第8章第2讲 两条直线的位置关系
- 格式:doc
- 大小:239.00 KB
- 文档页数:20
第2讲两直线的位置关系, [同学用书P145])1.两直线的平行、垂直与其斜率的关系条件两直线位置关系斜率的关系两条不重合的直线l1,l2,斜率分别为k1,k2平行k1=k2k1与k2都不存在垂直k1k2=-1k1与k2一个为零、另一个不存在2.两条直线的交点3.三种距离点点距点P1(x1,y1),P2(x2,y2)之间的距离|P1P2|=(x2-x1)2+(y2-y1)2点线距点P0(x0,y0)到直线l:Ax+By+C=0的距离d=|Ax0+By0+C|A2+B2线线距两条平行线Ax+By+C1=0与Ax+By+C2=0间的距离d=|C1-C2|A2+B21.辨明三个易误点(1)在推断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可依据相应公式或性质推断,若直线无斜率,要单独考虑.(2)求点到直线的距离时,若给出的直线不是一般式,则应化为一般式.(3)在运用两平行直线间的距离公式d=|C1-C2|A2+B2时,肯定要留意将两方程中x,y的系数化为相同的形式.2.与已知直线垂直及平行的直线系的设法与直线Ax+By+C=0(A2+B2≠0)垂直和平行的直线方程可设为:(1)垂直:Bx-Ay+m=0(m∈R);(2)平行:Ax+By+n=0(n∈R,且n≠C).1.教材习题改编已知A(2,3),B(-4,0),P(-3,1),Q(-m,m+1),若直线AB∥PQ,则m的值为()A.-1B.0C.1 D.2C[解析] 由于AB∥PQ,所以k AB=k PQ,即0-3-4-2=m+1-1-m-(-3),解得m=1,故选C.2.教材习题改编已知A(5,-1),B(m,m),C(2,3),若△ABC为直角三角形且AC边最长,则整数m 的值为()A.4 B.3C.2 D.1D[解析] 由题意得B=90°,即AB⊥BC,k AB·k BC=-1,所以m+1m-5·3-m2-m=-1.解得m=1或m=72,故整数m的值为1,故选D.3.直线2x-y=-10,y=x+1,y=ax-2交于一点,则实数a的值为________.[答案]234.教材习题改编两平行直线x-2y-1=0与x-2y+m=0的距离为5,则m=________.[解析] 由平行线间的距离公式得|-1-m|12+(-2)2=5,即|m+1|=5,所以m=4或m=-6.[答案] 4或-65.教材习题改编已知三点O(0,0),A(1,3),B(3,1),则△OAB的面积为________.[解析] 由于|AB|=(1-3)2+(3-1)2=2 2.AB所在的直线方程为y-31-3=x-13-1,即x+y-4=0.所以O 到AB 的距离d =|-4|2=2 2.所以S △OAB =12|AB |·d =12×22×22=4.[答案] 4两条直线平行与垂直[同学用书P146][典例引领](1)(2021·邢台摸底考试)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________.【解析】 (1)依题意,留意到直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧-a 3=-1a -2,1a -2≠1,解得a =-1,故选C.(2)法一:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2).由于l ⊥l 3,所以直线l 的斜率k =-43,所以直线l 的方程为y -2=-43x ,即4x +3y -6=0.法二:由于直线l 过直线l 1和l 2的交点,所以可设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0. 由于l 与l 3垂直,所以3(1+λ)+(-4)(λ-2)=0, 所以λ=11,所以直线l 的方程为12x +9y -18=0, 即4x +3y -6=0.【答案】 (1)C (2)4x +3y -6=0将本例(2)中条件“与直线l 3:3x -4y +5=0垂直”改为“与直线l 3:3x -4y +5=0平行”,求此时直线l 的方程.[解] 法一:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2). 由于l ∥l 3,所以直线l 的斜率k =34,所以直线l 的方程为y -2=34x ,即3x -4y +8=0.法二:由于直线l 过直线l 1和l 2的交点,所以可设直线l 的方程为x -2y +4+λ(x +y -2)=0, 即(1+λ)x +(λ-2)y +4-2λ=0. 由于l 与l 3平行,所以3(λ-2)-(-4)(1+λ)=0,且(-4)(4-2λ)≠5(λ-2),所以λ=27,所以直线l 的方程为3x -4y +8=0.两直线平行或垂直的判定方法 (1)已知两直线的斜率存在①两直线平行⇔两直线的斜率相等且坐标轴上的截距不相等; ②两直线垂直⇔两直线的斜率之积为-1. (2)已知两直线的斜率不存在若两直线的斜率不存在,当两直线在x 轴上的截距不相等时,两直线平行;否则两直线重合. (3)已知两直线的一般方程设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.该方法可避开对斜率是否存在进行争辩.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)由于l 1⊥l 2, 所以a (a -1)-b =0.又由于直线l 1过点(-3,-1), 所以-3a +b +4=0.故a =2,b =2.(2)由于直线l 2的斜率存在,l 1∥l 2, 所以直线l 1的斜率存在. 所以ab=1-a .①又由于坐标原点到这两条直线的距离相等, 所以l 1,l 2在y 轴上的截距互为相反数,即4b =b .②联立①②可得a =2,b =-2或a =23,b =2.距离公式(高频考点)[同学用书P147]距离公式包括两点间的距离公式、点到直线的距离公式和两平行线间的距离公式.在高考中经常消灭,多为简洁题或中档题.高考中对距离公式的考查主要有以下三个命题角度: (1)求距离;(2)已知距离求参数值; (3)已知距离求点的坐标. [典例引领](1)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A .95B .185C .2910D .295(2)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|P A |=|PB |,且点P 到直线l 的距离为2,则P 点坐标为________.【解析】 (1)由于36=48≠-125,所以两直线平行,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.(2)设点P 的坐标为(a ,b ). 由于A (4,-3),B (2,-1),所以线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,所以线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.由于点P (a ,b )在直线x -y -5=0上, 所以a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2, 所以|4a +3b -2|5=2,即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎨⎧a =277,b =-87.所以所求点P 的坐标为(1,-4)或⎝⎛⎭⎫277,-87. 【答案】 (1)C (2)(1,-4)或⎝⎛⎭⎫277,-87[题点通关]角度一 求距离 1.(2021·洛阳模拟)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2的值为( )A .102B .10C .5D .10D [解析] 由题意知P (0,1),Q (-3,0),由于过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,所以M 位于以PQ 为直径的圆上,由于|PQ |=9+1=10,所以|MP |2+|MQ |2=|PQ |2=10,故选D. 角度二 已知距离求参数值2.若直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离是5,则m +n =( ) A .0 B .1 C .-1 D .2 A [解析] 由于直线l 1:x -2y +m =0(m >0)与直线l 2:x +ny -3=0之间的距离为5,所以⎩⎨⎧n =-2,|m +3|5=5,所以n =-2,m =2(负值舍去). 所以m +n =0.角度三 已知距离求点的坐标3.已知定点A (1,0),点B 在直线x -y =0上运动,当线段AB 最短时,点B 的坐标是( ) A .⎝⎛⎭⎫12,12 B .⎝⎛⎭⎫22,22 C .⎝⎛⎭⎫32,32 D .⎝⎛⎭⎫52,52 A [解析] 由于定点A (1,0),点B 在直线x -y =0上运动,所以当线段AB 最短时,直线AB 和直线x -y =0垂直,AB 的方程为y +x -1=0,它与x -y =0联立解得x =12,y =12,所以B 的坐标是⎝⎛⎭⎫12,12.对称问题[同学用书P148][典例引领]已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. 【解】 (1)设A ′(x ,y ),由已知⎩⎨⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413. 所以A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M ′(a ,b ),则⎩⎨⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3).又由于m ′经过点N (4,3),所以由两点式得直线m ′的方程为9x -46y +102=0.(3)设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),由于P ′在直线l 上,所以2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.[通关练习]1.直线x +2y -3=0与直线ax +4y +b =0关于点A (1,0)对称,则b =________. [解析] 法一:由题知,点A 不在直线x +2y -3=0上, 所以两直线平行, 所以-12=-a4,所以a =2.又点A 到两直线距离相等, 所以|1-3|5=|2+b |25,所以|b +2|=4, 所以b =-6或b =2.由于点A 不在直线x +2y -3=0上,所以两直线不能重合, 所以b =2.法二:在直线x +2y -3=0上取两点P 1(1,1)、P 2(3,0), 则P 1、P 2关于点A 的对称点P ′1、P ′2都在直线ax +4y +b =0上. 由于易知P ′1(1,-1)、P ′2(-1,0),所以⎩⎪⎨⎪⎧a -4+b =0,-a +b =0,所以b =2.[答案] 22.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.[解析] 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎨⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6), 所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. [答案] 6x -y -6=0,[同学用书P148])——忽视直线斜率的不存在性致误已知直线l 过点A (1,2),且原点到直线l 的距离为1,求直线l 的方程.【解】 当直线l 过点A (1,2)且斜率不存在时,直线l 的方程为x =1,原点到直线l 的距离为1,满足题意.当直线l 过点A (1,2)且斜率存在时,由题意设直线l 的方程为y -2=k (x -1),即kx -y -k +2=0. 由于原点到直线l 的距离为1,所以|-k +2|k 2+1=1,解得k =34.所以所求直线l 的方程为y -2=34(x -1),即3x -4y +5=0.综上所述,所求直线l 的方程为x =1或3x -4y +5=0.(1)解决本题易忽视直线的斜率不存在的状况,从而只求得一条直线.(2)在解决与直线方程或直线位置关系有关问题时,若题目中没有明确直线的斜率是否存在,要留意对斜率的存在性进行分类争辩.已知经过点A (-2,0)和点B (1,3a )的直线l 1与经过点P (0,-1)和点Q (a ,-2a )的直线l 2相互垂直,则实数a 的值为________.[解析] l 1的斜率k 1=3a -01-(-2)=a .当a ≠0时,l 2的斜率k 2=-2a -(-1)a -0=1-2aa .由于l 1⊥l 2,所以k 1k 2=-1,即a ·1-2aa =-1,解得a =1.当a =0时,P (0,-1),Q (0,0),这时直线l 2为y 轴, A (-2,0),B (1,0),直线l 1为x 轴,明显l 1⊥l 2.综上可知,实数a 的值为1或0. [答案] 1或0,[同学用书P339(独立成册)])1.若直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0相互平行,则实数m 的值为( ) A .-1 B .0 C .1 D .2 C [解析] 由于直线l 1:mx -y -2=0与直线l 2:(2-m )x -y +1=0相互平行,所以⎩⎪⎨⎪⎧-m +(2-m )=0,m +2(2-m )≠0,解得m =1.故选C. 2.已知直线l 1:2ax +(a +1)y +1=0,l 2:(a +1)x +(a -1)y =0,若l 1⊥l 2,则a =( ) A .2或12B .13或-1C .13D .-1B [解析] 由于直线l 1:2ax +(a +1)y +1=0, l 2:(a +1)x +(a -1)y =0,l 1⊥l 2, 所以2a (a +1)+(a +1)(a -1)=0, 解得a =13或a =-1.故选B.3.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .其次象限C .第三象限D .第四象限B [解析] 由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k ,得⎩⎨⎧x =k k -1,y =2k -1k -1.又由于0<k <12,所以x =kk -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在其次象限.4.(2021·石家庄模拟)已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0 C .x +y +1=0 D .x +y =0A [解析] 由题意知直线l 与直线PQ 垂直,直线PQ 的斜率k PQ =-1,所以直线l 的斜率k =-1k PQ=1.又直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0.5.已知点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则m 的值为( ) A .-6或12B .-12或1C .-12或12D .0或12A [解析] |3m +2+3|m 2+12=|-m +4+3|m 2+12,即|3m +5|=|7-m |,解得m =-6或12.6.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1:x -y -5=0,l 2:x -y -15=0上移动,则线段P 1P 2的中点P 到原点的距离的最小值是( )A .522B .5 2C .1522D .15 2B [解析] 由题意得,线段P 1P 2的中点P 的轨迹方程是x -y -10=0,由于原点到直线x -y -10=0的距离为d =102=52,所以线段P 1P 2的中点P 到原点的距离的最小值为5 2.7.已知A ,B 两点分别在两条相互垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎫0,10a ,则线段AB 的长为________.[解析] 依题意,a =2,P (0,5),设A (x ,2x ),B (-2y ,y ),故⎩⎪⎨⎪⎧x -2y =0,2x +y =10,则 A (4,8),B (-4,2),所以|AB |=(4+4)2+(8-2)2=10.[答案] 108.已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为________.[解析] 由于l 1,l 2关于直线y =-x 对称,所以l 2的方程为-x =-2y +3,即y =12x +32,即直线l 2的斜率为12. [答案] 129.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________.[解析] 当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.由于A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.[答案] x +2y -3=010. 如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点动身射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.[解析] 从特殊位置考虑.如图,由于点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4),所以kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,所以k FD >kA 1F ,即k FD ∈(4,+∞).[答案] (4,+∞)11.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程. [解] 点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离 d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0.12.(2021·洛阳统考)已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线D [解析] 由于点P (x 0,y 0)不在直线Ax +By +C =0上,所以Ax 0+By 0+C ≠0,所以直线Ax +By +C+(Ax 0+By 0+C )=0不经过点P ,排解A 、B ;又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax +By +C=0平行,排解C ,故选D.13.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由. [解] (1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),明显,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图. 由l ⊥OP ,得k l k OP =-1, 所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.14.A ,B 两个工厂距一条河分别为400 m 和100 m ,A ,B 两工厂之间距离500 m ,把小河看作一条直线,今在小河边上建一座供水站,供A ,B 两工厂用水,要使供水站到A ,B 两工厂铺设的水管长度之和最短,问供水站应建在什么地方?[解] 如图,以小河所在直线为x 轴,过点A 的垂线为y 轴,建立直角坐标系,则点A (0,400),点B (a ,100). 过点B 作BC ⊥AO 于点C .在△ABC 中,AB =500,AC =400-100=300, 由勾股定理得BC =400, 所以B (400,100).点A (0,400)关于x 轴的对称点A ′(0,-400), 由两点式得直线A ′B 的方程为y =54x -400.令y =0,得x =320, 即点P (320,0).故供水站(点P )在距O 点320 m 处时,到A ,B 两厂铺设的水管长度之和最短.。
第八章 第2讲 两条直线的位置关系1.(2022·哈师大附中模拟)已知直线l 1:ax +(a +2)y +1=0, l 2:x +ay +2=0, 其中a ∈R, 则“a =-3”是“l 1 ⊥ l 2”的( )A .充分不必要条件 B.必要不充分条件 C .充要条件D.既不充分也不必要条件2.(2022·广州期末)若直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,则实数k 的取值范围是( )A .-6<k <-2 B.-5<k <-3 C .k <-6D.k >-23.已知直线l :ax +by +c =0与直线l ′关于直线x +y =0对称,则l ′的方程为( ) A .bx +ay -c =0 B.ay -bx -c =0 C .ay +bx +c =0 D.ay -bx +c =04.(2022·亳州市质量检测)若动点M ()x 1,y 1,N ()x 2,y 2分别在直线x +y +7=0与直线x +y +5=0上移动,则MN 的中点P 到原点距离的最小值为( )A .23 B.3 3 C.32D.2 25.(多选)(2022·宜昌市夷陵中学检测)已知直线l 的一个方向向量为u =(-36,12),且l 经过点()1,-2,则下列结论中正确的是( )A .l 的倾斜角等于150°B .l 在x 轴上的截距等于233C .l 与直线3x -3y +2=0垂直D .l 与直线3x +y +2=0平行6.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为________. 7.已知点P (m ,n )是直线2x +y +5=0上的任意一点,则 (m -1)2+(n +2)2的最小值为________.8.已知直线l 1:ax +y +3a -4=0和l 2:2x +(a -1)y +a =0,则原点到l 1的距离的最大值是________;若l 1∥l 2,则a =________.9.已知两直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b 的值.(1)l1⊥l2,且直线l1过点(-3,-1);(2)l1∥l2,且坐标原点到这两条直线的距离相等.10.已知四边形ABCD为平行四边形,A(0,3),B(4,1),D为边AB的垂直平分线与x轴的交点.(1)求点C的坐标;(2)一条光线从点D射出,经直线AB反射,反射光线经过CD的中点E,求反射光线所在直线的方程.11.(多选)(2022·重庆市永川景圣中学月考)下列说法正确的是()1,2且在x,y轴截距相等的直线方程为x+y-3=0A.过点P()B.直线y=3x-2在y轴上的截距为-2C.直线3x+y+1=0的倾斜角为60°-1,2且垂直于直线x-2y+3=0的直线方程为2x+y=0 D.过点()12.(2022·山东省精英对抗赛)直线ax+y+3a-1=0恒过定点N,则直线2x+3y-6=0关于点N对称的直线方程为()A.2x+3y-12=0 B.2x+3y+12=0C.2x-3y+12=0 D.2x-3y-12=013.(2022·宝鸡模拟)光线沿着直线y=-3x+b射到直线x+y=0上,经反射后沿着直线y=ax+2射出,则有()A.a=13,b=6 B.a=-3,b=16C.a=3,b=-16 D.a=-13,b=-614.(2022·乳山市第一中学月考)从点A(2,3)射出的光线沿与向量a=(8,4)平行的直线射到y轴上,则反射光线所在直线的方程为________.15.已知方程(2+λ)x-(1+λ)y-2(3+2λ)=0与点P(-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P的距离d小于4 2.16.如图所示,m,n,l是三条公路,m与n是互相垂直的,它们在O点相交,l与m,n的交点分别是M,N,且|OM|=4,|ON|=8,工厂A在公路n上,|OA|=2,工厂B到m,n的距离分别为2,4.货车P在公路l上.(1)要把工厂A,B的物品装上货车P,问:P在什么位置时,搬运工走的路程最少?(2)P在什么位置时,工厂B搬运工与工厂A搬运工走的路程差距最多?(假设货物一次性搬运完)参考答案1解析:选A.直线l 1⊥l 2的充要条件是a +(a +2)a =0, 所以a (a +3)=0,所以a =0或a =-3 .故选A. 2解析:选A.解方程组⎩⎨⎧y =-2x +3k +14,x -4y =-3k -2,得⎩⎨⎧x =k +6,y =k +2.因为直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,所以⎩⎨⎧k +6>0,k +2<0,解得-6<k <-2.3解析:选A.在l 的方程中以-x 代替y ,以-y 代替x ,即得l ′的方程.直线ax +by +c =0关于直线x +y =0对称的直线l ′的方程是a (-y )+b (-x )+c =0,即bx +ay -c =0.4解析:选C.由题意知,MN 的中点P 的轨迹为平行于两直线且到两直线距离相等的直线,故其方程为x +y +6=0,所以P 到原点的距离的最小值为d =612+12=3 2.5解析:选CD.因为直线l 的一个方向向量为u =⎝ ⎛⎭⎪⎫-36,12,所以直线l 的斜率为k =12-36=-3,设直线的倾斜角为α(α∈[0°,180°)),则tan α=-3,所以α=120°,所以A 错误;因为l 经过点()1,-2,所以直线l 的方程为y +2=-3(x -1),令y =0,则x =-233+1,所以l 在x 轴上的截距为-233+1,所以B 错误;因为直线3x -3y +2=0的斜率为33,直线l 的斜率为-3,所以-3×33=-1,所以l 与直线3x -3y +2=0垂直,所以C 正确;因为直线3x +y +2=0的斜率为-3,直线l 的斜率也为-3,且两直线截距不相等,故两直线平行,所以D 正确.6解析:过两直线交点的直线系方程为x -3y +4+λ(2x +y +5)=0,代入原点坐标,求得λ=-45,故所求直线方程为x -3y +4-45(2x +y +5)=0,即3x +19y =0.答案:3x +19y =07解析:因为点P (m ,n )是直线2x +y +5=0上的任意一点,所以(m -1)2+(n +2)2的最小值为点(1,-2)到直线2x +y +5=0的距离,即最小值为d =|2-2+5|22+12= 5.所以(m -1)2+(n +2)2的最小值为 5. 答案: 58解析:直线l 1:ax +y +3a -4=0等价于a (x +3)+y -4=0,则直线过定点A (-3,4),当原点到l 1的距离最大时,满足OA ⊥l 1,此时原点到l 1的距离的最大值为|OA |=(-3)2+42=5.若a =0,则两直线方程为y -4=0和2x -y =0,不满足直线平行; 若a =1,则两直线方程为x +y -1=0和2x +1=0,不满足直线平行; 当a ≠0且a ≠1时,若两直线平行,则a 2=1a -1≠3a -4a ,由a 2=1a -1得a 2-a -2=0,解得a =2或a =-1.当a =2时,a 2=3a -4a ,舍去,当a =-1时,a 2≠3a -4a ,成立,即a =-1. 答案:5 -19解:(1)因为l 1⊥l 2,所以a (a -1)-b =0. 又因为直线l 1过点(-3,-1), 所以-3a +b +4=0.故a =2,b =2. (2)因为直线l 2的斜率存在,l 1∥l 2, 所以直线l 1的斜率存在. 所以ab =1-a .①又因为坐标原点到这两条直线的距离相等, 所以l 1,l 2在y 轴上的截距互为相反数,即4b =b .② 联立①②可得a =2,b =-2或a =23,b =2. 10解:(1)如图,设AB 中点为M ,则M (2,2),由AB 的垂直平分线与x 轴交于点D , 可知k MD ·k AB =-1, 因为k AB =1-34-0=-12,所以k MD =2, 所以直线MD 的方程为y -2=2(x -2),即y =2x -2. 令y =0,则x =1,所以D 点的坐标为(1,0). 又因为四边形ABCD 为平行四边形,设C (a ,b ),因为=,即(a -1,b )=(4,-2),所以a =5,b =-2,即点C 的坐标为(5,-2).(2)由(1)知,直线AB 的方程为x +2y -6=0, 如图,设点D 关于直线AB 的对称点为D ′(m ,n ), 则⎩⎪⎨⎪⎧n -0m -1·⎝ ⎛⎭⎪⎫-12=-1,m +12+2·n2-6=0,整理可得⎩⎨⎧2m -n -2=0,m +2n -11=0,解得⎩⎨⎧m =3,n =4,所以D ′(3,4), 又因为CD 的中点E 的坐标为E (3,-1),因此,反射光线所在直线D ′E 的方程为x =3.11解析:选BD.过点P ()1,2且在x ,y 轴截距相等的直线方程为x +y -3=0和y =2x ,A 错误;取x =0,y =-2,则直线y =3x -2在y 轴上的截距为-2,B 正确; 直线3x +y +1=0的斜率为k =-3,倾斜角为120°,C 错误;垂直于直线x -2y +3=0的直线方程斜率为k =-2,过点()-1,2的直线方程为y =-2()x +1+2=-2x ,即2x +y =0,D 正确.12解析:选B.由ax +y +3a -1=0可得a (x +3)+y -1=0,令⎩⎨⎧x +3=0,y -1=0,可得x =-3,y =1,所以N (-3,1). 设直线2x +3y -6=0关于点N 对称的直线方程为2x +3y +c =0(c ≠-6). 则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去).所以所求直线方程为2x +3y +12=0,故选B.13解析:选D.由题意,直线y =-3x +b 与直线y =ax +2关于直线y =-x 对称, 所以直线y =ax +2上的点(0,2)关于直线y =-x 的对称点(-2,0)在直线y =-3x +b 上,所以(-3)×(-2)+b =0,所以b =-6,所以直线y =-3x -6上的点(0,-6)关于直线y =-x 的对称点(6,0)在直线y =ax +2上,所以6a +2=0, 所以a =-13.14解析:点A ()2,3关于y 轴的对称点为()-2,3, 由于入射光线与a =(8,4)平行, 所以反射光线的斜率是-48=-12,所以反射光线所在直线方程为y -3=-12(x +2),即x +2y -4=0. 答案:x +2y -4=015解:(1)显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.因为方程可变形为2x -y -6+λ(x -y -4)=0, 所以⎩⎨⎧2x -y -6=0,x -y -4=0,解得⎩⎨⎧x =2,y =-2,故直线经过的定点为M (2,-2).(2)证明:过点P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0. 但直线系方程唯独不能表示直线x -y -4=0, 所以M 与Q 不可能重合,|PM |=42,所以|PQ |<42,故所证成立.16解:以m ,n 所在直线分别为x ,y 轴建立平面直角坐标系(图略),则有A (2,0),B (-2,-4),M (0,4),N (-8,0),故公路l 所在的直线方程为x -2y +8=0.(1)P 在什么位置时,搬运工走的路程最少,即求|P A |+|PB |的值最小时P 的位置. 设点A 关于直线l 的对称点A ′(m ,n ), 则⎩⎪⎨⎪⎧n -0m -2=-2,m +22-2×n +02+8=0,解得⎩⎨⎧m =-2,n =8,所以A ′(-2,8). 又P 为直线l 上的一点,则|P A |+|PB |=|P A ′|+|PB |≥|A ′B |,当且仅当B ,P ,A ′三点共线时等号成立,此时|P A |+|PB |取得最小值|A ′B |,点P 就是直线A ′B 与直线l 的交点.联立⎩⎨⎧x =-2,x -2y +8=0,解得⎩⎨⎧x =-2,y =3,所以P (-2,3). (2)由题意可知,原问题等价于求点P 的位置,使||PB |-|P A ||的值最大.A ,B 两点在直线的同侧,P 是直线上的点,则||PB |-|P A ||≤|AB |,当且仅当A ,B ,P 三点共线时等号成立,此时||PB |-|P A ||取得最大值|AB |,点P 即为直线l 与直线AB 的交点.又直线AB 的方程为y =x -2,由⎩⎨⎧y =x -2,x -2y +8=0,得⎩⎨⎧x =12,y =10,所以P (12,10).。
第八章 第二节 两条直线的位置关系基础夯实练1.如果直线l 1的斜率为a ,l 1⊥l 2,则直线l 2的斜率为( ) A .1aB .AC .-1aD .-1a或不存在解析:选D 设直线l 1,l 2的斜率分别是k 1,k 2, 当a ≠0时,由l 1⊥l 2得k 1·k 2=a ·k 2=-1, ∴k 2=-1a;当a =0时,l 1与x 轴平行或重合,则l 2与y 轴平行或重合, ∴直线l 2的斜率不存在. 故直线l 2的斜率为-1a或不存在.2.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若两直线平行,则a (a +1)=2,且4a +1≠0,即a 2+a -2=0,a ≠-12,∴a =1或-2,故a =1是两直线平行的充分不必要条件.3.若直线mx +4y -2=0与直线2x -5y +n =0垂直,垂足为(1,p ),则实数n 的值为( ) A .-12 B .-2 C .0D .10解析:选A 由2m -20=0,得m =10.由垂足(1,p )在直线mx +4y -2=0上,得p =-2, ∴垂足坐标为(1,-2).又垂足在直线2x -5y +n =0上,得n =-12.4.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A . 2 B .823C . 3D .833解析:选B 因为a =0或a =2时,l 1与l 2均不平行, 所以a ≠0且a ≠2. 因为l 1∥l 2, 所以1a -2=a 3≠62a ,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪6-232=823.5.(多选题)定义点P (x 0,y 0)到直线l :ax +by +c =0(a 2+b 2≠0)的有向距离为d =ax 0+by 0+ca 2+b 2.已知点P 1,P 2到直线l 的有向距离分别是d 1,d 2.以下命题不正确的是( )A .若d 1=d 2=1,则直线P 1P 2与直线l 平行B .若d 1=1,d 2=-1,则直线P 1P 2与直线l 垂直C .若d 1+d 2=0,则直线P 1P 2与直线l 垂直D .若d 1·d 2≤0,则直线P 1P 2与直线l 相交解析:选BCD 设P 1(x 1,y 1),P 2(x 2,y 2),对于A ,若d 1=d 2=1,则ax 1+by 1+c =ax 2+by 2+c =a 2+b 2,直线P 1P 2与直线l 平行,正确;对于B ,点P 1,P 2在直线l 的两侧且到直线l 的距离相等,P 1P 2不一定与l 垂直,错误; 对于C ,若d 1=d 2=0,满足d 1+d 2=0, 即ax 1+by 1+c =ax 2+by 2+c =0,则点P 1,P 2都在直线l 上,所以此时直线P 1P 2与直线l 重合,错误; 对于D ,若d 1·d 2≤0,即(ax 1+by 1+c )(ax 2+by 2+c )≤0,所以点P 1,P 2分别位于直线l 的两侧或在直线l 上,所以直线P 1P 2与直线l 相交或重合,错误.6.(多选题)点P 在直线3x +y -5=0上,且点P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(2,-1)D .(-2,1)解析:选AC设P (x 0,y 0),则⎩⎨⎧3x 0+y 0-5=0,|x 0-y 0-1|2=2,解得⎩⎪⎨⎪⎧ x 0=1,y 0=2或⎩⎪⎨⎪⎧x 0=2,y 0=-1,所以点P 的坐标为(1,2)或(2,-1).故选AC .7.(多选题)已知直线l 1:ax -y +1=0,l 2:x +ay +1=0,a ∈R ,以下结论正确的是( ) A .不论a 为何值时,l 1与l 2都互相垂直B .当a 变化时,l 1与l 2分别经过定点A (0,1)和B (-1,0)C .不论a 为何值时,l 1与l 2都关于直线x +y =0对称D .如果l 1与l 2交于点M ,则|MO |的最大值是 2解析:选ABD 对于A ,a ×1+(-1)×a =0恒成立,l 1与l 2互相垂直恒成立,故A 正确;对于B ,直线l 1:ax -y +1=0,当a 变化时,x =0,y =1恒成立, 所以l 1恒过定点A (0,1);l 2:x +ay +1=0,当a 变化时,x =-1,y =0恒成立,所以l 2恒过定点B (-1,0),故B 正确.对于C ,在l 1上任取点(x ,ax +1),关于直线x +y =0对称的点的坐标为(-ax -1,-x ),代入l 2:x +ay +1=0得2ax =0,不满足不论a 为何值时,2ax =0恒成立,故C 不正确;对于D ,联立⎩⎪⎨⎪⎧ax -y +1=0,x +ay +1=0,解得⎩⎪⎨⎪⎧x =-a -1a 2+1,y =-a +1a 2+1,即M ⎝ ⎛⎭⎪⎫-a -1a 2+1,-a +1a 2+1, 所以|MO |=⎝ ⎛⎭⎪⎫-a -1a 2+12+⎝ ⎛⎭⎪⎫-a +1a 2+12=2a 2+1≤2, 所以|MO |的最大值是2,故D 正确.故选ABD .8.直线3x -4y +5=0关于x 轴对称的直线方程是________.解析:在所求直线上任取一点P (x ,y ),则点P 关于x 轴的对称点P ′(x ,-y )在已知直线3x -4y +5=0上,所以3x -4(-y )+5=0,即3x +4y +5=0. 答案:3x +4y +5=09.设光线l 从点A (-4, 3 )出发,经过x 轴反射后经过点B ⎝⎛⎭⎫0,33,则光线l 与x轴的交点为________,若该入射光线l 经x 轴发生折射,折射角为入射角的一半,则折射光线所在直线的纵截距为________.解析:由点B ⎝⎛⎭⎫0,33关于x 轴的对称点为B ′⎝⎛⎭⎫0,-33, 可得直线AB ′的斜率为3+33-4=-33,方程为y =-33x -33, 令y =0,可得x =-1,即光线l 与x 轴交点的横坐标为-1;由入射光线AB ′可得入射角为90°-30°=60°,则折射角为30°,折射光线的斜率为k =tan(30°+90°)=-3,折射光线的方程为y -0=-3(x +1), 令x =0,可得y =-3,则折射光线所在直线的纵截距为- 3. 答案:(-1,0) - 3综合提升练10.(2021·湖北孝感五校联考)已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,所以BC 所在的直线方程为y -1=-2-14-3(x -3),即3x +y -10=0.联立得⎩⎪⎨⎪⎧ 3x +y -10=0,y =2x ,解得⎩⎪⎨⎪⎧x =2,y =4,则C (2,4).故选C . 11.(2021·福建福州期末)已知点A (-2,1)和点B 关于直线l :x +y -1=0对称,斜率为k 的直线m 过点A 交l 于点C ,若△ABC 的面积为2,则k 的值为( )A .3或13B .0C .13D .3解析:选B设点B (x ,y ),则⎩⎪⎨⎪⎧y -1x +2=1,x -22+y +12-1=0,解得x =0,y =3,则B (0,3),设直线m 的方程为y -1=k (x +2),与方程l :x +y -1=0联立,解得x =-2kk +1,y =3k +1k +1,则C ⎝ ⎛⎭⎪⎫-2k k +1,3k +1k +1.因为直线AB 的方程为y =x +3,且|AB |=22,点C 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪-2k k +1-3k +1k +1+32=|2-2k |2|k +1|,所以12×22×|2-2k |2|k +1|=2,得|1-k |=|k +1|,得k =0.故选B .12.若三条直线y =2x ,x +y =3,mx +ny +5=0相交于同一点,则点(m ,n )到原点的距离的最小值为( )A . 5B . 6C .2 3D .2 5解析:选A 联立⎩⎪⎨⎪⎧y =2x ,x +y =3,解得x =1,y =2.把(1,2)代入mx +ny +5=0可得,m +2n +5=0. ∴m =-5-2n .∴点(m ,n )到原点的距离 d = m 2+n 2=(5+2n )2+n 2=5(n +2)2+5 ≥ 5,当n =-2,m =-1时取等号. ∴点(m ,n )到原点的距离的最小值为 5.13.(多选题)瑞士数学家欧拉(Leonhard Euler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC 的顶点A (-4,0),B (0,4),其欧拉线方程为x -y +2=0,则顶点C 的坐标可以是( )A .(2,0)B .(0,2)C .(-2,0)D .(0,-2)解析:选AD 设C (x ,y ),AB 的垂直平分线为y =-x ,△ABC 的外心为欧拉线方程x -y +2=0与直线y =-x 的交点M (-1,1), ∴|MC |=|MA |=10, ∴(x +1)2+(y -1)2=10,① 由A (-4,0),B (0,4),△ABC 重心为⎝⎛⎭⎪⎫x -43,y +43,代入欧拉线方程x -y +2=0,得x -y -2=0,② 由①②可得x =2,y =0或x =0,y =-2. 故选AD .14.已知直线l 1:2x -y +3=0,直线l 2:4x -2y -1=0和直线l 3:x +y -1=0,若点M同时满足下列条件:(1)点M 是第一象限的点;(2)点M 到l 1的距离是到l 2的距离的12;(3)点M 到l 1的距离与到l 3的距离之比是2∶ 5. 则点M 的坐标为( ) A .⎝⎛⎭⎫13,2 B .⎝⎛⎭⎫13,3718 C .⎝⎛⎭⎫19,2D .⎝⎛⎭⎫19,3718解析:选D 设点M (x 0,y 0),若点M 满足(2),则|2x 0-y 0+3|5=12×|4x 0-2y 0-1|16+4,故2x 0-y 0+132=0或2x 0-y 0+116=0,若点M (x 0,y 0)满足(3),由点到直线的距离公式,得|2x 0-y 0+3|5=25×|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,故x 0-2y 0+4=0或3x 0+2=0,由于点M (x 0,y 0)在第一象限,故3x 0+2=0不符合题意,联立方程得⎩⎪⎨⎪⎧2x 0-y 0+132=0,x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12,不符合题意; 联立方程得⎩⎪⎨⎪⎧2x 0-y 0+116=0,x 0-2y 0+4=0,解得⎩⎨⎧x 0=19,y 0=3718,即点M 的坐标为⎝⎛⎭⎫19,3718.故选D .15.(多选题)如图所示,平面中两条直线l 1和l 2相交于点O ,对于平面上任意一点M ,若p ,q 分别是M 到直线l 1和l 2的距离,则称有序非负实数对(p ,q )是点M 的“距离坐标”.下列四个命题中正确的有( )A .若p =q =0,则“距离坐标”为(0,0)的点有且仅有1个B .若pq =0,且p +q ≠0,则“距离坐标”为(p ,q )的点有且仅有2个C .若pq ≠0,则“距离坐标”为(p ,q )的点有且仅有4个D .若p =q ,则点M 的轨迹是一条过点O 的直线解析:选ABC 若p =q =0,则“距离坐标”为(0,0)的点是两条直线的交点O ,因此有且仅有1个,A 正确.若pq =0,且p +q ≠0,则“距离坐标”为(0,q )(q ≠0)或(p,0)(p ≠0),因此满足条件的点有且仅有2个,B 正确.若pq ≠0,则“距离坐标”为(p ,q )的点有且仅有4个,如图所示,C 正确.若p =q ,则点M 的轨迹是两条过O 点的直线,分别为交角的平分线所在直线,因此D 不正确.故选ABC .创新应用练16.在平面直角坐标系内,已知A (1,2),B (1,5),C (3,6),D (7,-1),则平面内任意一点到点A 与点C 的距离之和的最小值为________,平面内到A ,B ,C ,D 的距离之和最小的点的坐标是________.解析:设平面上任一点M ,因为|MA |+|MC |≥|AC |=25,当且仅当A ,M ,C 共线,且M 在A ,C 之间时取等号,同理,|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线,且M 在B ,D 之间时取等号,连接AC ,BD 交于一点M ,此时|MA |+|MC |+|MB |+|MD |最小,则点M 为所求点.因为k AC =6-23-1=2,所以直线AC 的方程为y -2=2(x -1),即2x -y =0.①又因为k BD =5-(-1)1-7=-1,所以直线BD 的方程为y -5=-(x -1),即x +y -6=0,②联立①②得⎩⎪⎨⎪⎧ 2x -y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =2,y =4,所以M (2,4).答案:25 (2,4)17.已知点A (4,-1),B (8,2)和直线l :x -y -1=0,动点P (x ,y )在直线l 上,则|P A |+|PB |的最小值为________.解析:设点A 1与A 关于直线l 对称,P 0为A 1B 与直线l 的交点, ∴|P 0A 1|=|P 0A |, |P A 1|=|P A |.|P A 1|+|PB |≥|A 1B |=|A 1P 0|+|P 0B |=|P 0A |+|P 0B |, ∴|P A |+|PB |≥|P 0A |+|P 0B |=|A 1B |.当P 点运动到P 0时,|P A |+|PB |取得最小值|A 1B |.设点A 关于直线l 的对称点为A 1(x 1,y 1),则由对称的充要条件知,⎩⎪⎨⎪⎧y 1+1x 1-4·1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,∴A 1(0,3).∴(|P A |+|PB |)min =|A 1B |= 82+(-1)2=65.答案:65。
第2讲两条直线的位置关系[考纲解读] 1.能用方程组的方法求出两条直线的交点坐标,根据两条直线的斜率能判断两条直线的平行或垂直.(重点)2.能够利用两点间距离公式、点到直线的距离公式解决相关的数学问题.(难点) [考向预测]从近三年高考情况来看,本讲内容很少独立命题.预测2021年高考会与其他知识结合考查两直线的位置关系、求直线方程(如与导数、圆锥曲线结合)、面积等问题.题型为客观题,试题难度一般不大,属中档题型.1.两直线的平行、垂直与其斜率的关系条件两直线位置关系斜率的关系两条不重合的直线l1,l2,斜率分别为k1,k2平行□01k1=k2k1与k2都不存在垂直□02k1·k2=-1k1与k2一个为零、另一个不存在三种距离条件公式两点间的距离A(x1,y1),B(x2,y2)|AB|=□01(x1-x2)2+(y1-y2)2点到直线的距离P(x0,y0)到直线Ax+By+C=0的距离为dd=□02|Ax0+By0+C|A2+B2两平行线间的距离直线Ax+By+C1=0到直线Ax+By+C2=0的距离为dd=□03|C1-C2|A2+B2(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+m=0(m∈R).(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.1.概念辨析(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )答案 (1)× (2)× (3)√ (4)√ 2.小题热身(1)若直线mx +2y +m =0与直线3mx +(m -1)y +7=0平行,则m 的值为( )A .7B .0或7C .0D .4答案 B解析 ∵直线mx +2y +m =0与直线3mx +(m -1)y +7=0平行,∴m (m -1)=3m ×2,∴m =0或7,经检验,都符合题意.故选B.(2)原点到直线x +2y -5=0的距离是________. 答案5解析 原点到直线x +2y -5=0的距离d =|-5|12+22= 5.(3)经过直线l 1:x +y -5=0,l 2:x -y -1=0的交点且垂直于直线2x +y -3=0的直线方程为________.答案 x -2y +1=0解析 联立直线l 1与l 2的方程,得⎩⎪⎨⎪⎧ x +y -5=0,x -y -1=0,解得⎩⎪⎨⎪⎧x =3,y =2,所以直线l 1与l 2的交点坐标为(3,2),设所求直线的方程为x -2y +C =0,将点(3,2)的坐标代入直线方程得3-2×2+C =0,解得C =1,因此,所求的直线方程为x -2y +1=0.(4)已知点P (-1,1)与点Q (3,5)关于直线l 对称,则直线l 的方程为________. 答案 x +y -4=0解析 ∵直线PQ 的斜率k 1=1,∴直线l 的斜率k 2=-1,又线段PQ 的中点坐标为(1,3),∴直线l 的方程为x +y -4=0.题型一 两条直线的位置关系1.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.答案 -9解析 由⎩⎪⎨⎪⎧ y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,∴m =-9.2.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解 (1)由已知,得l 2的斜率存在,且k 2=1-a . 若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1必不存在,即b =0. 又l 1过点(-3,-1), ∴-3a +4=0,即a =43(矛盾), ∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在且不为0.∵k 2=1-a ,k 1=ab ,l 1⊥l 2, ∴k 1k 2=-1,即ab (1-a )=-1.① 又l 1过点(-3,-1), ∴-3a +b +4=0.②由①②联立,解得a =2,b =2. (2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即ab =1-a ,③ 又坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数, 即4b =b ,④联立③④,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎨⎧a =23,b =2.∴a =2,b =-2或a =23,b =2.1.已知两直线的斜率存在,判断两直线平行垂直的方法 (1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等. (2)两直线垂直⇔两直线的斜率之积等于-1. 2.由一般式确定两直线位置关系的方法 直线方程 l 1:A 1x +B 1y +C 1=0(A 21+B 21≠0) l 2:A 2x +B 2y +C 2=0(A 22+B 22≠0)l 1与l 2垂直的充要条件A 1A 2+B 1B 2=0l1与l2平行的充分条件A1A2=B1B2≠C1C2(A2B2C2≠0)l1与l2相交的充分条件A1A2≠B1B2(A2B2≠0)l1与l2重合的充分条件A1A2=B1B2=C1C2(A2B2C2≠0)注意:在判断两直线位置关系时,比例式A1A2与B1B2,C1C2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.1.(2019·淮南模拟)设λ∈R,则“λ=-3”是“直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 A解析当λ=-3时,两条直线的方程分别为6x+4y+1=0,3x+2y-2=0,此时两条直线平行;若两条直线平行,则2λ·(1-λ)=-6(1-λ),所以λ=-3或λ=1,经检验,两者均符合,综上,“λ=-3”是“直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行”的充分不必要条件.2.(2019·湖北十堰模拟)已知菱形ABCD的顶点A,C的坐标分别为A(-4,7),C(6,-5),BC边所在直线过点P(8,-1).求:(1)AD边所在直线的方程;(2)对角线BD所在直线的方程.解(1)k BC=-5-(-1)6-8=2,∵AD∥BC,∴k AD=2.∴AD边所在直线的方程为y-7=2(x+4),即2x -y +15=0. (2)k AC =-5-76-(-4)=-65.∵菱形的对角线互相垂直, ∴BD ⊥AC ,∴k BD =56.∵AC 的中点(1,1),也是BD 的中点,∴对角线BD 所在直线的方程为y -1=56(x -1),即5x -6y +1=0.题型二 距离问题1.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( )A.423 B .4 2 C.823 D .2 2答案 C解析 若l 1∥l 2,则1×3-a (a -2)=0,解得a =-1或3. 经检验a =3时,两条直线重合,舍去. 所以a =-1,此时有l 1:x -y +6=0, l 2:-3x +3y -2=0,即x -y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪⎪⎪6-2312+(-1)2=823.2.(2019·重庆巴蜀中学模拟)已知曲线y =2xx -1在点P (2,4)处的切线与直线l 平行且距离为25,则直线l 的方程为( )A .2x +y +2=0B .2x +y +2=0或2x +y -18=0C .2x -y -18=0D .2x -y +2=0或2x -y -18=0 答案 B 解析 y ′=2(x -1)-2x (x -1)2=-2(x -1)2,当x =2时,y ′=-2(2-1)2=-2,因此k l =-2,则设直线l 方程为y =-2x +b ,即2x +y -b =0,由题意知|2×2+4-b |5=25,解得b =18或b =-2,所以直线l 的方程为2x +y -18=0或2x +y +2=0.故选B.3.已知点A (5,2a -1),B (a +1,a -4),当|AB |取得最小值时,实数a 的值是________.答案 12解析 由题意,得 |AB |=(a +1-5)2+[(a -4)-(2a -1)]2=(a -4)2+(a +3)2=2⎝ ⎛⎭⎪⎫a -122+492, 所以当a =12时,|AB |取得最小值.距离问题的常见题型及解题策略(1)求两条平行线间的距离.要先将直线方程中x ,y 的对应项系数转化成相等的形式,再利用距离公式求解,也可以转化成点到直线的距离问题.如举例说明1.(2)解决与点到直线的距离有关的问题.应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定系数法(如举例说明2),若待定系数是斜率,必须讨论斜率是否存在.(3)求两点间的距离.关键是确定两点的坐标,然后代入公式即可,一般用来判断三角形的形状等.1.若点P 在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)答案 C解析 设P (x,5-3x ),则d =|x -5+3x -1|12+(-1)2=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故P (1,2)或(2,-1).2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A.95 B.185 C.2910 D.295 答案 C解析 易知直线3x +4y -12=0与6x +8y +5=0平行,所以|PQ |的最小值就是这两条平行线间的距离.6x +8y +5=0可化为3x +4y +52=0,则这两条平行线间的距离是⎪⎪⎪⎪⎪⎪-12-5232+42=2910.题型三 对称问题1.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.答案 6x -y -6=0解析 设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得⎩⎪⎨⎪⎧a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.2.已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. 解 (1)设A ′(x ,y ),再由已知,得⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,∴A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又m ′经过点N (4,3),∴由两点式得直线方程为9x -46y +102=0. (3)解法一:在l :2x -3y +1=0上任取两点, 如M (1,1),N (4,3),则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.解法二:设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ),∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.解法三:∵l ∥l ′,∴设l ′的方程为2x -3y +c =0(c ≠1), ∴由点到直线的距离公式得 |-2+6+c |22+32=|-2+6+1|22+32, 解得c =-9或c =1(舍去), ∴l ′的方程为2x -3y -9=0.1.中心对称问题的两个类型及求解方法 (1)点关于点的对称若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称问题的主要求解方法①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程.如举例说明2(3).②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的两个类型及求解方法 (1)点关于直线的对称若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎪⎫x 1+x 22+B ⎝ ⎛⎭⎪⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝ ⎛⎭⎪⎫-A B =-1,得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).如举例说明1,2(1).(2)直线关于直线的对称一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.已知直线l :3x -y +3=0,求: (1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程; (3)直线l 关于(1,2)的对称直线.解 (1)解法一:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′), ∵k PP ′·k l =-1,即y ′-y x ′-x×3=-1.①又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y2+3=0.② 由①②得⎩⎨⎧x ′=-4x +3y -95,③y ′=3x +4y +35. ④把x =4,y =5代入③④得x ′=-2,y ′=7, ∴点P (4,5)关于直线l 的对称点P ′的坐标为(-2,7). 解法二:设点P (4,5)关于l 的对称点为M (m ,n ). ∵PM 与l 垂直,且PM 的中点⎝ ⎛⎭⎪⎫m +42,n +52在直线l 上, ∴⎩⎪⎨⎪⎧n -5m -4×3=-1,3×m +42-n +52+3=0,解得⎩⎪⎨⎪⎧m =-2,n =7,∴点P (4,5)关于l 的对称点为(-2,7).(2)解法一:用③④分别代换x -y -2=0中的x ,y ,得关于l 对称的直线方程为-4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0.解法二:设直线x -y -2=0关于直线l 对称的直线为l ′.解方程组⎩⎪⎨⎪⎧x -y -2=0,3x -y +3=0,得⎩⎪⎨⎪⎧x =-52,y =-92,即两直线的交点为⎝ ⎛⎭⎪⎫-52,-92,则点⎝ ⎛⎭⎪⎫-52,-92在直线l ′上.取直线x -y -2=0上一点Q (2,0),则点Q (2,0)关于直线l 的对称点Q ′(a ,b )在l ′上.∵QQ ′与l 垂直,且QQ ′的中点⎝ ⎛⎭⎪⎫a +22,b 2在l 上.∴⎩⎨⎧ba -2×3=-1,3×a +22-b2+3=0,解得⎩⎪⎨⎪⎧a =-175,b =95,∴Q ′⎝ ⎛⎭⎪⎫-175,95,∴l ′的斜率为95+92-175+52=-7,∴直线l ′的方程为y +92=-7⎝ ⎛⎭⎪⎫x +52,即7x +y +22=0.(3)在直线l :3x -y +3=0上取点M (0,3), 设关于(1,2)的对称点M ′(x ′,y ′),∴x ′+02=1,x ′=2,y ′+32=2,y ′=1,∴M ′(2,1). ∵l 关于(1,2)的对称直线平行于l ,∴k =3,∴对称直线方程为y -1=3×(x -2),即3x -y -5=0.组 基础关1.已知过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行,则m 的值为( )A .-1B .-2C .2D .1答案 B解析 由题意得,k AB =m -0-5-(m +1)=m -6-m ,k CD =5-30-(-4)=12.由于AB ∥CD ,即k AB =k CD ,所以m-6-m =12,所以m =-2.2.若直线l 1:(m -2)x -y -1=0与直线l 2:3x -my =0互相平行,则m 的值等于( )A .0或-1或3B .0或3C .0或-1D .-1或3答案 D解析 当m =0时,两条直线方程分别化为-2x -y -1=0,3x =0,此时两条直线不平行;当m ≠0时,由于l 1∥l 2,则m -23=1m ,解得m =-1或3,经验证满足条件.综上,m =-1或3.故选D.3.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( )A .19x -9y =0B .9x +19y =0C .19x -3y =0D .3x +19y =0 答案 D解析 解法一:解方程组⎩⎪⎨⎪⎧x -3y +4=0,2x +y +5=0,可得两条直线的交点坐标为⎝ ⎛⎭⎪⎫-197,37,又因为所求直线过原点,所以其斜率为-319,方程为y =-319x ,即3x +19y =0.解法二:根据题意可设所求直线方程为x-3y+4+λ(2x+y+5)=0,因为此直线过原点,所以4+5λ=0,λ=-45.所以x-3y+4-45(2x+y+5)=0,整理得3x+19y=0.4.(2019·南昌检测)直线3x-4y+5=0关于x轴对称的直线的方程是() A.3x+4y+5=0 B.3x+4y-5=0C.-3x+4y-5=0 D.-3x+4y+5=0答案 A解析在所求直线上任取一点P(x,y),则点P关于x轴的对称点P′(x,-y)在已知的直线3x-4y+5=0上,所以3x-4(-y)+5=0,即3x+4y+5=0.5.若直线l经过点(-1,-2),且原点到直线l的距离为1,则直线l的方程为()A.3x-4y-5=0B.x=-1C.3x-4y-5=0或y=-1D.3x-4y-5=0或x=-1答案 D解析当直线l的斜率不存在时,直线方程为x=-1,满足原点到直线l的距离为1,∴x=-1.当直线l的斜率存在时,设直线方程为y+2=k(x+1),即kx-y+k-2=0,由原点到直线l的距离为1,∴|k-2|k2+1=1,解得k=34.从而得直线l的方程为y+2=34(x+1),即3x-4y-5=0.综上可得,直线l的方程为x=-1或3x-4y-5=0.6.(2019·葫芦岛模拟)当点P(3,2)到直线mx-y+1-2m=0的距离最大时,m 的值为()A.3 B.0C .-1D .1答案 C解析 直线mx -y +1-2m =0可化为y =m (x -2)+1,故直线过定点Q (2,1),当PQ 和直线垂直时,距离取得最大值,故m ·k PQ =m ·2-13-2=m ·1=-1,m =-1.7.已知直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),则直线l 的一般式方程为( )A .3x -y +5=0B .3x +y +1=0C .x -3y +7=0D .x +3y -5=0答案 B解析 设l 与l 1的交点坐标为A (a ,y 1),l 与l 2的交点坐标为B (b ,y 2),∴y 1=-4a -3,y 2=3b5-1,由中点坐标公式得a +b 2=-1,y 1+y 22=2,即a +b =-2,(-4a -3)+⎝ ⎛⎭⎪⎫3b 5-1=4,解得a =-2,b =0,∴A (-2,5),B (0,-1),∴l 的方程为3x +y +1=0.8.点(2,1)关于直线x -y +1=0的对称点为________. 答案 (0,3)解析 设对称点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0-1x 0-2=-1,x 0+22-y 0+12+1=0,解得⎩⎪⎨⎪⎧x 0=0,y 0=3,故所求对称点为(0,3).9.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则实数c 的值是________.答案 2或-6解析直线6x+ay+c=0的方程可化为3x+a2y+c2=0,由题意得a2=-2且c2≠-1,解得a=-4,c≠-2.根据两平行直线的距离为21313,得⎪⎪⎪⎪⎪⎪-1-c232+(-2)2=213 13,所以1+c2=±2,解得c=2或-6.10.以A(1,1),B(3,2),C(5,4)为顶点的△ABC,其边AB上的高所在的直线方程是________.答案2x+y-14=0解析由A,B两点得k AB=12,则边AB上的高所在直线的斜率为-2,故所求直线方程是y-4=-2(x-5),即2x+y-14=0.组能力关1.已知b>0,直线(b2+1)x+ay+2=0与直线x-b2y-1=0垂直,则ab的最小值为()A.1 B.2C.2 2 D.2 3答案 B解析由已知两直线垂直,得(b2+1)-ab2=0,即ab2=b2+1,又b>0,∴ab=b+1b.由基本不等式得b+1b≥2 b·1b=2,当且仅当b=1时等号成立,∴(ab)min=2.故选B.2.两条平行线l1,l2分别过点P(-1,2),Q(2,-3),它们分别绕P,Q旋转,但始终保持平行,则l1,l2之间距离的取值范围是()A.(5,+∞) B.(0,5]C.(34,+∞) D.(0,34]答案 D解析当PQ与平行线l1,l2垂直时,|PQ|为平行线l1,l2间的距离的最大值,为(-1-2)2+[2-(-3)]2=34,∴l 1,l 2之间距离的取值范围是(0,34].故选D.3.已知三条直线2x -3y +1=0,4x +3y +5=0,mx -y -1=0不能构成三角形,则实数m 的取值集合为( )A.⎩⎨⎧⎭⎬⎫-43,23 B.⎩⎨⎧⎭⎬⎫43,-23 C.⎩⎨⎧⎭⎬⎫-43,23,43D.⎩⎨⎧⎭⎬⎫-43,-23,23 答案 D解析 设l 1:2x -3y +1=0,l 2:4x +3y +5=0,l 3:mx -y -1=0,易知l 1与l 2交于点A ⎝ ⎛⎭⎪⎫-1,-13,l 3过定点B (0,-1).因为l 1,l 2,l 3不能构成三角形,所以l 1∥l 3或l 2∥l 3或l 3过点A .当l 1∥l 3时,m =23;当l 2∥l 3时,m =-43;当l 3过点A 时,m =-23,所以实数m 的取值集合为⎩⎨⎧⎭⎬⎫-43,-23,23.故选D.4.(2019·保定模拟)设点P 为直线l :x +y -4=0上的动点,点A (-2,0),B (2,0),则|P A |+|PB |的最小值为( )A .210 B.26 C .2 5 D.10答案 A解析 依据题意作出图象如下,设点B (2,0)关于直线l 的对称点为B 1(a ,b ),则它们的中点坐标为⎝ ⎛⎭⎪⎫a +22,b 2,且|PB |=|PB 1|,由对称性,得⎩⎪⎨⎪⎧b -0a -2×(-1)=-1,a +22+b2-4=0,解得a =4,b =2,所以B 1(4,2),因为|P A |+|PB |=|P A |+|PB 1|,所以当A ,P ,B 1三点共线时,|P A |+|PB |最小,此时最小值为|AB 1|=(4+2)2+(2-0)2=210.5.已知曲线y =4x 在点P (1,4)处的切线与直线l 平行且两直线之间的距离为17,则直线l 的方程为________. 答案 4x +y +9=0或4x +y -25=0解析 y ′=-4x 2,所以曲线y =4x 在点P (1,4)处的切线的斜率k =-412=-4,则切线方程为y -4=-4(x -1),即4x +y -8=0.所以可设直线l 的方程为4x +y +C =0,由|C +8|42+1=17,得C =9 或C =-25,所以所求直线方程为4x +y +9=0或4x +y -25=0.6.在△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,则直线BC 的方程为________.答案 6x -5y -9=0解析 由AC 边上的高BH 所在直线方程为x -2y -5=0可以知道k AC =-2,又A (5,1),AC 边所在直线方程为2x +y -11=0,联立直线AC 与直线CM 方程得⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,解得⎩⎪⎨⎪⎧x =4,y =3,所以顶点C 的坐标为C (4,3).设B (x 0,y 0),AB 的中点M 为⎝ ⎛⎭⎪⎫x 0+52,y 0+12,由M 在直线2x -y -5=0上,得2x 0-y 0-1=0, B 在直线x -2y -5=0上,得x 0-2y 0-5=0, 联立⎩⎪⎨⎪⎧ 2x 0-y 0-1=0,x 0-2y 0-5=0.解得⎩⎪⎨⎪⎧x 0=-1,y 0=-3,所以顶点B 的坐标为(-1,-3). 于是直线BC 的方程为6x -5y -9=0.7.已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4). (1)证明直线l 过某定点,并求该定点的坐标; (2)当点P 到直线l 的距离最大时,求直线l 的方程.解 (1)证明:直线l 的方程可化为a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧ 2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3,所以直线l 恒过定点(-2,3). (2)由(1)知直线l 恒过定点A (-2,3),当直线l 垂直于直线P A 时,点P 到直线l 的距离最大. 又因为直线P A 的斜率k P A =4-33+2=15,所以直线l 的斜率k l =-5.故直线l 的方程为y -3=-5(x +2),即5x +y +7=0.。