两条直线的位置关系_课件
- 格式:ppt
- 大小:1.94 MB
- 文档页数:36
2.2.3两条直线的位置关系基础过关练题组一两条直线的相交、平行与重合1.下列说法中,正确的个数为( )①若两条直线的斜率相等,则这两条直线平行;②若两条直线平行,则这两条直线的斜率相等;③若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线相交;④若两条直线的斜率都不存在,则这两条直线平行.A.1B.2C.3D.42.(2019湖南岳阳一中高二月考)若直线l1,l2在x轴上的截距都是m,在y轴上的截距都是n,则l1,l2的位置关系是( )A.平行B.重合C.平行或重合D.相交或重合3.直线3x+2y+6=0和2x+5y-7=0的交点坐标为( )A.(-4,-3)B.(4,3)C.(-4,3)D.(3,4)4.(2020河北正定一中高二月考)已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a等于( )A.1或-3B.-1或3C.1或3D.-1或-35.(2019湖北天门高二期中)已知直线l1经过点A(m,1),B(-3,4),直线l2经过点C(1,m),D(-1,m+1),当直线l1与l2平行时,实数m的值为( )A.3B.-1C.-3D.16.(2020江苏宿迁高二月考)直线(2m-1)x-(m+3)y-(m-11)=0恒过的定点坐标是.7.若直线l与直线3x-2y=6平行,且直线l在x轴上的截距比在y轴上的截距大1,则直线l的方程为.8.已知直线l1:ax+2y+6=0,l2:x+(a-1)y+a2-1=0,求满足下列条件的a的取值范围.(1)l1与l2相交;(2)l1∥l2;(3)l1与l2重合.题组二两条直线的垂直9.(2019山东济南高二月考)与直线y=2x+1垂直,且在y轴上的截距为4的直线的斜截式方程是( )x+4 B.y=2x+4A.y=12x+4C.y=-2x+4D.y=-1210.(2020河南平顶山高一期末)下列四组直线中,互相垂直的一组是( )A.2x+y-1=0与2x-y-1=0B.2x+y-1=0与x-2y+1=0C.x+2y-1=0与x-y-1=0D.x+y=0与x+y-3=011.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A.4x+2y=5B.4x-2y=5C.x+2y=5D.x-2y=512.(2020辽宁沈阳高二期末)已知直线4x+my-6=0与直线5x-(m-1)y+8=0垂直,则实数m的值为( )A.-4或5B.-4C.5D.4或-513.以A(-1,1),B(2,-1),C(1,4)为顶点的三角形是( )A.锐角三角形B.钝角三角形C.以A为直角顶点的直角三角形D.以B为直角顶点的直角三角形14.(2020湖南娄底高二联考)过点P(3,0)且与直线x-2y+3=0垂直的直线的方程为.题组三两条直线的位置关系的应用15.已知平行四边形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(4,3),则顶点D的坐标为( )A.(3,4)B.(1,3)C.(3,1)D.(3,8)16.已知直线l1,l2的斜率k1,k2是关于k的方程2k2-4k+m=0的两根,若l1⊥l2,则m= ;若l1∥l2,则m= .17.已知△ABC的三个顶点分别是A(2,2+2√2),B(0,2-2√2),C(4,2),则△ABC是.(填△ABC的形状)能力提升练题组两直线位置关系的应用1.(2019湖南长沙高二月考,)若三条直线2x+3y+8=0,x-y-1=0和x+ky=0相交于一点,则k=( )A.-2B.-12C.2 D.122.(2020山东东营一中高二期末,)已知两点A(2,0),B(3,4),直线l过点B,且交y轴于点C(0,y),O是坐标原点,若O,A,B,C四点共圆,则y的值是( )A.19B.194C.5D.43.(2019山西临汾一中高二期中,)设集合A={(x,y)|y-3x-1=2,x,y∈R},B={(x,y)|4x+ay-16=0,x,y∈R},若A∩B=⌀,则实数a的值为( ) A.4 B.-2C.4或-2D.-4或24.(多选)(2020河南郑州一中高二月考,)若直线l 1的倾斜角为α,且l1⊥l2,则直线l2的倾斜角可能为( )A.90°-αB.90°+αC.|90°-α|D.180°-α5.(多选)(2020河北沧州高二期中,)等腰直角三角形ABC的直角顶点为C(3,3),若点A的坐标为(0,4),则点B的坐标可能是( )A.(2,0)B.(0,2)C.(4,6)D.(6,4)6.(2020河北保定高二期末,)已知过原点O的一条直线与函数y=log 8x的图像交于A,B两点,分别过点A,B作y轴的平行线与函数y=log2x的图像交于C,D两点.(1)证明:点O,C,D在同一条直线上;(2)当直线BC平行于x轴时,求点A的坐标.7.(2020湖南长沙雅礼中学高一月考,)已知四边形ABCD的顶点A(m,n),B(5,-1),C(4,2),D(2,2),求四边形ABCD为直角梯形时,m和n的值.8.(2020江西南昌高二期末,)已知直线l的倾斜角为30°,点P(2,1)在直线l 上,将直线l绕点P(2,1)按逆时针方向旋转30°后到达直线l1的位置,此时直线l1与l2平行或重合,且l2是线段AB的垂直平分线,其中A(1,m-1),B(m,2),试求m的值.答案全解全析基础过关练1.A 若两条直线的斜率相等,则这两条直线平行或重合,所以①不正确;若两条直线都垂直于x 轴,则这两条直线的斜率都不存在,所以②不正确;若两条直线的斜率都不存在,则这两条直线平行或重合,所以④不正确;显然③正确.故选A.2.D 当mn≠0时,l 1,l 2重合;当m=n=0时,l 1,l 2可能相交,也可能重合.故选D.3.C 由方程组{3x +2y +6=0,2x +5y -7=0得{x =-4,y =3,故选C. 4.A 因为直线y=ax-2的斜率存在且为a,所以a+2≠0,直线3x-(a+2)y+1=0可化为y=3a+2x+1a+2.因为两条直线平行,所以3a+2=a 且1a+2≠-2,解得a=1或a=-3.5.A 显然m≠-3,k AB =4-1-3-m =3-3-m,k CD =m+1-m -1-1=-12,由于l 1∥l 2,所以3-3-m=-12,解得m=3,满足题意. 6.答案 (2,3)解析 直线方程可化为m(2x-y-1)-(x+3y-11)=0.因为对任意m∈R,方程恒成立,所以{2x -y -1=0,x +3y -11=0,解得{x =2,y =3,故直线恒过定点(2,3).7.答案 15x-10y-6=0解析 由题意知直线l 的斜率k=32,设直线l 的方程为y=32x+b(b≠-3).令y=0,得x=-2b 3,所以-2b 3-b=1,解得b=-35,故直线l 的方程为y=32x-35,即15x-10y-6=0.8.解析 (1)因为l 1与l 2相交,所以a(a-1)≠2,所以a≠-1且a≠2. 故当a≠-1且a≠2时,l 1与l 2相交. (2)因为l 1∥l 2, 所以{a (a -1)-2=0,2(a 2-1)-6(a -1)≠0,解得a=-1.故当a=-1时,l 1∥l 2.(3)因为l 1与l 2重合, 所以{a (a -1)-2=0,2(a 2-1)-6(a -1)=0,解得a=2.故当a=2时,l 1与l 2重合.9.D 因为直线y=2x+1的斜率为2,所以与其垂直的直线的斜率是-12,故所求直线的斜截式方程为y=-12x+4.10.B 由两条直线垂直的条件易知B 选项中的两条直线互相垂直.11.B 线段AB 的中点坐标为(2,32),因为直线AB 的斜率k=1-23-1=-12,所以线段AB 的垂直平分线的斜率为2.由直线的点斜式方程,可得所求垂直平分线的方程为y-32=2(x-2),即4x-2y=5.12.A 依题意可得4×5-m(m-1)=0,即m 2-m-20=0,所以m=-4或m=5. 13.C 由已知得k AB =-1-12-(-1)=-23,k AC =4-11-(-1)=32,所以k AB ·k AC =-1,即AB⊥AC,故三角形ABC 是以A 为直角顶点的直角三角形. 14.答案 2x+y-6=0解析 设所求直线方程为2x+y+c=0,由直线过点P(3,0)得2×3+0+c=0,解得c=-6,故所求直线方程为2x+y-6=0.15.A 设顶点D 的坐标为(m,n),由题意得AB∥DC,AD∥BC,则有k AB =k DC ,k AD =k BC ,所以{0-11-0=3-n 4-m,n -1m -0=3-04-1,解得{m =3,n =4.所以顶点D 的坐标为(3,4). 16.答案 -2;2解析 由一元二次方程根与系数的关系得k 1·k 2=m2,若l 1⊥l 2,则m2=-1,∴m=-2.当m=-2时,关于k 的方程2k 2-4k+m=0有两个实数根,∴m=-2满足题意. 若l 1∥l 2,则k 1=k 2,即关于k 的方程2k 2-4k+m=0有两个相等的实数根,∴Δ=(-4)2-4×2×m=0, ∴m=2.17.答案 直角三角形解析 由已知得,AB 边所在直线的斜率k AB =2-2√2-(2+2√2)0-2=2√边所在直线的斜率k CB =2-2√2-20-4=√22,AC 边所在直线的斜率k AC =2-(2+2√2)4-2=-√2,所以k CB ·k AC =-1,所以CB⊥AC,所以△ABC 是直角三角形.能力提升练1.B 由方程组{2x +3y +8=0,x -y -1=0解得{x =-1,y =-2.将(-1,-2)代入x+ky=0,得k=-12.2.B 由题易知AB⊥BC,所以k AB ·k BC =-1,即4-03-2×y -40-3=-1,解得y=194.3.C 集合A 表示直线y-3=2(x-1),即y=2x+1上的点,但除去点(1,3),集合B 表示直线4x+ay-16=0上的点,当A∩B=⌀时,直线y=2x+1与4x+ay-16=0平行或直线4x+ay-16=0过点(1,3),所以-4a =2或4+3a-16=0,解得a=-2或a=4.4.ABC (1)当α=0°时,l 2的倾斜角为90°(如图1);(2)当0°<α<90°时,l 2的倾斜角为90°+α(如图2);(3)当α=90°时,l 2的倾斜角为0°(如图3);(4)当90°<α<180°时,l 2的倾斜角为α-90°(如图4).故直线l 2的倾斜角可能为90°-α,90°+α ,|90°-α|,但不可能为180°-α.5.AC 设B 点坐标为(x,y),根据题意可得{k AC ·k BC =-1,|BC |=|AC |,即{3-43-0·3-y 3-x=-1,√(x -3)2+(y -3)2=√(0-3)2+(4-3)2,整理可得{x =2,y =0或{x =4,y =6,故B(2,0)或B(4,6).6.解析 (1)证明:设点A,B 的横坐标分别为x 1,x 2.由题意,知x 1>1,x 2>1,A(x 1,log 8x 1),B(x 2,log 8x 2),C(x 1,log 2x 1),D(x 2,log 2x 2),且log 8x 1x 1=log 8x 2x 2,又k OC =log 2x 1x 1=3log 8x 1x 1,k OD =log 2x 2x 2=3log 8x 2x 2,所以k OC =k OD ,即点O,C,D 在同一条直线上. (2)由(1)知B(x 2,log 8x 2),C(x 1,log 2x 1). 由直线BC 平行于x 轴,得log 2x 1=log 8x 2,所以x 2=x 13,将其代入log 8x 1x 1=log 8x 2x 2,得x 13log 8x 1=3x 1log 8x 1,由x 1>1,知log 8x 1≠0,故x 13=3x 1,所以x 1=√3,于是A(√3,log 8√3). 7.解析 若四边形ABCD 是直角梯形, 则有2种情形,如图所示:①AB∥CD,AB⊥AD,此时A(2,-1).∴m=2,n=-1. ②AD∥BC,AD⊥AB,∴{k AD =k BC ,k AD ·k AB =-1,即{2-n2-m =2-(-1)4-5,2-n 2-m·-1-n 5-m=-1,解得{m =165,n =-85.综上,{m =2,n =-1或{m =165,n =-85.8.解析 如图,直线l 1的倾斜角为30°+30°=60°,∴直线l 1的斜率k 1=tan 60°=√3.∵l 1与l 2平行或重合, ∴l 2的斜率为√3.∵l 2是线段AB 的垂直平分线, ∴k AB =2-m+1m -1=3-m m -1=-√33,解得m=4+√3.。
第2讲 两条直线的位置关系1.能根据斜率判定两条直线的平行或垂直.2.能用解方程组考试要求的方法求两条直线的交点坐标. 3.掌握平面上两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.01聚焦必备知识1.两条直线的位置关系知识梳理(1)当直线l1,l2不重合且斜率都不存在时,l1∥l2.拓展(2)当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l1⊥l2.3.三种距离公式(1)两点间的距离公式平面上任意两点P1(x1,y1),P2(x2,y2)间的距离公式为|P1P2|= __________________________.(2)点到直线的距离公式点P0(x0,y0)到直线l:Ax+By+C=0的距离d=______________.(3)两平行直线间的距离公式两条平行直线A x+B y+C1=0与A x+B y+C2=0间的距离d=________________.1.与直线Ax +By +C =0(A 2+B 2≠0)垂直或平行的直线方程可设为:(1)垂直:Bx -Ay +m =0;(2)平行:Ax +By +n =0(n ≠C ).2.有关对称点的结论常用结论点关于点、线对称点(x ,y )(a ,b )(2a -x ,2b -y )x =a(2a -x ,y )y =x(y ,x )x +y =k(k -y ,k -x )x -y =k (k +y ,x -k )夯基诊断××√√2.回源教材(1)与直线3x -4y +5=0关于x 轴对称的直线的方程为________.答案:3x +4y +5=0设所求对称直线的点的坐标(x ,y ),关于x 轴的对称点的坐标(x ,-y )在已知的直线上,所以所求对称直线方程为3x +4y +5=0.(2)已知直线l 过点(0,3),且与直线x +y +1=0垂直,则l 的方程是________.答案:x -y +3=0由题意,设直线l 的方程为x -y +a =0,又过点(0,3),则0-3+a =0,得a =3,故直线l 的方程为x -y +3=0.(3)两条平行直线l1:2x+3y-8=0,l2:2x+3y-10=0之间的距离为________.02突破核心命题例1 (1)(2024·合肥质检)若l 1:3x -my -1=0与l 2:3(m +2)x -3y +1=0是两条不同的直线,则“m =1”是“l 1∥l 2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考 点 一两条直线的平行与垂直CC 若l1∥l2,则3×(-3)=-m×3(m+2),解得m=1或m=-3,而当m=-3时,l1,l2重合,故舍去,则“m=1”是“l1∥l2”的充要条件.(2)(2024·宿迁调研)若直线l 1:ax +2ay +1=0与直线l 2:(a -1)x -(a +1)y -1=0垂直,则a 的值为( )A.0B.-1C.-2D.-3D D 因为直线l 1:ax +2ay +1=0与直线l 2:(a -1)x -(a +1)y -1=0垂直,所以a (a -1)-2a (a +1)=0,解得a =0或a =-3.当a =0时,直线l 1不存在,故舍去;当a =-3时,满足题意.故选D.判断两条直线位置关系的注意点(1)斜率不存在的特殊情况.(2)可直接利用直线方程系数间的关系得出结论.反思感悟训练1 (1)已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( )A.1或3B.1或5C.3或5D.1或2C(2)已知a 2-3a +2=0,则直线l 1:ax +(3-a )y -a =0和直线l 2:(6-2a )x +(3a -5)y -4+a =0的位置关系为( )A.垂直或平行B.垂直或相交C.平行或相交 D.垂直或重合D例2 (1)两条平行直线2x -y +3=0和ax -3y +4=0间的距离为d ,则a ,d 分别为( )考 点 二两条直线的交点与距离问题D(2)(2024·广州调研)直线l经过原点,且经过两条直线2x+3y+8=0,x -y-1=0的交点,则直线l的方程为________.法二:设所求直线l的方程为2x+3y+8+λ(x-y-1)=0(λ∈R),因为直线l经过原点,所以2×0+3×0+8+λ(0-0-1)=0,解得λ=8.所以直线l的方程为2x-y=0.答案:2x-y=01.求过两直线交点的直线方程的方法:先求出两直线的交点坐标,再结合其他条件写出直线方程.2.利用距离公式应注意:(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;(2)两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.反思感悟(2)已知直线经过点(1,2),并且与点(2,3)和(0,-5)的距离相等,则此直线的方程为________.此时直线方程为4x-y-2=0.若所求直线的斜率不存在,则直线方程为x=1,满足题设条件.故所求直线的方程为4x-y-2=0或x=1.答案:4x-y-2=0或x=1考 点 三 对称问题考向 1 中心对称例3 过点P(0,1)作直线l,使它被直线l1:2x+y-8=0和l2:x-3y +10=0截得的线段被点P平分,则直线l 的方程为________.设l1与l的交点为A(a,8-2a),则由题意知,点A关于点P的对称点B(-a,2a-6)在l2上,代入l2的方程得-a-3(2a-6)+10=0,解得a=4,即点A(4,0)在直线l上,所以直线l的方程为x+4y-4=0.答案:x+4y-4=0例4 如图,一束平行光线从原点O(0,0)出发,经过直线l:8x+6y=25反射后通过点P(-4,3),则反射光线所在的直线的方程为________.2轴对称因为反射光线所在的直线过点A(4,3),且反射光线过点P(-4,3),点A和点P的纵坐标相等,所以反射光线所在直线的方程为y=3.答案:y=3对称问题的求解策略(1)解决对称问题的思路是利用待定系数法将几何关系转化为代数关系求解.(2)中心对称问题可以利用中点坐标公式解题,两点轴对称问题可以利用垂直和中点两个条件列方程组解题.训练3 已知直线l:2x-3y+1=0,点A(-1,-2).求:(1)点A关于直线l的对称点A′的坐标;(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;(3)直线l关于点A对称的直线l′的方程.(3)法一:在l:2x-3y+1=0上任取两点,如P(1,1),N(4,3),则P,N关于点A的对称点P′,N′均在直线l′上.易知P′(-3,-5),N′(-6,-7),由两点式可得l′的方程为2x-3y-9=0.法二:设Q(x,y)为l′上任意一点,则Q(x,y)关于点A(-1,-2)的对称点为Q′(-2-x,-4-y).∵Q′在直线l上,∴2(-2-x)-3(-4-y)+1=0,即直线l′的方程为2x-3y-9=0.03限时规范训练(五十八)A级 基础落实练A1.两条直线l1:x=2和l2:3x+2y-12=0的交点坐标是( )A.(2,3)B.(-2,3)C.(3,-2)D.(-3,2)2.已知直线l1经过点A(2,a-1),B(a,4),且与直线l2:2x+y-3=0C平行,则a等于( )A.-2B.2C.-1D.13.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A A.4x+3y-13=0 B.4x-3y-19=0C.3x-4y-16=0D.3x+4y-8=0A5.(2024·绍兴调研)平面直角坐标系中与直线y=2x+1关于点(1,1)对D称的直线方程是( )A.y=2x-1B.y=-2x+1C.y=-2x+3D.y=2x-36.在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x -2y+1=0和x-2y+3=0,另一组对边所在的直线方程分别为3x+4y+c1=0和3x+4y+c2=0,则|c1-c2|等于( )B7.(多选)设直线l1:y=px+q,l2:y=kx+b,则下列说法正确的是( BC )A.直线l1或l2可以表示平面直角坐标系内任意一条直线B.l1与l2至多有无穷多个交点C.l1∥l2的充要条件是p=k且q≠bD.记l1与l2的交点为M,则y-px-q+λ(y-kx-b)=0可表示过点M的所有直线BC 对于A,当直线的斜率不存在时,直线方程为x=m(m为直线与x 轴交点的横坐标),此时直线l1或l2的方程无法表示,故A错误;对于B,当p=k且q=b时,两直线重合,此时两直线有无穷多个交点,故B正确;对于C,当p=k且q≠b时,l1∥l2,故C正确;对于D,记l1与l2的交点为M,则M的坐标满足l1:y=px+q且满足l2:y=kx+b,则y-px-q+λ(y-kx-b)=0不表示过点M的直线l2,故D错误.A A.2 B.-2C.3D.-3。