原子吸收与原子发射光谱
- 格式:ppt
- 大小:9.56 MB
- 文档页数:56
TECHNOLOGY WIND [摘要]通过三种方法的比较,可以得知不同的分析方法所适用的元素。
本文主要从基本原理,研究对象及温度三个方面进行比较。
[关键词原子发射光谱法;原子吸收光谱法;原子荧光光谱法原子发射光谱法、原子吸收光谱法、原子荧光光谱法的比较赫健(辽宁省有色地质局一0四队测试中心,辽宁营口115007)1基本原理三者从基本原理来看其相同点是:相应能级间的跃迁所得的3种光谱,波长或频率完全相同,而且发射强度、吸收强度、荧光强度与元素性质、谱线特征及外界条件间的依赖有关系基本类似。
因此,原子发射光谱法中的问题,在原子吸收和原子荧光法中也大多同样存在。
2研究对象三者之间也存在根本区别:从3种方法的研究对象来看是有区别的:原子发射光谱法是研究待测元素激发的辐射强度;原子吸收光谱法是研究待测原子蒸气对光源共振线的吸收强度,是属吸收光谱;原子荧光光谱法是研究待测元素受激发跃迁所发射的荧光强度,虽然激发主式与发射光谱法不同,但仍然是属发射光谱。
而原子荧光光谱法既具有发射光谱分析的特点,以与原子吸收法有许多相似之处,因此,介于两者之间,在某些方面兼具两者的优点。
谱线数目不同,复杂程度不同,光谱干扰程度也有很大差别:发射光谱谱线多,由谱线重叠引起的光谱干扰较严重。
由于基态原子密度较其他能级原子密度大,受激吸收机会占优势,因此原子吸收线多限于一些以基态为低能级的共振吸收线,其谱线数目远比发射线少,谱线重叠引起光谱干扰也较少。
由于只有产生受激吸收之后才能产生荧光,因此荧光谱线大多是强度较大的共振线,其谱线数目更少,相对光谱干扰也少。
3温度温度变化对原子发射强度、吸收强度、原子荧光强度的影响不同:激发态原子随温度变化是以指数形式变化,而基态原子数因温度变化引起的变化是很小的,实际上接近于恒定值。
这是由于参加跃迁的低能级的激发能一般很小(基态激发能等于零),玻尔慈曼因子近似等于1,因此原子吸收强度受原子化温度变化的影响,比发射光谱受激发温度影响小。
原子荧光光谱简介原子荧光光谱是1964年以后发展起来的分析方法。
原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。
但所用仪器与原子吸收光谱法相近。
原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。
原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析技术。
它的基本原理是基态原子(一般蒸汽状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度进行定量分析的方法。
原子荧光的波长在紫外、可见光区。
气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,约经10-8秒,又跃迁至基态或低能态,同时发射出荧光。
若原子荧光的波长与吸收线波长相同,称为共振荧光;若不同,则称为非共振荧光。
共振荧光强度大,分析中应用最多。
在一定条件下,共振荧光强度与样品中某元素浓度成正比。
该法的优点是灵敏度高,目前已有20多种元素的检出限优于原子吸收光谱法和原子发射光谱法;谱线简单;在低浓度时校准曲线的线性范围宽达3――5个数量级,特别是用激光做激发光源时更佳。
主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用。
原理原子荧光光谱法是通过测量待测元素的原子蒸气在辐射能激发下产生的荧光发射强度,来确定待测元素含量的方法。
气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约10-8S,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子荧光。
原子荧光分为共振荧光、直跃荧光、阶跃荧光等。
发射的荧光强度和原子化器中单位体积该元素基态原子数成正比,式中:I f为荧光强度;$ 为荧光量子效率,表示单位时间内发射荧光光子数与吸收激发光光子数的比值,一般小于1;Io为激发光强度;A为荧光照射在检测器上的有效面积;L为吸收光程长度;& 为峰值摩尔吸光系数;N为单位体积内的基态原子数。
原子发射光谱和原子吸收光谱的区别
原子发射光谱和原子吸收光谱是研究原子的光谱现象常用的两种方法。
它们的区别主要体现在以下几个方面:
1. 测量对象不同:原子发射光谱是测量原子在受激发后由高能级向低能级跃迁时所发射的光线的现象,而原子吸收光谱则是测量原子从低能级吸收光子跃迁到高能级的过程。
2. 光谱形态不同:原子吸收光谱通常呈现为黑线或者缺失线的形式,称为吸收线,而原子发射光谱则是一系列明亮可见光线的集合,称为发射线,有时也称为亮线谱。
3. 测量方法不同:原子发射光谱常采用光谱仪测量,它通过分离和检测样品发射的不同波长的光线来得到光谱图谱。
而原子吸收光谱则通过测量样品中某个特定波长的光线的吸收强度来得到光谱图谱。
4. 应用方向不同:原子发射光谱常用于分析和确定不同样品中化学元素的存在和浓度,例如在冶金、环境、地球科学等领域。
原子吸收光谱则通常用于测量和分析样品中特定元素的含量,特别是对于微量元素的分析具有重要意义。
总的来说,原子发射光谱和原子吸收光谱分别从不同的角度研究了原子的光谱现象,提供了研究原子量子结构和元素分析的有力工具。
原子吸收光谱和原子发射光谱的区别根据有关资料,比较完整的解释:原子吸收光谱原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。
由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。
AAS现已成为无机元素定量分析应用最广泛的一种分析方法。
原子吸收光谱法该法具有检出限低(火熖法可达ng?cm–3级)准确度高(火熖法相对误差小于1%),选择性好(即干扰少)分析速度快等优点。
在温度吸收光程,进样方式等实验条件固定时,样品产生的待测元素相基态原子对作为锐线光源的该元素的空心阴极灯所辐射的单色光产生吸收,其吸光度(A)与样品中该元素的浓度(C)成正比。
即A=KC 式中,K为常数。
据此,通过测量标准溶液及未知溶液的吸光度,又巳知标准溶液浓度,可作标准曲线,求得未知液中待测元素浓度。
该法主要适用样品中微量及痕量组分分析。
原子吸收光谱法是根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。
其优点与不足:<1> 检出限低,灵敏度高。
火焰原子吸收法的检出限可达到ppb 级,石墨炉原子吸收法的检出限可达到10-10-10-14g。
<2> 分析精度好。
火焰原子吸收法测定中等和高含量元素的相对标准差可<1%,其准确度已接近于经典化学方法。
石墨炉原子吸收法的分析精度一般约为3-5%。
<3> 分析速度快。
原子吸收光谱仪在35分钟内,能连续测定50个试样中的6种元素。
<4> 应用范围广。
可测定的元素达70多个,不仅可以测定金属元素,也可以用间接原子吸收法测定非金属元素和有机化合物。
<5> 仪器比较简单,操作方便。
<6> 原子吸收光谱法的不足之处是多元素同时测定尚有困难,有相当一些元素的测定灵敏度还不能令人满意。
原子发射光谱和原子吸收光谱的区别
原子发射光谱和原子吸收光谱是光谱学中两种不同的分析技术,它们主要通过原子在光的作用下产生的能级跃迁来获取信息,但它们的原理和应用有所不同。
下面是它们的主要区别:
1.原理:
-原子发射光谱(Atomic Emission Spectroscopy,简称AES):在原子发射光谱中,样品原子首先被激发到高能级状态,然后从高能级跃迁回到低能级,释放出特定波长的光。
这些发射的光经过分光仪的分析,可以得到特定元素的光谱线,从而确定样品中含有的元素种类和浓度。
-原子吸收光谱(Atomic Absorption Spectroscopy,简称AAS):在原子吸收光谱中,样品中的原子通过吸收入射光的能量而跃迁到高能级状态。
入射光的波长通常是特定元素的吸收波长。
吸收光强度与样品中特定元素的浓度成正比,通过测量吸收光强度的变化,可以得到样品中特定元素的浓度信息。
2.应用:
-原子发射光谱广泛用于分析样品中特定元素的存在和浓度,特别适用于多元素分析。
-原子吸收光谱主要用于分析样品中特定元素的浓度,它通常对特定元素的测量更为灵敏和准确。
3.灵敏度:
-原子发射光谱的灵敏度通常较低,对于样品中低浓度的元素可能需要高灵敏度的仪器。
-原子吸收光谱的灵敏度相对较高,可以测量样品中较低浓度的元素。
综上所述,原子发射光谱和原子吸收光谱是两种不同的光谱学分析技术,它们分别通过原子的发射和吸收光来获取样品中特定元素的信息。
原子发射光谱主要用于多元素分析,而原子吸收光谱则更适用于特定元素浓度的准确测量。