无机固体材料的结构-纳米粒子粒径评估方法
- 格式:ppt
- 大小:3.81 MB
- 文档页数:47
纳米材料粒度测试方法大全目前,纳米材料已成为材料研发以及产业化最基本的构成部分,其中纳米材料的粒度则是其最重要的表征参数之一。
本文根据不同的测试原理阐述了8种纳米材料粒度测试方法,并分析了不同粒度测试方法的优缺点及适用范围。
1.电子显微镜法电子显微镜法是对纳米材料尺寸、形貌、表面结构和微区化学成分研究最常用的方法,一般包括扫描电子显微镜法(SEM)和透射电子显微镜法(TEM)。
对于很小的颗粒粒径,特别是仅由几个原子组成的团簇,采用扫描隧道电镜进行测量。
计算电镜所测量的粒度主要采用交叉法、最大交叉长度平均值法、粒径分布图法等。
优点:该方法是一种颗粒度观测的绝对方法,因而具有可靠性和直观性。
缺点:测量结果缺乏整体统计性;滴样前必须做超声波分散;对一些不耐强电子束轰击的纳米颗粒样品较难得到准确的结果。
2.激光粒度分析法激光粒度分析法是基于Fraunhofer衍射和Mie氏散射理论,根据激光照射到颗粒后,颗粒能使激光产生衍射或散射的现象来测试粒度分布的。
因此相应的激光粒度分析仪分为激光衍射式和激光动态散射式两类。
一般衍射式粒度仪适于对粒度在5μm以上的样品分析,而动态激光散射仪则对粒度在5μm以下的纳米、亚微米颗粒样品分析较为准确。
所以纳米粒子的测量一般采用动态激光散射仪。
优点:样品用量少、自动化程度高、重复性好, 可在线分析等。
缺点:不能分析高浓度的粒度及粒度分布,分析过程中需要稀释,从而带来一定误差。
3.动态光散射法动态光散射也称光子相关光谱,是通过测量样品散射光强度的起伏变化得出样品的平均粒径及粒径分布。
液体中纳米粒子以布朗运动为主,其运动速度取决于粒径、温度和黏度系数等因素。
在恒定温度和黏度条件下, 通过光子相关谱法测定颗粒的扩散系数就可获得颗粒的粒度分布,其适用于工业化产品粒径的检测,测量粒径范围为1nm~5μm的悬浮液。
优点:速度快,可获得精确的粒径分布。
缺点:结果受样品的粒度大小以及分布影响较大,只适用于测量粒度分布较窄的颗粒样品;测试中应不发生明显的团聚和快速沉降现象。
第五章纳米微粒的尺寸评估技术基本概念①晶粒(Grain) :单晶颗粒(晶粒内部物质均匀,单相,无晶界和气孔存在)②一次颗粒(Primary Particle) :气孔率低的一种独立的粒子,结构可为晶态、非晶态和准晶态,可以是单相、多相结构(有相界面),或多晶结构(有晶界面)。
其特点是不可渗透。
界面包括外表面(自由表面)和内界面。
表面是指固体材料与气体或液体的分界面;而内界面可分为晶粒边界和晶内的亚晶界、孪晶界、层错及相界面等。
在晶体表面上,原子排列情况与晶内不同,表面原子会偏离其正常的平衡位置,并影响到邻近的几层原子,造成表层的点阵畸变,使它们的能量比内部原子高,这几层高能量的原子层称为表面。
界面通常包含几个原子层厚的区域,该区域内的原子排列甚至化学成分往往不同于晶体内部,又因它是二维结构分布,故也称为晶体的面缺陷。
界面的存在对晶体的力学、物理和化学等性能产生重要的影响。
多数晶体物质是由许多晶粒所组成,属于同一固相但位向不同的晶粒之间的界面称为晶界,它是一种内界面;而每个晶粒有时又由若干个位向稍有差异的亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界。
具有不同结构的两相之间的分界面称为“相界”。
根据结构特点(两相晶格的彼此衔接情况),相界面可分为共格相界、半共格相界和非共格相界三种类型。
✍当一次颗粒为单相、晶态(单晶晶粒)时,颗粒的粒径才与晶粒尺寸(晶粒度)相同。
③二次颗粒(Granules) :一次颗粒组成的粉体团聚粒子。
可自发合成(减小表面能、界面能),也可人为制造。
④团聚体(Agglomerate) :与二次颗粒类似,由一次颗粒通过表面力(软团聚)或化学键键合作用(硬团聚)形成的更大颗粒,内含相互连接的气孔网络。
它的形成使体系能量下降,达到稳定状态。
⑤胶粒(Colloidal Particles):即胶体颗粒。
胶粒尺寸小于100nm,并可在液相中形成稳定胶体而无沉降现象。
颗粒尺寸:对球形颗粒,粒径指其直径;对不规则颗粒:等当直径(如体积等当直径、投影面积等当直径等)。
如何测量纳米颗粒的粒径近年来PM2.5成为肯定的热词,简单来说就是直径小于等于 2.5m 的可吸入颗粒物。
宏观世界中看似没什么差别的颗粒,在微观角度可谓包罗万象,因此必要的定量描述必不可少。
首先我们来明确一个基本概念和一个基本假设。
粒度:颗粒的大小称为粒度,通常球体颗粒的粒度用直径表示,立方体颗粒的粒度用边长表示。
粒径是颗粒的直径。
然而实际中的颗粒大多是不规定的,所以,为了更便利的描述颗粒的大小,在实际测算中,将不规定的颗粒等效为规定球,并以其直径作为颗粒的粒度。
这就是“等效圆球理论”。
几种粒度测量方法及其范围:所以,小颗粒,你多大呀?下面让我们一起认得筛分法、显微(图像)法、沉降法、电阻法、光阻法、激光衍射、动态光散射、电子显微镜、超声波法和比表面积法。
一、筛分法筛分法测定粒径时,依照被测试样的粒径大小及分布范围,将大小不同筛孔的筛子叠放在一起进行筛分,收集各个筛子的筛余量,称量求得被测试样以重量计的颗粒粒径分布。
筛分法适于粒度30m的粉体。
测定时取肯定量的粉料通过筛子,测定筛余量(即通不过的粉料量)占总重量的百分率,筛余越多,说明粉料颗粒愈粗。
不同产品有不同的筛余量(如电容器陶瓷要求筛余量小于0.01%)。
其中紧要的参数是:A.筛分直径(颗粒能够通过的最小方筛孔的宽度);B.筛孔的大小用目表示每一英寸长度上筛孔的个数,国产筛是以每平方英寸上的孔数表示筛的目数。
优点:设备简单,操作简便,易于实行,设备造价低。
缺点:1)对小于400目(38m)的干粉很难测量。
测量时间越长,得到的结果就越小;2)在筛分操作过程中,颗粒有可能破损或断裂,因此筛分特别不适合测定长形针状或片状颗粒的粒度。
同时必需注意到,非球形的颗粒通过筛子在肯定程度上取决于颗粒的方向,造成测量误差。
此外,含有结合水的颗粒粒度的测量不适合采纳筛分法;3)不能测量射流或乳浊液,结果受人为因素影响较大;4)所谓某某粉体多少目,是指用该目数的筛筛分后的筛余量小于某给定值。
纳米材料粒度测试方法大全纳米材料粒度测试是纳米材料研究和应用中非常重要的一项工作,通过准确测量纳米材料的粒度可以了解其物理性质和化学性质,为纳米材料的合成、应用和性能优化提供数据支持。
下面将介绍几种常用的纳米材料粒度测试方法。
1.扫描电子显微镜(SEM):SEM是一种通过扫描纳米材料表面的高能电子束来观察和测量纳米材料粒度的方法。
该方法具有分辨率高、测量精度高、对纳米材料样品无需特殊处理等特点。
通过SEM观察到的纳米材料外观图像可以用于测量粒径、形貌和分布等参数。
2.透射电子显微镜(TEM):TEM是一种通过透射电子束观察纳米材料内部结构的方法,也可用于测量纳米材料的粒度。
TEM具有高分辨率,可以观察到纳米尺度的细节。
通过对TEM图像的分析,可以根据纳米材料的投影面积和长度等参数来计算纳米材料的粒径。
3.动态光散射(DLS):DLS是一种通过检测纳米材料颗粒在溶液中的布朗运动来测量纳米材料粒度的方法。
它利用激光束照射纳米颗粒溶液,测量散射光的强度和角度分布,从而得到纳米材料的尺寸分布。
DLS具有非接触式测量、快速、方便等特点,适用于纳米材料的溶液或悬浮液样品。
4.X射线衍射(XRD):XRD是一种通过测量材料晶体的衍射角度来确定晶体结构和晶粒尺寸的方法。
对于具有晶体结构的纳米材料,可以通过XRD图谱的峰宽来估算晶粒尺寸。
XRD具有无损测量、精度高等特点,适用于晶体结构明确的纳米材料。
5.傅里叶红外光谱(FTIR):FTIR是一种通过测量纳米材料在红外波段的吸收光谱来研究纳米材料结构和成分的方法。
纳米材料的粒度也可以通过红外吸收峰的强度和位置进行定性和定量分析。
FTIR具有所需样品量少、分辨率高等特点,适用于纳米材料的表面分析和组成分析。
6.水中悬浮液测定法:将纳米材料置于水中制备悬浮液,通过测量悬浮液的光学性质如透光率等,可以间接测得纳米材料的粒度。
该方法操作简单、快速,可用于大量样品的测量。
7.气相吸附法:纳米材料的比表面积可以通过气相吸附法来测量。
纳米材料的性能测试方法与分析技巧在纳米科技领域中,纳米材料的性能测试是非常重要的。
随着纳米材料的广泛应用,准确评估其性能对于材料的研发和应用具有重要意义。
本文将介绍纳米材料性能测试的常用方法和分析技巧。
1. 粒径分析纳米材料的粒径是其最基本的性能参数之一。
常用的粒径分析方法包括动态光散射(DLS)、激光粒度分析仪(LPSA)和扫描电子显微镜(SEM)等。
其中,动态光散射是一种通过光粒度仪测量颗粒对粒径的分析方法。
激光粒度分析仪可以通过光学原理测量颗粒的大小分布。
扫描电子显微镜则通过高分辨率的图像展示颗粒的形态和大小。
这些方法可以帮助我们了解纳米材料的粒径分布情况,为性能的评估提供依据。
2. 表面形貌分析纳米材料的表面形貌对其性能具有重要影响。
扫描电子显微镜和透射电子显微镜(TEM)是常用的表面形貌分析方法。
扫描电子显微镜可以提供高分辨率的表面形貌图像,而透射电子显微镜则可以提供纳米级别的表面形貌信息。
通过这些方法可以观察到纳米材料的形状、表面结构和晶体结构等信息,为性能的评估提供基础数据。
3. 结构分析纳米材料的结构对其性能具有重要影响。
X射线衍射(XRD)和透射电子显微镜是常用的结构分析方法。
X射线衍射可以通过检测材料的晶体衍射峰来确定其晶体结构和晶格参数。
透射电子显微镜则可以通过对纳米材料的电子衍射图像进行分析,确定其晶体结构和晶格参数。
结构分析可以提供对纳米材料晶体结构的了解,为性能的评估提供依据。
4. 表面化学成分分析纳米材料的表面化学成分对其性能具有重要影响。
常用的表面化学成分分析方法包括能谱分析(EDS)和X射线光电子能谱(XPS)。
能谱分析可以通过分析材料发射的X射线能谱来确定其表面化学成分。
X射线光电子能谱则可以通过分析材料表面的光电子发射能谱来确定其表面化学成分。
这些方法可以帮助我们了解纳米材料的表面化学成分,为性能的评估提供依据。
5. 热性能分析纳米材料的热性能对其应用具有重要意义。