【考点】三角形中位线定理平行四边形的应用【解析】此题暂无解析【解答】此题暂无解答10. 如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=k在第一象限内的x,则k的值为()图象经过点D,交BC于点E若AB=4,CE=2BE,tan∠AOD=34A.3B.2√3C.6D.12A【考点】反比例函数图象上点的坐标特征矩形的性质解直角三角形【解析】本题主要考查反比例函数图象上点的坐标特征【解答】解:∵tan∠AOD=ADOA =34,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a, 3a),∵CE=2BE,∴BE=13BC=a,∵AB=4,∴点E(4+4a, a),∵反比例函数y=kx经过点D、E,∴k=12a2=(4+4a)a,解得:a=12或a=0(舍),则k=12×14=3,故选A.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)计算:a4÷a=________.【答案】a3【考点】同底数幂的除法【解析】根据同底数幂的除法解答即可.【解答】a4÷a=a3,在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是________.【答案】8【考点】众数【解析】根据众数的概念解答.在5,8,6,8,5,10,8,这组数据中,8出现了3次,出现的次数最多,∴这组数据的众数是8,若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=________.【答案】−2【考点】一元二次方程的解【解析】此题暂无解析【解答】此题暂无解答若a+b=4,a−b=1,则(a+1)2−(b−1)2的值为________.【答案】12【考点】因式分解-运用公式法【解析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解答】∵a+b=4,a−b=1,∴(a+1)2−(b−1)2=(a+1+b−1)(a+1−b+1)=(a+b)(a−b+2)=4×(1+2)=12.如图,△ABC是一块直角三角板,∠BAC=90∘,∠B=30∘,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20∘,则∠BED的度数为________∘.【答案】80【考点】平行线的判定与性质【解析】依据DE // AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20∘+60∘=80∘,进而得出∠BED=80∘.【解答】如图所示,∵DE // AF,又∵∠CAF=20∘,∠C=60∘,∴∠BFA=20∘+60∘=80∘,∴∠BED=80∘,如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD的值为________.围成另一个圆锥的侧面,记这个圆锥的底面半径为r2,则r1r2【答案】23【考点】圆锥的计算【解析】此题暂无解析【解答】此题暂无解答如图,在Rt△ABC中,∠B=90∘,AB=2√5,BC=√5.将△ABC绕点A按逆时针方.向旋转90∘得到△AB′C′,连接B′C,则sin∠ACB′=________45【答案】45【考点】解直角三角形旋转的性质【解析】根据勾股定理求出AC,过C作CM⊥AB′于M,过A作AN⊥CB′于N,求出B′M、CM,根据勾股定理求出B′C,根据三角形面积公式求出AN,解直角三角形求出即可.【解答】在Rt△ABC中,由勾股定理得:AC=√(2√5)2+(√5)2=5,过C作CM⊥AB′于M,过A作AN⊥CB′于N,∵根据旋转得出AB′=AB=2√5,∠B′AB=90∘,即∠CMA=∠MAB=∠B=90∘,∴CM=AB=2√5,AM=BC=√5,∴B′M=2√5−√5=√5,在Rt△B′MC中,由勾股定理得:B′C=√CM2+B′M2=√(2√5)2+(√5)2=5,∴S△AB′C=12×CB′×AN=12×CM×AB′,∴5×AN=2√5×2√5,解得:AN=4,∴sin∠ACB′=ANAC =45,如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60∘.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为________(结果保留根号).【答案】2√3【考点】二次函数的性质菱形的性质勾股定理【解析】连接PM、PN.首先证明∠MPN=90∘设PA=2a,则PB=8−2a,PM=a,PN=√3(4−a),构建二次函数,利用二次函数的性质即可解决问题;【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60∘,∴∠APC=120◦,∠EPB=60◦,∵M,N分别是对角线AC,BE的中点,∴∠MPN=60◦+30◦=90◦,设PA=2a,则PB=8−2a,PM=a,PN=√3(4−a),∴MN=√a2+[√3(4−a)]2=√4a2−24a+48=√4(a−3)2+12,∴a=3时,MN有最小值,最小值为2√3,故答案为:2√3.三、解答题(本题共10小题,共76分)计算:|−12|+√9−(√22)2.【答案】原式=12+3−12=3【考点】实数的运算【解析】根据二次根式的运算法则即可求出答案.【解答】原式=12+3−12=3解不等式组:{3x≥x+2x+4<2(2x−1)【答案】由3x≥x+2,解得x≥1,由x+4<2(2x−1),解得x>2,所以不等式组的解集为x>2.【考点】解一元一次不等式组【解析】首先分别求出每一个不等式的解集,然后确定它们解集的公关部分即可.【解答】由3x≥x+2,解得x≥1,由x+4<2(2x−1),解得x>2,所以不等式组的解集为x>2.如图,点A,F,C,D在一条直线上,AB // DE,AB=DE,AF=DC.求证:BC // EF.【答案】∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,{AB=DE ∠A=∠D AC=DF,∴△ABC≅△DEF(SAS),∴∠ACB=∠DFE,∴BC // EF.【考点】全等三角形的性质与判定【解析】由全等三角形的性质SAS判定△ABC≅△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB // DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,{AB=DE ∠A=∠D AC=DF,∴△ABC≅△DEF(SAS),∴∠ACB=∠DFE,∴BC // EF.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【答案】2列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为39=13.【考点】概率公式列表法与树状图法【解析】(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.【解答】∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为23,故答案为:23;列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为39=13.某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?【答案】参加这次调查的学生人数是50人;补全条形统计图如下:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72∘;估计该校选择“足球”项目的学生有96人【考点】用样本估计总体扇形统计图条形统计图【解析】(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被调查人数的比例乘以360∘即可;(3)用总人数乘以样本中足球所占百分比即可得.【解答】14=50,28%答:参加这次调查的学生人数是50人;补全条形统计图如下:10×360∘=72∘,50答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72∘;=96,600×850答:估计该校选择“足球”项目的学生有96人.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?【答案】每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;该学校至多能购买5台B型打印机【考点】二元一次方程组的应用——行程问题一元一次不等式的运用【解析】(1)设每台A 型电脑的价格为x 元,每台B 型打印机的价格为y 元,根据“1台A 型电脑的钱数+2台B 型打印机的钱数=5900,2台A 型电脑的钱数+2台B 型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a 台B 型打印机,则购买A 型电脑为(a −1)台,根据“(a −1)台A 型电脑的钱数+a 台B 型打印机的钱数≤20000”列出不等式,解之可得. 【解答】设每台A 型电脑的价格为x 元,每台B 型打印机的价格为y 元, 根据题意,得:{x +2y =59002x +2y =9400 ,解得:{x =3500y =1200,答:每台A 型电脑的价格为3500元,每台B 型打印机的价格为1200元; 设学校购买a 台B 型打印机,则购买A 型电脑为(a −1)台, 根据题意,得:3500(a −1)+1200a ≤20000, 解得:a ≤5,答:该学校至多能购买5台B 型打印机.如图,已知抛物线y =x 2−4与x 轴交于点A ,B (点A 位于点B 的左侧),C 为顶点,直线y =x +m 经过点A ,与y 轴交于点D . (1)求线段AD 的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD ,求新抛物线对应的函数表达式.【答案】解:(1)由x 2−4=0 解得,x 1=2,x 2=−2, ∵ 点A 位于点B 的左侧, ∴ A(−2, 0),∵ 直线y =x +m 经过点A , ∴ −2+m =0,∴ m =2,即直线AD 解析式为y =x +2, ∴ D(0, 2),∴ AD =√OA 2+OD 2=2√2;(2)设新抛物线对应的函数表达式为:y =x 2+bx +2, ∴ y =x 2+bx +2=(x +b 2)2+2−b 24,∴ C′(−b2, 2−b 24),∵ 直线CC′平行于直线AD ,且经过C(0, −4),∴ 将点C′ 代入y =x −4,得直线CC ′的函数表达式为y =x −4,∴2−b24=−b2−4,整理得b2−2b−24=0,解得b1=−4,b2=6,∴新抛物线对应的函数表达式为:y=x2−4x+2或y=x2+6x+2.【考点】一次函数图象上点的坐标特点二次函数的性质二次函数图象上点的坐标特征二次函数图象与几何变换待定系数法求二次函数解析式抛物线与x轴的交点【解析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【解答】解:(1)由x2−4=0解得,x1=2,x2=−2,∵点A位于点B的左侧,∴A(−2, 0),∵直线y=x+m经过点A,∴−2+m=0,∴m=2,即直线AD解析式为y=x+2,∴D(0, 2),∴AD=√OA2+OD2=2√2;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,∴y=x2+bx+2=(x+b2)2+2−b24,∴C′(−b2, 2−b24),∵直线CC′平行于直线AD,且经过C(0, −4),∴将点C′代入y=x−4,得直线CC′的函数表达式为y=x−4,∴2−b24=−b2−4,整理得b2−2b−24=0,解得b1=−4,b2=6,∴新抛物线对应的函数表达式为:y=x2−4x+2或y=x2+6x+2.如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.【答案】证法一:连接BC,∵△CDA≅△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90∘,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90∘,∴∠DCF+∠F=90∘,∴∠F=∠DCA=∠ACE=∠ECG=22.5∘,∴∠AOC=2∠F=45∘,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD // OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180∘,∴3x+3x+2x=180,x=22.5∘,∴∠AOC=2x=45∘,∴△CEO是等腰直角三角形.【考点】全等三角形的性质等腰直角三角形垂径定理切线的性质【解析】(1)连接AC,根据切线的性质和已知得:AD // OC,得∠DAC=∠ACO,根据AAS证明△CDA≅△CEA(AAS),可得结论;(2)介绍两种证法:证法一:根据△CDA≅△CEA,得∠DCA=∠ECA,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5∘,可得结论;证法二:设∠F=x,则∠AOC=2∠F=2x,根据平角的定义得:∠DAC+∠EAC+∠OAF=180∘,则3x+3x+2x=180,可得结论.【解答】证法一:连接BC,∵△CDA≅△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90∘,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90∘,∴∠DCF+∠F=90∘,∴∠F=∠DCA=∠ACE=∠ECG=22.5∘,∴∠AOC=2∠F=45∘,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD // OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180∘,∴3x+3x+2x=180,x=22.5∘,∴∠AOC=2x=45∘,∴△CEO是等腰直角三角形.问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE // BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,S ′S=________;(2)设AD=m,请你用含字母m的代数式表示S ′S.问题2:如图②,在四边形ABCD中,AB=4,AD // BC,AD=12BC,E是AB上一点(不与A,B重合),EF // BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示S ′S.【答案】316解法一:∵AB=4,AD=m,∴BD=4−m,∵DE // BC,∴CEEA =BDAD=4−mm,∴S△DECS△ADE =CEAE=4−mm,∵DE // BC,∴△ADE∽△ABC,∴S△ADES△ABC =(m4)2=m216,∴S△DECS△ABC =S△DECS△ADE∗S△ADES△ABC=4−mm∗m216=−m2+4m16,即S ′S =−m2+4m16;解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF // BH,∴△ADF∽△ABH,∴DFBH =ADAB=m4,∴S△DECS△ABC =12CE∗DF12CA∗BH=4−m4×m4=−m2+4m16,即S ′S =−m2+4m16;问题2:如图②,解法一:如图2,分别延长BD、CE交于点O,∵AD // BC,∴△OAD∽△OBC,∴OAOB =ADBC=12,∴OA=AB=4,∴OB=8,∵AE=n,∴OE=4+n,∵EF // BC,由问题1的解法可知:S△CEFS△OBC =S△CEFS△OEF∗S△OEFS△OBC=4−n4+n×(4+n8)2=16−n264,∵S△OADS△OBC =(OAOB)2=14,∴S ABCDS△OBC =34,∴S△CEFS ABCD =S△CEF34S△OBC=43×16−n264=16−n248,即S′S=16−n248;解法二:如图3,连接AC交EF于M,∵AD // BC,且AD=12BC,∴S△ADCS△ABC =12,∴S△ADC=12S△ABC,∴S△ADC=13S,S△ABC=23S,由问题1的结论可知:S△EMCS△ABC =−n2+4n16,∵MF // AD,∴△CFM∽△CDA,∴S△CFMS△CDA =S△CFM13S=3×S△CFMS=(4−n4)2,∴S△CFM=(4−n)248×S,∴S△EFC=S△EMC+S△CFM=−n2+4n16∗23S+(4−n)248×S=16−n248×S,∴S′S =16−n248.【考点】三角形中位线定理相似三角形的性质与判定【解析】问题1:(1)先根据平行线分线段成比例定理可得:CEEA =BDAD=13,由同高三角形面积的比等于对应底边的比,则S△DECS△ADE =ECAE=13=39,根据相似三角形面积比等于相似比的平方得:S△ADE S△ABC =(34)2=916,可得结论;(2)解法一:同理根据(1)可得结论;解法二:作高线DF、BH,根据三角形面积公式可得:S△DECS△ABC =12CE∗DF12CA∗BH,分别表示CECA和DFBH的值,代入可得结论;问题2:解法一:如图2,作辅助线,构建△OBC,证明△OAD∽△OBC,得OB=8,由问题1的解法可知:S△CEFS△OBC =S△CEFS△OEF∗S△OEFS△OBC=4−n4+n×(4+n8)2=16−n264,根据相似三角形的性质得:S ABCD S△OBC =34,可得结论;解法二:如图3,连接AC交EF于M,根据AD=12BC,可得S△ADCS△ABC=12,得:S△ADC=13S,S△ABC=23S,由问题1的结论可知:S△EMCS△ABC=−n2+4n16,证明△CFM∽△CDA,根据相似三角形面积比等于相似比的平方,根据面积和可得结论.【解答】∵AB=4,AD=3,∴BD=4−3=1,∵DE // BC,∴CEEA =BDAD=13,∴S△DECS△ADE =ECAE=13=39,∵DE // BC,∴△ADE∽△ABC,∴S△ADES△ABC =(34)2=916,∴S△DECS△ABC =316,即S′S=316,故答案为:316;解法一:∵AB=4,AD=m,∴BD=4−m,∵DE // BC,∴CEEA =BDAD=4−mm,∴S△DECS△ADE =CEAE=4−mm,∵DE // BC,∴△ADE∽△ABC,∴S△ADES△ABC =(m4)2=m216,∴S△DECS△ABC =S△DECS△ADE∗S△ADES△ABC=4−mm∗m216=−m2+4m16,即S ′S =−m2+4m16;解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF // BH,∴△ADF∽△ABH,∴DFBH =ADAB=m4,∴S△DECS△ABC =12CE∗DF12CA∗BH=4−m4×m4=−m2+4m16,即S ′S =−m2+4m16;问题2:如图②,解法一:如图2,分别延长BD、CE交于点O,∵AD // BC,∴△OAD∽△OBC,∴OAOB =ADBC=12,∴OA=AB=4,∴OB=8,∵AE=n,∴OE=4+n,∵EF // BC,由问题1的解法可知:S△CEFS△OBC =S△CEFS△OEF∗S△OEFS△OBC=4−n4+n×(4+n8)2=16−n264,∵S△OADS△OBC =(OAOB)2=14,∴S ABCDS△OBC =34,∴S△CEFS ABCD =S△CEF34S△OBC=43×16−n264=16−n248,即S′S=16−n248;解法二:如图3,连接AC交EF于M,∵AD // BC,且AD=12BC,∴S△ADCS△ABC =12,∴S△ADC=12S△ABC,∴S△ADC=13S,S△ABC=23S,由问题1的结论可知:S△EMCS△ABC =−n2+4n16,∵MF // AD,∴△CFM∽△CDA,∴S△CFMS△CDA =S△CFM13S=3×S△CFMS=(4−n4)2,∴S△CFM=(4−n)248×S,∴S△EFC=S△EMC+S△CFM=−n2+4n16∗23S+(4−n)248×S=16−n248×S,∴S′S =16−n248.如图①,直线l表示一条东西走向的笔直公路,四边形ABCD是一块边长为100米的正方形草地,点A,D在直线l上,小明从点A出发,沿公路l向西走了若干米后到达点E处,然后转身沿射线EB方向走到点F处,接着又改变方向沿射线FC方向走到公路l上的点G 处,最后沿公路l回到点A处.设AE=x米(其中x>0),GA=y米,已知y与x之间的函数关系如图②所示,(1)求图②中线段MN所在直线的函数表达式;(2)试问小明从起点A出发直至最后回到点A处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x的值;如果不可以,说明理由.【答案】设线段MN所在直线的函数表达式为y=kx+b,将M(30, 230)、N(100, 300)代入y=kx+b,{30k+b=230 100k+b=300,解得:{k=1b=200,∴线段MN所在直线的函数表达式为y=x+200.分三种情况考虑:①考虑FE=FG是否成立,连接EC,如图所示.∵AE=x,AD=100,GA=x+200,∴ED=GD=x+100.又∵CD⊥EG,∴CE=CG,∴∠CGE=∠CEG,∴∠FEG>∠CGE,∴FE≠FG;②考虑FG=EG是否成立.∵四边形ABCD是正方形,∴BC // EG,∴△FBC∽△FEG.假设FG=EG成立,则FC=BC成立,∴FC=BC=100.∵AE=x,GA=x+200,∴FG=EG=AE+GA=2x+200,∴CG=FG−FC=2x+200−100=2x+100.在Rt△CDG中,CD=100,GD=x+100,CG=2x+100,∴1002+(x+100)2=(2x+100)2,解得:x1=−100(不合题意,舍去),x2=1003;③考虑EF=EG是否成立.同理,假设EF=EG成立,则FB=BC成立,∴BE=EF−FB=2x+200−100=2x+100.在Rt△ABE中,AE=x,AB=100,BE=2x+100,∴1002+x2=(2x+100)2,解得:x1=0(不合题意,舍去),x2=−4003(不合题意,舍去).综上所述:当x=1003时,△EFG是一个等腰三角形.【考点】一次函数的综合题【解析】(1)根据点M、N的坐标,利用待定系数法即可求出图②中线段MN所在直线的函数表达式;(2)分FE=FG、FG=EG及EF=EG三种情况考虑:①考虑FE=FG是否成立,连接EC,通过计算可得出ED=GD,结合CD⊥EG,可得出CE=CG,根据等腰三角形的性质可得出∠CGE=∠CEG、∠FEG>∠CGE,进而可得出FE≠FG;②考虑FG= EG是否成立,由正方形的性质可得出BC // EG,进而可得出△FBC∽△FEG,根据相似三角形的性质可得出若FG=EG则FC=BC,进而可得出CG、DG的长度,在Rt△CDG中,利用勾股定理即可求出x的值;③考虑EF=EG是否成立,同理可得出若EF=EG则FB=BC,进而可得出BE的长度,在Rt△ABE中,利用勾股定理即可求出x的值.综上即可得出结论.【解答】设线段MN所在直线的函数表达式为y=kx+b,将M(30, 230)、N(100, 300)代入y=kx+b,{30k+b=230 100k+b=300,解得:{k=1b=200,∴线段MN所在直线的函数表达式为y=x+200.分三种情况考虑:①考虑FE=FG是否成立,连接EC,如图所示.∵AE=x,AD=100,GA=x+200,∴ED=GD=x+100.又∵CD⊥EG,∴CE=CG,∴∠CGE=∠CEG,∴∠FEG>∠CGE,∴FE≠FG;②考虑FG=EG是否成立.∵四边形ABCD是正方形,∴BC // EG,∴△FBC∽△FEG.假设FG=EG成立,则FC=BC成立,∴FC=BC=100.∵AE=x,GA=x+200,∴FG=EG=AE+GA=2x+200,∴CG=FG−FC=2x+200−100=2x+100.在Rt△CDG中,CD=100,GD=x+100,CG=2x+100,∴1002+(x+100)2=(2x+100)2,;解得:x1=−100(不合题意,舍去),x2=1003③考虑EF=EG是否成立.同理,假设EF=EG成立,则FB=BC成立,∴BE=EF−FB=2x+200−100=2x+100.在Rt△ABE中,AE=x,AB=100,BE=2x+100,∴1002+x2=(2x+100)2,解得:x1=0(不合题意,舍去),x2=−400(不合题意,舍去).3时,△EFG是一个等腰三角形.综上所述:当x=1003。
初中数学复习第四讲——整式与分式一、知识结构说明:在本部分,代数式分为整式和分式讨论。
在实数范围内,代数式分为有理式和无理式,有理式分为整式和分式,整式分为单项式和多项式。
二、知识点梳理1.代数式:用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式。
用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。
2.单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式(单独一个数也是单项式);单项式中的数字因数叫做这个单项式的系数(包括符号);一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3.多项式:由几个单项式的和组成的代数式叫做多项式;在多项式中的每个单项式叫做多项式的项,不含字母的项叫做常数项;次数最高项的次数就是这个多项式的次数。
4.整式:单项式、多项式统称为整式。
5.分式:两个整式A、B相除,即A÷B时,可以表示为AB.如果B中含有字母,那么AB叫做分式,A叫做分式的分子,B叫做分式的分母。
6.同类项:所含的字母相同,且相同的字母的指数也相同的单项式叫做同类项。
把多项式中的同类项合并成一项,叫做合并同类项;一个多项式合并后含有几项,这个多项式就叫做几项式。
合并同类项的法则:把同类项的系数相加的结果作为合并后的系数,字母和字母的指数不变(合并同类项,法则不能忘,只求系数代数和,字母指数不变样)。
7.整式的加减:整式的加减就是单项式、多项式的加减,可利用去括号法则和合并同类项来完成整式的加减运算。
去括号法则:括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“—”号,去掉“—”号和括号,括号里的各项都变号。
(括号前面是“+”号,去掉括号不变号;括号前面是“—”号,去掉括号都变号。
)8.同底数幂的乘法:同底数的幂相乘,底数不变,指数相加。
m n m+n a a =a •.(m 、n 都是正整数)9.幂的乘方:幂的乘方,底数不变,指数相乘,即()n m mn a =a .(m 、n 都是正整数)10.积的乘方:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘, 即()nn n ab =a b .(n 为正整数) 11.整式的乘法:(1)单项式与单项式相乘:单项式与单项式相乘,把它们的系 数、同底数幂分别相乘的积作为积的因式,其余字母连同它的指数不变,也作为积的因式。
中考数学总复习经典题(几何)(二)几何试题1、 如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( )A .S=2B .S=2.4C .S=4D .S 与BE 长度有关2、正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图4所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为: (A)10 (B)12 (C)14 (D)163、如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,2EF BE =,则AFC S =△ 2cm .4、 如图,在△ABC 中, ο70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋转到△//C AB 的位置, 使得AB CC ///, 则=∠/BAB ( )A. ο30 B. ο35 C. ο40 D. ο50 5、如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆1的半径)得图形34,,,,n P P P L L ,记纸板n P 的面积为n S , 试计算求出2S = ;3S = ;并猜想得到1n n S S --= ()2n ≥。
6、如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点,18AD BC PEF =∠=o ,,则PFE ∠的度数是 .(第16题)CFD BE A P (第6题)ADCEF GB 3题图 D ABRP F CGK图4E8题10题 12题7、如图,点G 是ABC △的重心,CG 的延长线交AB 于D ,5cm GA =,4cm GC =,3cm GB =,将ADG △绕点D 旋转180o得到BDE △,则DE = cm ,ABC △的面积= cm 2.8、如图,已知梯形ABCD ,AD BC ∥,4AD DC ==,8BC =,点N 在BC 上,2CN =,E 是AB 中点,在AC 上找一点M 使EM MN +的值最小,此时其最小值一定等于( ) A .6B .8C .4D .439、将一副直角三角板按图示方法放置(直角顶点重合),则AOB DOC ∠+∠= o.10、已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP =1,PB = 5 .下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 ;⑤S 正方形ABCD =4+ 6 .其中正确结论的序号是()A .①③④B .①②⑤C .③④⑤D .①③⑤11、如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:412、如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,将腰CD 以D 为中心逆时针旋转90°至ED ,AE 、DE ,△ADE 的面积为3,则BC 的长为 . 13、如图,四边形OABC 为菱形,点B 、C 在以点O 为为圆心的上,若OA = 3,∠1 = ∠2,则扇形OEF 的面积为_________.14、 如图,点P 是∠AOB 的角平分线上一点,过点P 作PC ∥OA 交OB 于点C.若∠AOB = 60o,OC = 4,则点P 到OA 的距离PD 等于__________. 15、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32 B .76 C .256D .2B AC D O P (第14题) AD B EC (第15题) ABE G CD(第7题)C D AO B30°45°A D EM(第11题(第13题)O A B C F 1 2 E E D(第20题)16、如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积为π9,则弦AB 的长为( )A .3B .4C .6D .917、如图,等腰△ABC 中,底边a BC =,︒=∠36A ,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设215-=k ,则=DE ( )A .a k 2B .a k 3C .2k aD .3ka18、如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是19、如图,把矩形纸条ABCD 沿EF 、GH 同时折叠,B 、C 两点恰好落在AD 边的P 点处,若∠FPH=90°,PF=8,PH=6,则矩形ABCD 的边BC 长为 . 20、.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( )A. 2.5ABB. 3ABC. 3.5ABD. 4AB21、如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .22、如图,已知a ∥b ,∠1=70°,∠2=40°,则∠3= __________。
2018年江苏省苏州市中考真题数学一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.在下列四个实数中,最大的数是( )A.-3B.0C.3 2D.3 4解析:将各数按照从小到大顺序排列,找出最大的数即可.答案:C.2.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为( )A.3.84×103B.3.84×104C.3.84×105D.3.84×106解析:384 000=3.84×105.答案:C.3.下列四个图案中,不是轴对称图案的是( )A.B.C.D.解析:根据轴对称的概念对各选项分析判断利用排除法求解.答案:B.4.x 的取值范围在数轴上表示正确的是( )A.B.C.D.解析:根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可. 答案:D.5.计算21211x x x x+++÷()的结果是( )A.x+1B.11x + C.1x x + D.1x x+解析:先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得. 答案:B.6.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )A.12 B.13C.4 9D.5 9解析:根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值. 答案:C.7.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是»AC上的点,若∠BOC=40°,则∠D的度数为( )A.100°B.110°C.120°D.130°解析:根据互补得出∠AOC的度数,再利用圆周角定理解答即可.答案:B.8.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为( )A.40海里B.60海里解析:首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.答案:D.9.如图,在△ABC中,延长BC至D,使得CD=12BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF.若AB=8,则DF的长为( )A.3B.4解析:取BC的中点G,连接EG,∵E是AC的中点,∴EG是△ABC的中位线,∴EG=12AB=12×8=4,设CD=x,则EF=BC=2x,∴BG=CG=x,∴EF=2x=DG,∵EF∥CD,∴四边形EGDF是平行四边形,∴DF=EG=4.答案:B.10.如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=kx在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=34,则k的值为( )A.3C.6D.12解析:由tan∠AOD=34ADOA可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.答案:A.二、填空题(每题只有一个正确选项,本题共8小题,每题3分,共24分)11.计算:a4÷a=_____.解析:根据同底数幂的除法解答即可.答案:a3.12.在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是_____.解析:根据众数的概念解答.答案:8.13.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=_____.解析:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=-2.答案:-2.14.若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为_____.解析:∵a+b=4,a-b=1,∴(a+1)2-(b-1)2=(a+1+b-1)(a+1-b+1)=(a+b)(a-b+2)=4×(1+2)=12.答案:12.15.如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为_____°.解析:如图所示,∵DE ∥AF , ∴∠BED=∠BFA ,又∵∠CAF=20°,∠C=60°, ∴∠BFA=20°+60°=80°, ∴∠BED=80°. 答案:80.16.如图,8×8的正方形网格纸上有扇形OAB 和扇形OCD ,点O ,A ,B ,C ,D 均在格点上.若用扇形OAB 围成一个圆锥的侧面,记这个圆锥的底面半径为r 1;若用扇形OCD 围成另个圆锥的侧面,记这个圆锥的底面半径为r 2,则12r r 的值为_____.解析:由2πr 1=··180AOB OA π∠、2πr 2=··180AOB OC π∠知r 1=·360AOB OA ∠、r 2=·360AOB OC∠,据此可得12r OAr OC=,利用勾股定理计算可得. 答案:23.17.如图,在Rt △ABC 中,∠B=90°,,将△ABC 绕点A 按逆时针方向旋转90°得到△AB ′C ′,连接B ′C ,则sin ∠ACB ′=_____.解析:根据勾股定理求出AC ,过C 作CM ⊥AB ′于M ,过A 作AN ⊥CB ′于N ,求出B ′M 、CM ,根据勾股定理求出B ′C ,根据三角形面积公式求出AN ,解直角三角形求出即可.答案:45.18.如图,已知AB=8,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE ,点P ,C ,E 在一条直线上,∠DAP=60°.M ,N 分别是对角线AC ,BE 的中点.当点P 在线段AB 上移动时,点M ,N 之间的距离最短为_____(结果留根号).解析:连接PM 、PN.首先证明∠MPN=90°设PA=2a ,则PB=8-2a ,PM=a ,,构建二次函数,利用二次函数的性质即可解决问题.答案:.三、解答题(每题只有一个正确选项,本题共10小题,共76分)19.计算:|-12)2.解析:根据二次根式的运算法则即可求出答案. 答案:原式=12+3-12=3.20.解不等式组:()324221x x x x ≥+⎧⎪⎨+-⎪⎩<解析:首先分别求出每一个不等式的解集,然后确定它们解集的公关部分即可.答案:由3x ≥x+2,解得x ≥1, 由x+4<2(2x-1),解得x >2, 所以不等式组的解集为x >2.21.如图,点A ,F ,C ,D 在一条直线上,AB ∥DE ,AB=DE ,AF=DC.求证:BC ∥EF.解析:由全等三角形的性质SAS 判定△ABC ≌△DEF ,则对应角∠ACB=∠DFE ,故证得结论. 答案:∵AB ∥DE , ∴∠A=∠D , ∵AF=DC , ∴AC=DF.∴在△ABC 与△DEF 中,AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DEF(SAS), ∴∠ACB=∠DFE , ∴BC ∥EF.22.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为_____;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).解析:(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.答案:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为23;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为31 93 .23.某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?解析:(1)由“乒乓球”人数及其百分比可得总人数,根据各项目人数之和等于总人数求出“羽毛球”的人数,补全图形即可;(2)用“篮球”人数占被调查人数的比例乘以360°即可;(3)用总人数乘以样本中足球所占百分比即可得.答案:(1)1428%=50,答:参加这次调查的学生人数是50人;补全条形统计图如下:(2)1050×360°=72°,答:扇形统计图中“篮球”项目所对应扇形的圆心角度数是72°;(3)600×850=96,答:估计该校选择“足球”项目的学生有96人.24.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?解析:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据“1台A型电脑的钱数+2台B型打印机的钱数=5900,2台A型电脑的钱数+2台B型打印机的钱数=9400”列出二元一次方程组,解之可得;(2)设学校购买a台B型打印机,则购买A型电脑为(a-1)台,根据“(a-1)台A型电脑的钱数+a台B型打印机的钱数≤20000”列出不等式,解之可得.答案:(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元,根据题意,得:25900 229400 x yx y+=⎧⎨+=⎩,解得:35001200 xy=⎧⎨=⎩,答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元;(2)设学校购买a台B型打印机,则购买A型电脑为(a-1)台,根据题意,得:3500(a-1)+1200a≤20000,解得:a≤5,答:该学校至多能购买5台B型打印机.25.如图,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m 经过点A,与y轴交于点D.(1)求线段AD 的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C ′.若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线CC ′平行于直线AD ,求新抛物线对应的函数表达式.解析:(1)解方程求出点A 的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x 2+bx+2,根据二次函数的性质求出点C ′的坐标,根据题意求出直线CC ′的解析式,代入计算即可.答案:(1)由x 2-4=0得,x 1=-2,x 2=2, ∵点A 位于点B 的左侧, ∴A(-2,0),∵直线y=x+m 经过点A , ∴-2+m=0, 解得,m=2,∴点D 的坐标为(0,2),∴=;(2)设新抛物线对应的函数表达式为:y=x 2+bx+2,y=x 2+bx+2=(x+2b )2+2-24b , 则点C ′的坐标为(-2b,2-24b ), ∵CC ′平行于直线AD ,且经过C(0,-4),∴直线CC ′的解析式为:y=x-4,∴2-24b =-2b -4, 解得,b 1=-4,b 2=6,∴新抛物线对应的函数表达式为:y=x 2-4x+2或y=x 2+6x+2.26.如图,AB 是⊙O 的直径,点C 在⊙O 上,AD 垂直于过点C 的切线,垂足为D ,CE 垂直AB ,垂足为E.延长DA 交⊙O 于点F ,连接FC ,FC 与AB 相交于点G ,连接OC.(1)求证:CD=CE ;(2)若AE=GE ,求证:△CEO 是等腰直角三角形.解析:(1)连接AC ,根据切线的性质和已知得:AD ∥OC ,得∠DAC=∠ACO ,根据AAS 证明△CDA ≌△CEA(AAS),可得结论; (2)介绍两种证法: 证法一:根据△CDA ≌△CEA ,得∠DCA=∠ECA ,由等腰三角形三线合一得:∠F=∠ACE=∠DCA=∠ECG ,在直角三角形中得:∠F=∠DCA=∠ACE=∠ECG=22.5°,可得结论;证法二:设∠F=x ,则∠AOC=2∠F=2x ,根据平角的定义得:∠DAC+∠EAC+∠OAF=180°,则3x+3x+2x=180,可得结论. 答案:(1)连接AC ,∵CD 是⊙O 的切线, ∴OC ⊥CD , ∵AD ⊥CD ,∴∠DCO=∠D=90°, ∴AD ∥OC ,∴∠DAC=∠ACO , ∵OC=OA ,∴∠CAO=∠ACO , ∴∠DAC=∠CAO , ∵CE ⊥AB , ∴∠CEA=90°,在△CDA 和△CEA 中,∵D CEA DAC EAC AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CDA ≌△CEA(AAS), ∴CD=CE ;(2)证法一:连接BC ,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180,x=22.5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.27.问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC 于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,S S'=_____; (2)设AD=m ,请你用含字母m 的代数式表示S S'. 问题2:如图②,在四边形ABCD 中,AB=4,AD ∥BC ,AD=12BC ,E 是AB 上一点(不与A ,B 重合),EF ∥BC ,交CD 于点F ,连接CE.设AE=n ,四边形ABCD 的面积为S ,△EFC 的面积为S ′.请你利用问题1的解法或结论,用含字母n 的代数式表示S S'. 解析:问题1:(1)先根据平行线分线段成比例定理可得:13CE BD EA AD ==,由同高三角形面积的比等于对应底边的比,则1339DEC ADE S EC S AE ===V V ,根据相似三角形面积比等于相似比的平方得:239416ADE ABC S S ⎛⎫ ⎪⎝⎭==V V ,可得结论; (2)解法一:同理根据(1)可得结论;解法二:作高线DF 、BH ,根据三角形面积公式可得:1·21·2DEC ABCCE DFS S CA BH =V V ,分别表示CECA 和DFBH的值,代入可得结论; 问题2:解法一:如图2,作辅助线,构建△OBC ,证明△OAD ∽△OBC ,得OB=8,由问题1的解法可知:224416·4864CEF CEF OEF OBC OEF OBC S S S n n n S S S n ⎛⎫ ⎪⎝⎭-+-==⨯=+V V V V V V ,根据相似三角形的性质得:34ABCD OBC S S =V ,可得结论; 解法二:如图3,连接AC 交EF 于M ,根据AD=12BC ,可得12ADC ABC S S =V V ,得:S △ADC =13S ,S △ABC=2 3S,由问题1的结论可知:2416EMCABCS n nS-+=VV,证明△CFM∽△CDA,根据相似三角形面积比等于相似比的平方,根据面积和可得结论. 答案:问题1:(1)∵AB=4,AD=3,∴BD=4-3=1,∵DE∥BC,∴13 CE BDEA AD==,∴1339 DECADES ECS AE===VV,∵DE∥BC,∴△ADE∽△ABC,∴239416 ADEABCSS⎛⎫⎪⎝⎭==VV,∴316DECABCSS=VV,即316SS'=;(2)解法一:∵AB=4,AD=m,∴BD=4-m,∵DE∥BC,∴4CE BD m EA AD m-==,∴4DECADES CE mS AE m-==VV,∵DE∥BC,∴△ADE∽△ABC,∴22416 ADEABCS m mS⎛⎫⎪⎝=⎭=VV,∴2244··1616 DEC DEC ADEABC ADE ABCS S S m m m mS S S m--+===V V VV V V,即2416S m mS'-+=;解法二:如图1,过点B作BH⊥AC于H,过D作DF⊥AC于F,则DF∥BH,∴△ADF ∽△ABH ,∴4DF AD mBH AB ==, ∴21·44214416·2DEC ABC CE DF S m m m mS CA BH--+==⨯=V V , 即2416S m m S '-+=; 问题2:解法一:如图2,分别延长BD 、CE 交于点O ,∵AD ∥BC ,∴△OAD ∽△OBC , ∴12OA AD OB BC ==, ∴OA=AB=4, ∴OB=8, ∵AE=n , ∴OE=4+n , ∵EF ∥BC ,由问题1的解法可知:224416·4864CEF CEF OEF OBC OEF OBC S S S n n n S S S n ⎛⎫ ⎪⎝⎭-+-==⨯=+V V V V V V ,∵214 OADOBCS OAS OB⎛⎫=⎪⎝⎭=VV,∴34 ABCDOBCSS=V,∴22416163364484CEF CEFABCDOBCS S n nS S--==⨯=V VV,即21648S nS'-=;解法二:如图3,连接AC交EF于M,∵AD∥BC,且AD=12 BC,∴12ADCABCSS=VV,∴S△ADC=12S△ABC,∴S△ADC=13S,S△ABC=23S,由问题1的结论可知:2416EMCABCS n nS-+=VV,∵MF∥AD,∴△CFM∽△CDA,∴243143CFM CFM CFMCDAS S S nS SS-==⨯⎛⎫⎪⎝=⎭V V VV,∴S△CFM=()2448n-×S,∴S△EFC=S△EMC+S△CFM=()22244216·1634848nn n nS S S--+-+⨯=⨯,∴21648S n S '-=.28.如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100米的正方形草地,点A ,D 在直线l 上,小明从点A 出发,沿公路l 向西走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线FC 方向走到公路l 上的点G 处,最后沿公路l 回到点A 处.设AE=x 米(其中x >0),GA=y 米,已知y 与x 之间的函数关系如图②所示,(1)求图②中线段MN 所在直线的函数表达式; (2)试问小明从起点A 出发直至最后回到点A 处,所走过的路径(即△EFG)是否可以是一个等腰三角形?如果可以,求出相应x 的值;如果不可以,说明理由.解析:(1)根据点M 、N 的坐标,利用待定系数法即可求出图②中线段MN 所在直线的函数表达式;(2)分FE=FG 、FG=EG 及EF=EG 三种情况考虑:①考虑FE=FG 是否成立,连接EC ,通过计算可得出ED=GD ,结合CD ⊥EG ,可得出CE=CG ,根据等腰三角形的性质可得出∠CGE=∠CEG 、∠FEG >∠CGE ,进而可得出FE ≠FG ;②考虑FG=EG 是否成立,由正方形的性质可得出BC ∥EG ,进而可得出△FBC ∽△FEG ,根据相似三角形的性质可得出若FG=EG 则FC=BC ,进而可得出CG 、DG 的长度,在Rt △CDG 中,利用勾股定理即可求出x 的值;③考虑EF=EG 是否成立,同理可得出若EF=EG 则FB=BC ,进而可得出BE 的长度,在Rt △ABE 中,利用勾股定理即可求出x 的值.综上即可得出结论.答案:(1)设线段MN 所在直线的函数表达式为y=kx+b , 将M(30,230)、N(100,300)代入y=kx+b ,30230100300k b k b +=⎧⎨+=⎩,解得:1200k b =⎧⎨=⎩, ∴线段MN 所在直线的函数表达式为y=x+200. (2)分三种情况考虑:①考虑FE=FG 是否成立,连接EC ,如图所示.∵AE=x ,AD=100,GA=x+200,∴ED=GD=x+100.又∵CD⊥EG,∴CE=CG,∴∠CGE=∠CEG,∴∠FEG>∠CGE,∴FE≠FG;②考虑FG=EG是否成立.∵四边形ABCD是正方形,∴BC∥EG,∴△FBC∽△FEG.假设FG=EG成立,则FC=BC成立,∴FC=BC=100.∵AE=x,GA=x+200,∴FG=EG=AE+GA=2x+200,∴CG=FG-FC=2x+200-100=2x+100.在Rt△CDG中,CD=100,GD=x+100,CG=2x+100,∴1002+(x+100)2=(2x+100)2,解得:x1=-100(不合题意,舍去),x2=1003;③考虑EF=EG是否成立.同理,假设EF=EG成立,则FB=BC成立,∴BE=EF-FB=2x+200-100=2x+100.在Rt△ABE中,AE=x,AB=100,BE=2x+100,∴1002+x2=(2x+100)2,解得:x1=0(不合题意,舍去),x2=-4003(不合题意,舍去).综上所述:当x=1003时,△EFG是一个等腰三角形.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2.【答案】C【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.5384000=3.84100000=3.8410⨯⨯.故选C .【考点】科学记数法。
3.【答案】B【解析】判断轴对称图形的关键是寻找对称轴,图形按照某条直线折叠后直线两旁的部分能否重合即可.四个选项中,A 、C 、D 三个选项中的图形都能沿着某一条直线折叠以后,直线两旁的部分能互相重合,只有B 选项中图形无法沿着某一条直线折叠以后,直线两旁的部分互相重合.故选B . 【考点】轴对称图形的识别。
4.【答案】D【解析】根据题意,得x 20+≥,解得x 2≥-,所以x 2≥-表示在数轴上时在点2-处取向右的方向,2-处用实心点圈表示.故选D .【考点】二次根式有意义的条件和用数轴表示不等式的解集。
5.【答案】B【解析】()22121111+x 11x x x x x x x x +++⎛⎫÷=⋅= ⎪+⎝⎭+.故选B . 【考点】分式的混合运算。
6.【答案】C【解析】设每个小正方形的边长为a ,则正方形的面积29a ,∴阴影部分面积为21424,2a a a ⨯⨯⨯=∴飞镖落在阴影部分的概率2244=99a a =.故选C .【考点】几何概率的求法。
7.【答案】B【解析】()1,B BCO,BOC 4018040702OB OC B =∴∠=∠∠=︒∴∠=︒-︒=︒,,四边形ABCD 是O 的内接四边形,18018018070110B D D B ∴∠+∠=︒∴∠=︒-∠=︒-︒=︒,.故选B. 【考点】圆内接四边形的性质以及等腰三角形的性质。
8.【答案】D【解析】根据题意得,6020,tan 20tan 6020240,204060,ABP AB AP AB ABP BC AC ∠=︒=∴=⋅∠=⨯︒==⨯=∴=+=,在t R PAC △中,PC ===.故选D .【考点】解直角三角形的应用——方向角问题。
2018年苏州市初中毕业暨升学考试试卷本试卷由选择题、填空题和解答题三大题组成 .共28小题,满分130分.考试时间120分钟. 注意事项:1. 答题前,考生务必将自己的姓名、 考点名称、考场号、 座位号用毫米黑色墨水签字笔填写 在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符 ;2. 答选择题必须用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用毫米黑色.墨水签字笔写在答题卡指定的位置 上,不在答题区域内的答案一律无效,不得用其他笔答题; 3. 考生答题必须答在答题卡上, 保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效. 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一 项是符合题目要求的.请将选择题的答案用 2B 铅笔涂在答题卡相应位置上.3.下列四个图案中,不是轴对称图案的是2在实数范围内有意义,则 x 的取值范围在数轴上表示正确的是21、 x 2x 1 E 口-) -------------- 的结果是x x1.在下列四个实数中,最大的数是 A. 3 B. C.D.- 42.地球与月球之间的平均距离大384 000 km , 384 000用科学记数法可表示为 A. 3.84 103 B. 3.84 104C. 3.84 105D. 3.84 106 4.若 V x 5.计算(1 A. xC. D. 6.如图,飞镖游戏板中每一块小正方形除颜色外都相同 .若某人向游戏板投掷飞镖一次 (假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是D.BOC 40 ,则 D 的度数为A. 100 °B. 110 ° ° 8. 如图,某海监船以 20海里/小时的速度在某海域执行巡航任务 .当海监船由西向东航行至 A 处时,测得岛屿P 恰好在其正北方向, 继续向东航行1小时到达B 处,测得岛屿P 在 其北偏西30°方向,保持航向不变又航行 2小时到达C 处,此时海监船与岛屿 P 之间的 距离(即PC 的长)为A. 40海里6 0海里 C. 20 J 3海里40 J3海里19. 如图,在 ABC 中,延长BC 至D ,使碍CD — BC ,过AC 中点E 作EF //CD (点F2位于点E 右侧),且EF 2CD ,连接DF .若AB 8 ,则DF 的长为A. 3B. 4 2、,3 D. 3、.2k10. 如图,矩形 ABCD 的顶点A 、B 在x 轴的正半轴上,反比例函数 y —在第一象限内x3的图像经过点 D,交BC 于点E .若AB 4 , CE 2BE , tan AOD —,则k 的值4为A. 3 2、3 C. 6 D. 12二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上..B. 7.如图,AB 是半圆的直径, O 为圆心,C 是半圆上的点,D 是A C 上的点.若11.计算:a4 a ^12.在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5 , 8, 6, 8, 5, 10,8,这组数据的众数是^ 若关于x的一元二次方程x2 mx 2n 0有一个根是2,在m n ^2 214.右a b 4, a b 1 ,则(a 1)(b 1)的值为如图,ABC是一块直角三角板,BAC 90 , B 30 .现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D , BC与直尺的两边分别交于点E、F.若CAF 20,则BED的度数为—.—如图,8 8的正方形网格纸上有扇形OAB 和扇形OCD,点O、A、B、C、D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另一个圆锥的侧面,记这个圆锥的底面半径为r 2,贝U 土的值为 ^「2 17. 如图,在Rt ABC 中, B 90 , AB 2否,BC J 5 .将 ABC 绕点A 按逆时针 方向旋转90。
2025苏州中考数学二轮专题复习-圆的综合应用-专项训练一.解答题(共10小题)1.如图,△ABC中,AB=4,D为AB中点,∠BAC=∠BCD,cos∠ADC=,⊙O是△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.2.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,AC=,BC=2,点F在AB上,连接CF并延长,交⊙O于点D,连接BD,作BE⊥CD,垂足为E.(1)求证:△DBE∽△ABC;(2)若AF=2,求ED的长.3.如图,AB是⊙O的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且CF=EF.(1)求证:CF为⊙O的切线;(2)连接BD,取BD的中点G,连接AG.若CF=4,BF=2,求AG的长.4.如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.5.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.(1)求证:DO∥AC;(2)求证:DE•DA=DC2;(3)若tan∠CAD=,求sin∠CDA的值.6.如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D,CE垂直AB,垂足为E.延长DA交⊙O于点F,连接FC,FC与AB相交于点G,连接OC.(1)求证:CD=CE;(2)若AE=GE,求证:△CEO是等腰直角三角形.7.如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE边于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE;(3)连接OC,设△DOE的面积为S1,四边形BCOD的面积为S2,若=,求sin A的值.8.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cos B=,E是的中点,求EG•ED的值.9.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED.(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且﹣16S2+4=0,求△ABC的面积.10.如图,已知⊙O上依次有A、B、C、D四个点,=,连接AB、AD、BD,弦AB不经过圆心O,延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.参考答案与试题解析一.解答题(共10小题)1.【解答】解:(1)∵∠BAC=∠BCD,∠B=∠B,∴△BAC∽△BCD,∴,∵,D为AB中点,∴,∴BC2=16,∴BC=4;(2)过点A作AE⊥CD于点E,连接CO,并延长交⊙O于F,连接AF,∵在Rt△AED中,,,∴DE=1,∴,∵△BAC∽△BCD,∴,设CD=x,则AC=x,CE=x﹣1,∵在Rt△ACE中,AC2=CE2+AE2,∴,即x2+2x﹣8=0,解得x=2,x=﹣4(舍去),∴CD=2,AC=,∵∠AFC与∠ADC都是所对的圆周角,∴∠AFC=∠ADC,∵CF为⊙O的直径,∴∠CAF=90°,∴,∴,即⊙O的半径为.2.【解答】(1)证明:∵AB为直径,∴∠ACB=90°,∵BE⊥CD,∴∠BED=90°,∵所对的圆周角为∠BDE和∠BAC,∴∠BDE=∠BAC,∴△DBE∽△ABC;(2)解:如图,过点C作CG⊥AB,垂足为G,∵∠ACB=90°,AC=,BC=2,∴AB==5,∵CG⊥AB,∴AG=AC cos A=×=1,∵AF=2,∴FG=AG=1,∴CG是AF的垂直平分线,∴AC=FC,∴∠CAF=∠CFA=∠BFD=∠BDF,∴BD=BF=AB﹣AF=5﹣2=3,∵△DBE∽△ABC,∴=,∴=,∴ED=.3.【解答】(1)证明:如图,连接OC,OD.∵OC=OD,∴∠OCD=∠ODC,∵FC=FE,∴∠FCE=∠FEC,∵∠OED=∠FEC,∴∠OED=∠FCE,∵AB是直径,D是的中点,∴∠DOE=90°,∴∠OED+∠ODC=90°,∴∠FCE+∠OCD=90°,即∠OCF=90°,∵OC是半径,∴CF是⊙O的切线.(2)解:过点G作GH⊥AB于点H.设OA=OD=OC=OB=r,则OF=r+2,在Rt△COF中,42+r2=(r+2)2,∴r=3,∵GH⊥AB,∴∠GHB=90°,∵∠DOE=90°,∴∠GHB=∠DOE,∴GH∥DO,∴=,∵G为BD的中点,∴BG=BD,∴BH=BO=,GH=OD=,∴AH=AB﹣BH=6﹣=,∴AG===.4.【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠A=∠DCE,∵∠1=∠2,∴=,∴AD=DC,在△ABD和△DCE中,,∴△ABD≌△CED(SAS),∴BD=ED;(2)解:过点D作DM⊥BE于M,∵AB=4,BC=6,CE=AB,∴BE=BC+EC=10,∵BD=ED,DM⊥BE,∴BM=ME=BE=5,∴CM=BC﹣BM=1,∵∠ABC=60°,∠1=∠2,∴∠2=30°,∴DM=BM•tan∠2=5×=,∴tan∠DCB==.5.【解答】解:(1)因为点D是弧BC的中点,所以∠CAD=∠BAD,即∠CAB=2∠BAD,而∠BOD=2∠BAD,所以∠CAB=∠BOD,所以DO∥AC;(2)∵,∴∠CAD=∠DCB,∴△DCE∽△DAC,∴CD2=DE•DA;(3)∵tan∠CAD=,连接BD,则BD=CD,∠DBC=∠CAD,在Rt△BDE中,tan∠DBE===,设:DE=a,则CD=2a,而CD2=DE•DA,则AD=4a,∴AE=3a,∴=3,而△AEC∽△DEF,即△AEC和△DEF的相似比为3,设:EF=k,则CE=3k,BC=8k,tan∠CAD=,∴AC=6k,AB=10k,∴sin∠CDA=.6.【解答】证明:(1)连接AC,∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴∠DCO=∠D=90°,∴AD∥OC,∴∠DAC=∠ACO,∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∵CE⊥AB,∴∠CEA=90°,在△CDA和△CEA中,∵,∴△CDA≌△CEA(AAS),∴CD=CE;(2)证法一:连接BC,∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠ECA=∠ECG,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠ACE=∠B,∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG,∵∠D=90°,∴∠DCF+∠F=90°,∴∠F=∠DCA=∠ACE=∠ECG=22.5°,∴∠AOC=2∠F=45°,∴△CEO是等腰直角三角形;证法二:设∠F=x,则∠AOC=2∠F=2x,∵AD∥OC,∴∠OAF=∠AOC=2x,∴∠CGA=∠OAF+∠F=3x,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x,∵∠DAC+∠EAC+∠OAF=180°,∴3x+3x+2x=180°,x=22.5°,∴∠AOC=2x=45°,∴△CEO是等腰直角三角形.7.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DE⊥AB,∴∠DEO=90°,∴∠DEO=∠ACB,∵OD∥BC,∴∠DOE=∠ABC,∴△DOE∽△ABC;(2)证明:∵△DOE∽△ABC,∴∠ODE=∠A,∵∠A和∠BDC是所对的圆周角,∴∠A=∠BDC,∴∠ODE=∠BDC,∴∠ODF=∠BDE;(3)解:∵△DOE∽△ABC,∴,=4S△DOE=4S1,即S△ABC∵OA=OB,=2S1,∴,即S△BOC∵,∴,∴,即,∴sin A=sin∠ODE==.8.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cos B=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.9.【解答】(1)证明:∵AD是△ABC的角平分线,∴∠BAD=∠DAC,∵∠E=∠BAD,∴∠E=∠DAC,∵BE∥AD,∴∠E=∠EDA,∴∠EDA=∠DAC,∴ED∥AC;(2)解:∵BE∥AD,∴∠EBD=∠ADC,∵∠E=∠DAC,∴△EBD∽△ADC,且相似比k=,∴=k2=4,即s1=4s2,∵﹣16S2+4=0,∴16﹣16S2+4=0,即=0,∴S2=,∵====3,=.∴S△ABC10.【解答】(1)解:连接OB,OD,∵∠DAB=120°,∴所对圆心角的度数为240°,∴∠BOD=360°﹣240°=120°,∵⊙O的半径为3,∴劣弧的长为:×π×3=2π;(2)证明:连接AC,∵AB=BE,∴点B为AE的中点,∵F是EC的中点,∴BF为△EAC的中位线,∴BF=AC,∵=,∴+=+,∴=,∴BD=AC,∴BF=BD;(3)解:过点B作AE的垂线,与⊙O的交点即为所求的点P,∵BF为△EAC的中位线,∴BF∥AC,∴∠FBE=∠CAE,∵=,∴∠CAB=∠DBA,∵由作法可知BP⊥AE,∴∠GBP=∠FBP,∵G为BD的中点,∴BG=BD,∴BG=BF,在△PBG和△PBF中,,∴△PBG≌△PBF(SAS),∴PG=PF.。